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Boosting Night-time Scene Parsing with Learnable
Frequency

Zhifeng Xie, Sen Wang, Ke Xu, Zhizhong Zhang, Xin Tan, Yuan Xie, Lizhuang Ma

Abstract—Night-Time Scene Parsing (NTSP) is essential to
many vision applications, especially for autonomous driving.
Most of the existing methods are proposed for day-time scene
parsing. They rely on modeling pixel intensity-based spatial
contextual cues under even illumination. Hence, these methods do
not perform well in night-time scenes as such spatial contextual
cues are buried in the over-/under-exposed regions in night-time
scenes. In this paper, we first conduct an image frequency-based
statistical experiment to interpret the day-time and night-time
scene discrepancies. We find that image frequency distributions
differ significantly between day-time and night-time scenes,
and understanding such frequency distributions is critical to
NTSP problem. Based on this, we propose to exploit the image
frequency distributions for night-time scene parsing. First, we
propose a Learnable Frequency Encoder (LFE) to model the
relationship between different frequency coefficients to measure
all frequency components dynamically. Second, we propose a
Spatial Frequency Fusion module (SFF) that fuses both spatial
and frequency information to guide the extraction of spatial
context features. Extensive experiments show that our method
performs favorably against the state-of-the-art methods on the
NightCity, NightCity+ and BDD100K-night datasets. In addition,
we demonstrate that our method can be applied to existing day-
time scene parsing methods and boost their performance on
night-time scenes.

Index Terms—Night-time Vision, Scene Parsing, Frequency
Analysis.

I. INTRODUCTION

SCENE parsing is a fundamental task in computer vision
with many downstream applications, such as autonomous

driving [1], human parsing [2], and image inpainting [3]. Most
representative scene parsing methods [4]–[8] are proposed for
day-time scenes. However, while night-time may contribute to
half of total working hours (e.g., in autonomous driving), these
existing methods do not work well in night-time scenes due to
the day-time/night-time scene discrepancies (see Figure 1a).
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(a) Examples of Cityscapes and NightCity
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Fig. 1. Image-level frequency statistics. (a) shows one day-time scene from
Cityscapes (left) and one night-time scene from NightCity (right). (b) shows
image-level frequency distributions of two images of (a). (c) shows local
frequency distribution of regions with under-/over-exposures (marked with
orange and blue boxes, respectively) of images in (a). The high-frequency
components are zoomed in by red box.

Meanwhile, although there are some methods [9]–[13] pro-
posed to transfer the day-time domain knowledge to the nigh-
time domain for scene parsing through domain adaptation,
they still cannot achieve practical performances due to the
less resolved domain discrepancies.

Recently, Tan et al. [14] propose the first large-scale
night-time scene dataset (NightCity). They also propose an
exposure-guided network for night-time scene parsing (NTSP).
Deng et al. [15] propose the NightLab, which further boosts
the performance of NTSP by learning the image lighting
variation and mining hard segmented regions.

However, all these methods typically rely on modeling
pixel-intensity-based contextual features, which are not nec-
essarily reliable under uneven night-time lighting conditions.
On the other hand, we note that some style transfer-based
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segmentation methods [12], [13] assume that the low-level
spectrum represents scene lighting information. Hence, two
questions are raised: Can image frequency distributions rep-
resent the day-time/night-time domain discrepancies? And are
all frequency components are important for NTSP?

To answer the aforementioned two questions, we first con-
duct an image-frequency based analysis. We first analyze
image-level frequency distributions by randomly select one
day-time image from the Cityscapes [16] and one night-
time image from the NightCity [14] (Figure 1a). We use the
Discrete Cosine Transform (DCT) to compute the spectrogram
of images as in [17]. Following the JPEG compression process
[18], the image is divided into multiple 8 × 8 blocks. Then,
we calculate the mean value of spectrograms of all blocks as
shown in Figure 1b. While the frequency distribution of day-
time image does differ from that of night-time image and such
difference mainly comes from the low frequency components,
we can see that night-time images do have different high
frequency distribution from day-time image.

We further analyze the local regions of the night-time image
where under- and over-exposures happen (marked with orange
and blue boxes Figure 1a). For the corresponding comparing
regions of day-time image we select the objects with the same
semantics (i.e., cars). We compute the spectrograms of those
regions as shown in Figure 1c. We can see that the high
frequency distribution of day-time image tends to have less
peaks due to its relatively even lighting condition, while that of
night-time image tends to have more peaks. This demonstrates
that high frequency distribution differences reveal the lighting
discrepancies of different domains.

Furthermore, we perform quantitative experiments at the
dataset level to demonstrate our observation. To better analyze
the frequency difference, we divide the spectrogram into four
parts, as shown in Figure 2a. First, we calculate the mean
values of the spectrogram in each frequency region, and then
calculate the variance of the mean values of each frequency
region of all night images in the dataset separately. We show
the results in Figure 2b that the variance of the night-time
scenes in each region is larger than that of the day-time
scenes, which indicates that the difference of the dataset-level
frequency information for night-time scenes is also significant.
This motivates us to design a network for NTSP that is
learnable for all frequency information to adjust the frequency
components dynamically.

In this paper, we propose a novel Frequency Domain
Learning Network (FDLNet), which first deals with the NTSP
in the frequency domain. Specifically, we first propose a
Learnable Frequency Encoder (LFE) which fully exploits
all frequency components generated by DCT to adjust the
channel response of different frequency components dynam-
ically. Since the frequency distribution of different night-
time images is diverse, the LFE can adaptively adjust the
channel response of frequency components, so the weights
of frequency components are unique for each image. Then,
we propose a Spatial Frequency Fusion module (SFF), which
fuses the spatial features and frequency features in channel-
wise. We use both spatial and frequency information to guide
the extraction of spatial context features for NTSP. We con-
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(b) Dataset-level Frequency Analysis

Fig. 2. Dataset-level frequency statistics. (a) The spectrogram is divided
into four parts, the low frequency (L), mid frequency (M1, M2) and high
frequency (H), in which the low frequency area occupies 1/16 of the frequency
map, the two mid frequency areas occupies 3/16, and the high frequency
area occupies 9/16. (b) Dataset-level mean variance statistics across the four
frequency regions.

duct extensive experiments on night-time datasets (including
NightCity, NightCity+ and BDD100K-night), showing that
our method plays favorably against state-of-the-art methods.
Besides, our method can be easily applied to existing state-
of-the-art day-time segmentation methods [5] [6] [7] to adapt
them for NTSP.

In sum, our main contributions are:
1) We interpret the scene lighting discrepancies between

day-time and night-time scenes with the image frequency
distributions. We show that a full understanding of image
frequency distributions is crucial to NTSP. We propose a
novel Frequency Domain Learning Network (FDLNet)
for NTSP.

2) We propose the Learnable Frequency Encoder (LFE), to
dynamically adjust the channel responses of all frequency
components. We propose the Spatial Frequency Fusion
module (SFF), which leverages the frequency information
to model spatial contexts by a fusion of spatial and
frequency features.

3) We show that our method can easily be applied to state-
of-the-art day-time scene parsing methods to boost their
performances for NTSP.

II. RELATED WORK

A. Scene Parsing

Scene parsing aims to assign each pixel with its class label.
Long et al. [4] propose the first fully convolutional network
(FCN) to extract deep features for scene parsing. Later, many
methods such as PSPnet [5] and Deeplab [19] [20] [6] are
proposed to aggregate more spatial features by expanding
their reception fields. In order to obtain more effective spatial
features, a variety of attention mechanisms have been studied
in scene parsing. In [21], Point-wise Spatial Attention is
proposed to associate the information of each location with
that of other locations. Self-attention mechanism is introduced
in DANet [22] and OCNet [23] to capture contextual infor-
mation. CCnet [7] and Axial-DeepLab [24] apply the Non-
local module [25] to model long-range spatial contextual in-
formation. Recently, transformer-based methods are proposed
to model global contexts for scene parsing. STER [8] uses
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the transformer layers to form the encoder for extracting the
global context information. Swin Transformer [26] uses the
sliding windows with information exchange mechanism to
reduce the computational complexity of transformer, while
capturing global information. Strudel et al. [27] propose a
fully transformer architecture with a Mask Transformer as the
decoder to generate class masks. Xie et al. [28] propose to
fuse multi-level features without positional encoding in the
encoding stage.

Meanwhile, there are also some methods proposed to
encode prior knowledge into scene parsing. HANet [29]
models the height distribution statistics of object categories,
based on which they propose to learn height-driven attention.
SANet [30] factorizes the scene parsing task into two sub-
tasks of pixel classification and pixel grouping, and leverages
pixel grouping to aggregate contextual information to enhance
pixel classification. ISNet [31] learns both image level and
semantic level contextual features to model inter- and intra-
class correlation for scene parsing. STLNet [32] uses the
proposed Quantization and Counting Operator to leverage
the low-level texture features for scene parsing. In [33],
contextual information beyond a single image is modeled via
their proposed MCIBI by dynamically building dataset-level
semantic features during training.

All above-mentioned methods are proposed for day-time
scene parsing. Due to the lack of large-scale night-time
datasets, previous NTSP methods have to resort to semi-
supervised learning [34] or domain adaption [9]–[12], which
cannot address the domain discrepancies between day-time
and night-time scenes. Most recently, Tan et al. [14] propose
a large-scale real night-time dataset and an exposure-guided
network to learn robust semantic features. Deng et al. [15]
propose the NightLab, which further boosts the performance
of NTSP by learning the image lighting variation and mining
hard segmented regions.

All previous methods rely on pixel-intensity based spatial
contextual information, which may not be reliable due to
the existence of over- and under-exposures in night-time
scenes. In this paper, we study the NTSP problem from the
image frequency perspective, showing that an understanding
of frequency distributions facilitates contextual information
modeling significantly.

B. Deep Learning in the Frequency Domain

Deep learning in the image frequency domain has many
applications of, e.g., image restoration [35] and demoire-
ing [36], model compression [37], image classification [17],
[38], [39] and instance segmentation [40]. Their main idea
is to select a set of (low-frequency) components to reduce
the network computational complexity. To reduce the high-
frequency information loss of the downsampling process, a
content-aware anti-aliasing module is proposed in [41]. In [17],
the Discrete Cosine Transform (DCT) is used to preprocess
the image to reduce the loss of important information in the
process of downsampling.

Particularly in scene parsing, previous methods [42]–[46]
mainly focus on the image boundary information in the

gradient domain. [47] decouples the body (low frequency)
and edge (high frequency) features of the image to opti-
mize the boundary details of the prediction results. In [13],
style transfer from day-time to night-time is performed in
the Fourier domain. However, their assumption of the low-
frequency image amplitude component representing the whole
scene illumination does not always hold true (e.g., when both
over- and under-exposure happen).

Different from previous work, we propose to model the
whole image frequency distributions and combine them with
pixel intensity-based contextual features for NTSP.

III. THE PROPOSED METHOD

A. Overview

In this paper, we present a novel method that models fre-
quency distribution to facilitate the night-time scene parsing.
Figure 3 shows the pipeline of the proposed method. Given an
RGB image I , the backbone encodes the images into a spatial
feature map, denoted as fspatial. Then, we compute frequency
features ffreq by transforming fspatial into the frequency
domain with Discrete Cosine Transform. To fully exploit
frequency information, we first propose a Learnable Frequency
Encoder (LFE). This module re-weights frequency feature
ffreq based on the contribution of each frequency component.
Second, we propose a novel spatial frequency fusion module
to fuse the spatial fspatial and frequency ffreq information in
channel-wise. After fusion, a standard segmentation head is
attached to produce the final parsing results.

B. 2D Discrete Cosine Transform

We employ Discrete Cosine Transform (DCT) to transfer
the spatial feature map to frequency domain. First, we simply
review the principle of DCT. The basic function of the two-
dimensional discrete cosine transform B is:

Bu,v
x,y = cos

(2x+ 1)uπ

2N
cos

(2y + 1)vπ

2N
, (1)

where u and v are the horizontal and vertical frequency
components, respectively. N is the size of an image block,
and (x, y) represents the spatial locations of the image block.
Then the two-dimensional discrete cosine transform can be
formulated as:

F (u, v) = c(u)c(v)

N−1∑
x=0

N−1∑
y=0

f(x, y)Bu,v
x,y , (2)

where F (u, v) is the 2D DCT frequency spectrum, u, v ∈
{0, 1, · · · , n − 1}, and f(x, y) is a two-dimensional vector
element of N×N in the spatial domain, x, y ∈ {0, 1, · · · , N−
1}. c(u) and c(v) are compensation factors, written as:

c(u), c(v) =


√

1
N , u, v = 0√
2
N , u, v 6= 0.

(3)

Following [40], we utilize DCT to record the frequency
information in the channel dimension. Given input spatial
feature map fspatial ∈ RC×H×W , where C,H and W
denote the channel dimension, height and width, respectively.
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Fig. 3. Illustrating the pipeline of FDLNet. Given an input image, the backbone extracts spatial features. We leverage discrete cosine transform (DCT) in
the network to get the frequency features from the output of the backbone. Then, we propose a Learnable Frequency Encoder (LFE) to leverage learnable
frequency to guide the network to segment. To this end, a Learnable Frequency Component Convolutional layer (LFCC) is proposed to dynamically adjust
the weights of all frequency components and we reshape it to obtain the frequency representations Rf . Meanwhile, we leverage existing spatial context
aggregation modules (e.g.PPM [5], ASPP [6]) to extract the spatial representations Rs. We feed both Rf and Rs to the Spatial Frequency Fusion module
(SFF) to obtain the affinity representations A. The A guides the Rs as an attention map which adjusts the channel response to get the final representations
Rfinal. Finally, we utilize a segmentation head to generate the prediction from the fused feature map. Best viewed in color.

According to the rules of image compression and coding, we
reconstruct the size of fspatial into N × N . Then, fspatial
is divided into multiple parts in the channel dimension to
obtain f ispatial ∈ RC

n ×H×W , where n is the total number of
frequency components. Thus, we can obtain each frequency
component f ifreq by its corresponding spatial feature compo-
nent f ispatial using 2D DCT function DCTi:

f ifreq = DCTi
(
f ispatial(x, y)

)
= c(u)c(v)

N−1∑
x=0

N−1∑
y=0

f ispatial(x, y)B
u,v
x,y

s.t. i ∈ {0, 1, · · · , n− 1}. (4)

After that, the multi-spectral frequencies vector Vfreq ∈ RC

is defined as:

Vfreq = cat
([
f0freq, f

1
freq, · · · , fn−1

freq

])
, (5)

where cat denotes concatenate operation.

C. Learnable Frequency Encoder

Unlike day-time scenes, the frequency distribution of night
images is more discrete (see Figure 1 and 2). Simply us-
ing a fixed number of frequency components cannot handle
night-time scene parsing. Hence, we propose the Learnable
Frequency Encoder (LFE) to learn the importance of each
frequency component. To dynamically adjust each frequency
component, a Learnable Frequency Component Convolutional
layer (LFCC) is used to convert the entire multi-spectral
frequency vector Vfreq into the weight of each frequency
component W , as:

W = softmax (LFCC (Vfreq)) , (6)

where LFCC includes a 1×1 convolutional layer and a batch-
norm layer. For training stability, we constrain the weights
of LFCC to be positive and sum them to 1 by a softmax
function. The Vfreq is reshaped to the size of n× C

n × 1× 1

and W ∈ Rn×12×1×1, where each weight of the 12 channel
corresponds to one frequency component f ifreq ∈ RC

n ×1×1.
This operation can be expressed as:

f
′i
freq = wi · f ifreq, (7)

where wi is one channel of W corresponding to each fre-
quency component f ifreq . Then we calculate the re-weight
multi-spectral frequencies vector V

′

freq as follows:

V
′

freq =WVfreq

= cat
(
w0f0freq, w

1f1freq, · · · , wn−1fn−1
freq

)
= cat

(
f

′0
freq, f

′1
freq, · · · , f

′n−1
freq

)
. (8)

We use n to group the consecutive channels of frequency vec-
tor Vfreq and the output of filter W adjusts the weight of each
frequency component f ifreq based on Vfreq . By multiplying
w and Vfreq element-wise, the encoder is learnable to predict
the weight of each frequency component. Finally, the output
of the encoder is the re-weight frequency feature V

′

freq which
is rectified at the channel dimension.

Discussion: We note that there are some methods [17],
[40] proposed to model image frequency information but
only select top k frequency components to represent the
whole image. However, as shown in Figure 1 and 2, high-
frequency components still contain important information due
to the uneven lighting conditions of night-time scenes. Our
module models the whole image frequency distribution and
adjusts their weights dynamically. The experiment in Table IV
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shows that dynamically modeling the whole image frequency
distribution facilitates the NTSP performance.

D. Spatial Frequency Fusion

Modeling the frequency distribution helps the network
understand the scene illumination. We then use the learned
frequency features to guide the network to model spatial
context features for night-time scene parsing. Specifically,
we propose the Spatial Frequency Fusion module (SFF) to
fuse features from two different domains. First, we employ a
spatial context aggregation module to enhance the extraction
of spatial features fspatial, and then utilize a convolutional
layer to transform the fspatial into spatial representations
Rs ∈ RC×H

8 ×W
8 . Meanwhile, the re-weight frequency feature

V
′

freq is fed into a convolution layer to reduce the dimen-
sionality to generate frequency representations Rf . After that
Rf ∈ RC×1×1 extended to Rf ∈ RC×H

8 ×W
8 so as to keep the

same shape with Rs. Then both Rf and Rs are reshaped to
RC×D, where D = H

8 ×
W
8 . We conduct matrix multiplication

between the transpose of reshaped Rf and Rs, and apply
a Softmax layer to calculate the affinity map. The affinity
operation is then defined as:

A(i, j) =

exp

(
Ri

s ⊗
(
Rj

f

)T)
∑C

i=1 exp

(
Ri

s ⊗
(
Rj

f

)T) , (9)

where A(i, j) indicates the effect of ith channel in the spatial
representations Rs on the jth channel in the frequency repre-
sentations Rf and ⊗ denotes matrix multiplication. A is the
affinity map calculated over the channel dimension. After that,
the final fused representation Rfinal is calculated as follows:

Rfinal = α (permute (A⊗Rs)) +Rs, (10)

where permute reshapes the result of A⊗Rs to C× H
8 ×

W
8

and α is a scale parameter to reduce gradient instability. Note
that each channel of Rfinal is the weighted sum of all channels
through spatial and frequency features, and effectively captures
the long-term dependencies between spatial and frequency
domains.

E. Loss Function

We use the standard cross-entropy loss to measure the errors
between the network predictions and ground truth labels. In
addition, since the high-frequency boundary information is an
important cue for scene parsing, we also incorporate edge loss
during training. Unlike previous methods [43], [47] that learn
edge information in the spatial domain, which are not reliable
in night-time scenes due to their complex lighting conditions,
we propose to learn edge information in the frequency domain.

Let si,c and ˆsi,c be the ground-truth and prediction results
of the ith pixel of class c, respectively. Ledge focus on the
semantic edge regions of si,c as:

Ledge = −
∑
i

∑
c

1bi · (si,c log ˆsi,c) , (11)

where Ledge represents cross-entropy loss on semantic edge
regions. bi is the ground-truth semantic edge of the ith pixel
and the 1bi represents indicator function that semantic edge
region in the ground-truth si,c.

The overall loss L can be defined as:

L = λ1Lseg + λ2Ledge, (12)

where Lseg is a standard cross-entropy loss. λ1 and λ2 are
two hyperparameters that control the weighting between the
losses.

IV. EXPERIMENTS

To evaluate our proposed method, we conduct extensive
experiments on NightCity [14], NightCity+ [15], BDD100K-
night [48] and Cityscapes [16]. For all datasets, we use the
standard mean Intersection over Union (mIoU) metric as an
evaluation criterion.

A. Datasets

NightCity [14] is the first large-scale labeled night-time
scene dataset for training and validation. NighCity+ [15]
refines some labeling errors in the validation set of NightCity
[14]. There is another night-time dataset, BDD100K-night,
which selects night-time images with their labels from the
BDD100K [48] as described in [14] and [15]. Finally, we also
test our model on a day-time dataset Cityscapes [16] to verify
its generalization ability.

1) NightCity: It includes 4,297 finely annotated images, of
which 2,998 images are used for training, and 1,299 images
are used for validation. The dataset labels are compatible with
Cityscapes and contain 19 categories, and the resolution of the
images is 512×1024.

2) NightCity+: NightCity+ updates the validation set of
NightCity by correcting the labeling errors, and resizes the
resolution of the image to 1024×2048.

3) BDD100K-night: It has 320 images in the training set
and 34 images in the validation set. It also has 19 categories
same as Cityscapes and the image resolution is 720×1280.

4) Cityscapes: It contains 5,000 annotated images, including
2,975 images for training, 500 images for validation, and 1,525
images for testing. The label contains 19 classes, and the
resolution of the images is 1024×2048.

B. Implementation Details

The PyTorch framework is employed to implement our net-
work. In the training phase, our model uses stochastic gradient
descent (SGD) optimizer and a poly learning strategy with(
1− iter

total iter

)0.9
. We set the initial learning rate and weight

decay coefficients to 5e-3 and 5e-4, respectively. Moreover,
we set the batch size to 8, and the crop size is 384×768.
We conduct experiments on one TITAN RTX GPU. For data
augmentation, we use random scaling with ratio sampled in the
range of (0.5, 2.0), random horizontal flip, crop, and Gaussian
blur as in [5]. And the training time is set to 260 epochs.
For evaluation, we use multi-scale inference with ratios of
[0.5, 0.75, 1.0, 1.25, 1.5, 1.75]. We utilize the dilated residual
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TABLE I
COMPARISON WITH STATE-OF-THE-ARTS ON NIGHTCITY AND NIGHTCITY+. DTSS REPRESENTS DAY-TIME SEMANTIC SEGMENTATION, NTSP
REPRESENTS NIGHT-TIME SCENE PARSING AND MS STANDS FOR MULTI-SCALE INFERENCE. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Method Years Original Task Backbone Resolution
mIoU(%)

NightCity NightCity+

PSPNet [5] CVPR 2017 DTSS ResNet-101 512× 1024 51.02 52.24
DeeplabV3+ [6] ECCV 2018 DTSS ResNet-101 512× 1024 51.99 53.26
DANet [22] CVPR 2019 DTSS ResNet-101 512× 1024 50.81 52.47
CCNet [7] ICCV 2019 DTSS ResNet-101 512× 1024 49.81 50.94
GSCNN [43] ICCV 2019 DTSS WideResNet38 512× 1024 48.92 -
HANet [29] CVPR 2020 DTSS ResNet-101 512× 1024 51.1 -
STER [8] CVPR 2021 DTSS ViT-L 512× 1024 43.11 -
UperNet [26] ICCV 2021 DTSS Swin-T 512× 1024 54.93 -
SegFormer [28] NeurIPS 2021 DTSS MIT-B5 512× 1024 46.28 -
EGNet [14] TIP 2021 NTSP ResNet-101 512× 1024 51.8 -
NightLab (DeeplabV3+) [15] CVPR 2022 NTSP ResNet-101 1024× 2048 - 56.21

FDLNet (PSPNet) - NTSP ResNet-101 512× 1024 53.21 54.25
FDLNet (CCNet) - NTSP ResNet-101 512× 1024 51.00 52.27
FDLNet (DeeplabV3+) - NTSP ResNet-101 512× 1024 54.60 56.20
FDLNet (DeeplabV3+) + MS - NTSP ResNet-101 512× 1024 55.42 56.79

network [49] as the backbone with an output stride of 1/8. In
the process of SFF, to reduce the amount of computation, we
use the projection function to reduce the number of channels
to 512. We empirically set λ1 = 1 and λ2 = 0.01.

C. Comparison on the NightCity and NightCity+

To verify the effectiveness of our method, we train our
model and other state-of-the-art methods on the NightCity
train set and validate with both the NightCity validation set and
the NightCity+ validation set, respectively. For experimental
comparison consistency, we rescale the NightCity+ validation
set images to 512×1024.

Methods for Comparisons: To verify the effectiveness of
our method, we compare our model with state-of-the-art
methods including EGNet [14] and NightLab [15] for Night-
Time Scene Parsing (NTSP), PSPNet [5], DeeplabV3+ [6],
DANet [22], CCNet [7], GSCNN [43], HANet [29], STER
[8], UperNet [26] and SegFormer [28] for Day-Time Semantic
Segmentation (DTSS). We report the performances of EGNet
and HANet from [14] and NightLab from [15]. PSPNet,
Deeplabv3+, DANet and CCNet are trained with the same
configurations as ours. Other methods use their official code
and configurations for training. Since our method can be
applied to day-time segmentation methods for NTSP, we report
the results of our model based on PSPNet [5], Deeplabv3+ [6]
and CCNet [7].

Quantitative Comparison: From Table I, we can see that
the day-time methods cannot achieve satisfying results due
to the large gap between day and night scenes, but our
proposed method can successfully adapt the day-time model
to the night-time scenes. Furthermore, our model based on the
PSPNet [5] outperforms the EGNet with a margin of 1.41%.
To gain better results, we utilize our model on a stronger
baseline DeeplabV3+ [6] and obtain 1.39% improvement on
NightCity and 1.95% improvement on NightCity+. We also

TABLE II
COMPARISON WITH STATE-OF-THE-ARTS ON BDD100K-NIGHT. THE

BEST RESULT IS MARKED IN BOLD.

Method Years Backbone mIoU(%)

PSPNet [5] CVPR 2017 ResNet-101 19.62
Deeplabv3+ [6] ECCV 2018 ResNet-101 23.42
DANet [22] CVPR 2019 ResNet-101 21.06
CCNet [7] CVPR 2019 ResNet-101 17.74
SegFormer [28] NeurIPS 2021 MIT-B5 22.06
AGLN [50] TIP 2022 ResNet-101 20.16
FDLNet (PSPNet) - ResNet-101 25.00
FDLNet (CCNet) - ResNet101 23.09
FDLNet (Deeplabv3+) - ResNet-101 26.46

use a multi-scale strategy during inference and achieve a
performance of 56.79%, which outperforms the NightLab
based on DeeplabV3+ with a margin of 0.58%. Noting that the
resolution is different between ours and NightLab. Our method
requires smaller resolution inputs which reduces computation
but achieves higher performance. The results show that our
model improves the day-time models to adapt to NTSP and
shows superior performance.

Qualitative Comparison: Figure 4 quantitatively compares
the prediction results of our model with state-of-the-art meth-
ods for DTSS and NTSP. Since NightLab does not show
segmentation results on NightCity, we compare our results
with EGNet and UperNet. The lighting conditions of night-
time images make the frequency distribution quite different.
Adjusting the lighting condition cannot allow the network to
learn the frequency information, which makes the segmen-
tation effect unsatisfactory. However, our model can handle
this problem well. Particularly, in the first row, our model can
identify areas of detail, such as distant buildings and poles.
In the second row, our model gives more complete poles
than EGNet and more complete trees than UperNet. In the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

Input GT EGNet [14] UperNet [26] Ours
Fig. 4. Qualitative comparison on NightCity. Our advantages are highlighted by orange boxes.

third row, our model segments a more complete building. In
the last row, EGNet cannot segment objects such as traffic
lights, traffic signs and poles due to overexposure. UperNet
cannot segment these objects completely. But our model can
recognize small objects with complete fineness. These results
demonstrate the superior performance of our proposed model
on NTSP.

D. Comparison on the BDD100K-night

We also conducted experiments on another labeled night-
time scene dataset, BDD100K-night, to verify the effectiveness
of our method. We compare our model with state-of-the-art
methods PSPNet [5], DeeplabV3+ [6], DANet [22], CCNet
[7], SegFormer [28], and AGLN [50] for day-time semantic
segmentation. The results are reported in Table II. We can
see that our model based on DeeplabV3+ achieves the best
performance of 26.46%, which shows the generality of our
proposed method.

E. Model Analysis

Ablation Study. To verify the effectiveness of different
network components, we conduct five ablation studies.

1) Ablation Studies on the Number of Frequency Compo-
nents: The number of frequency components is one of the
important factors affecting model performance. The network
extracts image features and compresses the information into
channel representations, so we use DCT to compress spatial
features into N × N blocks to extract frequency features.
Due to the limitation of channel numbers, N could be 2, 4,
8, 16, or 32. We use the ResNet-50 as the backbone and
train the network for 120 epochs, as shown in Figure 5. We
find that selecting 8 × 8 frequency components obtain the
best performance. In other experiments, we set the number of
frequency components to 8 × 8.

2) Ablation Studies on Baseline Model: We take the PSP-
Net [5] as the baseline. Due to the limitation of lighting

48.44
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22 42 82 162 322
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Io
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Fig. 5. Ablation Studies on the Number of Frequency Components.

conditions, night images have a lot of hard data [15], so
we use OHEM [51] during the training process to improve
model performance. In Table III, dilated ResNet-101 is used
as the backbone, our baseline achieves 51.02% and 0.88%
increase with OHEM (2nd row). A simply way to leverage
frequency features is to design a SENet-like [52] module as
in FcaNet [40]. So we use the same way on LFE module
to adjust the channel weights for the obtained frequency
features and improve the performance from 51.90% to 52.14%
(3rd row). Then, we leverage SFF module in the network to
replace the SENet-like module, in order to introduce the spatial
context features extracted by PPM [5]. The performance of
the model is improved from 52.14% to 52.84% (4th row).
Incorporating the Ledge brings about 0.37% improvement (5th

row), which shows the importance of edge supervision. The
model further uses a multi-scale inference strategy (MS) to
achieve a performance of 54.02% (6th row).

3) Ablation Studies on Learnable Frequency Encoder: To
demonstrate the effectiveness of our proposed LFE module, we
take PSPNet as a baseline and compare our method with two
methods, one is using top-k components in [40] named (TOP),
and the other is statically using all frequency components
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TABLE III
ABLATION STUDY. LFE STANDS FOR LEARNABLE FREQUENCY ENCODER,
SFF STANDS FOR SPATIAL FREQUENCY FUSION MODULE, Ledge STANDS

FOR SEMANTIC EDGE LOSS, OHEM STANDS FOR USING ONLINE HARD
EXAMPLE MINING DURING TRAINING. MS STANDS FOR MULTI-SCALE

INFERENCE STRATEGY

Method ohem Ledge mIoU(%)

PSPNet 51.02√
51.90

+ LFE
√

52.14
+ LFE + SFF

√
52.84√ √
53.21

+ LFE + SFF + MS
√ √

54.02

TABLE IV
ABLATION STUDIES ON LFE. TOP STANDS FOR EXPLOIT TOP-K

COMPONENTS, SA STANDS FOR STATICALLY EXPLOIT ALL COMPONENTS
AND LFE STANDS FOR OUR PROPOSED METHOD LEARNABLE FREQUENCY
ENCODER. OHEM STANDS FOR USING ONLINE HARD EXAMPLE MINING

DURING TRAINING.

Method Backbone ohem mIoU(%) ∆(%)

PSPNet ResNet-101
√

51.90
+ TOP ResNet-101

√
52.67 +0.77

+ SA ResNet-101
√

52.34 +0.44
+ LFE ResNet-101

√
53.21 +1.31

TABLE V
ABLATION STUDIES ON SFF. FDLNET-SE STANDS FOR USING SENET TO
REPLACE OUR SFF MODULE, Rs IS SPATIAL REPRESENTATIONS AND α IS

A SCALE PARAMETER IN SFF.

Method Backbone ohem mIoU(%) ∆(%)

FDLNet ResNet-101
√

53.21
FDLNet-SENet ResNet-101

√
52.14 -1.07

w/o Rs ResNet-101
√

52.06 -1.15
w/o α ResNet-101

√
51.39 -1.82

named (SA). We show the results in Table IV, our learnable
frequency encoder strategy achieves the best performance
improvement of 1.31%. However, we can see that the perfor-
mance of TOP is better than SA, which indicates that simply
leveraging all frequency components fails to adapt to NTSP
due to the diverse frequency distribution. Our method solves
this issue by leveraging learnable frequency components.

4) Ablation Studies on Spatial Frequency Fusion: To verify
the effectiveness of the SFF module, we conduct three ex-
periments. (i) We use the structure of SENet [52] to replace
the SFF module, which is named FDLNet-SENet. (ii) We
only use frequency information to adjust the channel response
without the aid of spatial information (w/o Rs). (iii) We verify
the validity of the scale parameter alpha (w/o α). As shown
in Table V, other alternative strategies degrade the model
performance to varying degrees. Specifically, on the one hand,
SENet leverages linear layers to adjust the channel response
without the spatial features of the image, which can achieve
good results in image classification but is not suitable for
the NTSP task of spatial pixel-level classification. On the
other hand, SFF leverages convolutional layers to adjust the
channel response including the spatial structure information
of the image, and achieves a 1.07% improvement over SENet.

The method that only utilizes frequency information has a
similar structure to our SFF module, but its guiding effect is
limited due to the lack of explicit spatial features. SFF utilizes
features from two different domains (spatial and frequency)
and outperforms the former by 1.15% The scale parameter
α reduces gradient instability during training since adjusting
the frequency component channel responses with information
from all channels is a computationally expensive task. α can be
changed incrementally to mitigate the drastic gradient changes,
without the parameters, the performance of the model drops
by 1.82%.

5) Improvements to Day-time Methods: Our method can be
applied to the existing day-time methods to adapt them for
the NTSP task. For consistency comparison, we modify PSP,
DeeplabV3+, and CCNet by using our method with the same
experimental settings. The results in Table VI show that our
method improves the NTSP performance of existing day-time
methods while introducing minimum computational overhead.

Comparisons with Frequency Domain Adaption. In some
domain adaptation methods [13] [12], the frequency informa-
tion is used to perform style transformation on the image
to reduce the gap between the source and target domains,
which is also suitable for the style transformation of day-time
and night-time images. For comparison, we use NightCity as
the source domain and Cityscapes as the target domain, so
night-time images are transformed into daytime-like images
by Frequency Domain Adaption (FDA) [13]. Then, we use
DeeplabV3+ to obtain the prediction results. To gain more
accurate results, we use the resized labels of the validation set
of NightCity+ (512×1024) for comparison.

Qualitative Comparison: We report the result in Figure 6
and observe that transforming night-time images to day-time
images using FDA can reduce the domain gap between them
to a certain extent (blue boxes). However, simply replacing
the frequency information of the two images often fails. For
example, in the white boxes of the sixth and eighth rows,
the transformed images are severely distorted, resulting in
incomplete prediction results and chaotic boundaries, while
our model uses learnable frequency information to guide the
network to predict more complete predictions and the bound-
aries are clearer. More comparison results are highlighted by
orange boxes. These visual results show that our proposed
method is more efficient than directly preprocessing the image.

Quantitative Comparison: For better comparison, we also
report the results of Deeplabv3+ on the original NightCity, as
shown in Table VII. The performance of FDA (51.33%) is even
worse than the original method (53.26%), which means that
simply preprocessing the image with frequency information
does not solve the NTSP problem well. Whereas our method
introduces learnable frequency information into the model, the
network learns the frequency distribution of night images and
achieves better results.

Compare with Day-time Dataset Cityscapes. Our method
focuses on night-time scene parsing, because night-time scenes
have two characteristics. First, the night scene contains infor-
mation on all frequency components, including low-frequency
areas with rich information and high-frequency areas with rel-
atively little information. Moreover, the information contained
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TABLE VI
IMPROVEMENTS TO DAY-TIME METHODS INCLUDING PERFORMANCE COMPARISON ON THREE DIFFERENT VALIDATION SETS AND COMPUTATION

COMPARISON.

Method Backbone Parameters FLOPs NightCity NightCity+ BDD100K-night

PSPNet ResNet-101 70.12M 306.04G 51.02 52.24 19.62
FDLNet (PSPNet) ResNet-101 71.83M 310.89G 53.21 54.25 24.50
DeeplabV3+ ResNet-101 63.98M 314.02G 51.99 53.26 23.42
FDLNet (DeeplabV3+) ResNet-101 67.46M 335.21G 54.60 56.20 25.15
CCNet ResNet-101 70.97M 329.55G 49.81 50.94 17.74
FDLNet (CCNet) ResNet-101 72.68M 334.41G 51.00 52.27 21.82

Image FDA [13] GT FDA (DeeplabV3+) Ours
Fig. 6. Qualitative comparison on NightCity. The second column represents the style transformation of the image using Frequency Domain Adaption (FDA)
[13], and the fourth column (FDA (DeeplabV3+)) represents the prediction results on the style transformed dataset by using DeeplabV3+ [6]. Successful cases
of FDA are highlighted by blue boxes, and failure cases are highlighted by white boxes. Our advantages are highlighted by orange boxes.

in the high-frequency components of night-time images is
richer than that of day-time images. Second, the frequency
distribution of different night-time images is more different
than day-time images, and the network can generate different

component weights by learning each image.

To explore the difference between our method on night-
time and day-time images, we train models on Cityscapes and
NightCity and perform quantitative comparisons on three dif-
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TABLE VII
COMPARISON WITH FREQUENCY DOMAIN ADAPTION (FDA) ON NIGHTCITY. THE METHOD IS EVALUATED ON THE RESIZED NIGHTCITY+ VALIDATION

SET. THE BEST RESULTS ARE MARKED IN BOLD

Method road side. bulid. wall fence pole light sign vege. terr. sky pers. rider car truck bus train moto. bicy. mIoU

DeeplabV3+ 90.4 51.1 83.2 55.3 53.5 32.0 24.4 52.2 59.0 19.7 88.2 52.2 25.2 82.8 64.9 73.8 59.1 10.2 34.7 53.26
FDA (DeeplabV3+) 90.4 50.6 82.4 53.5 53.1 30.1 23.3 49.0 56.9 20.6 87.4 49.6 17.8 82.3 62.3 72.4 59.5 0 34.1 51.33
FDLNet (PSPNet) 90.5 50.8 83.2 55.9 53.1 28.6 24.8 51.6 59.1 21.1 87.9 50.6 25.2 82.6 63.1 75.1 60.4 28.9 38.3 54.25

FDLNet (DeeplabV3+) 91.2 53.1 83.8 58.3 54.4 34.1 30.1 57.2 60.1 22.2 88.2 55.9 27.6 84.6 61.3 73.8 58.8 29.2 44.0 56.20

TABLE VIII
COMPARSION WITH THE DAY-TIME DATASET.

Method NighCity NighCity+ Cityscapes
PSPNet 51.02 52.24 70.86
FDLNet(PSPNet) 53.21 54.25 72.42
∆(%) +2.19 +2.01 +1.56

ferent validation sets of Cityscapes, NightCity and NightCity+.
The training settings are the same, except the learning rates
are 0.005 and 0.01 for NightCity and Cityscapes, respectively.
From Table VIII, we can see that our method achieves better
results than baselines on both day-time and night-time datasets.
The improvement is 2.19% on NighCity, 2.01% on NighCity+
and 1.56% on Cityscapes, which shows that our model is more
effective on night-time images, and also shows the difference
in frequency distribution between night-time and day-time
images.

(a) Example 1

(b) Example 2

Fig. 7. Image-level LFE heatmap. (left) The source image. (right) In the LFE
heatmap, the low frequency components are located in the upper left part and
the high frequency components are located in the lower right part. Different
images correspond to different frequency affinities.

F. Visual Analysis

To illustrate the capabilities of our proposed Learnable
Frequency Encoder (LFE), we visualize the heatmap of LFE
on the NightCity validation set.

1) Image-level LFE: Our proposed LFE is able to dynam-
ically adjust the weight of each frequency component, which
means that there are differences of the frequency component
affinity of each image. To illustrate this, we feed different
images into the network to obtain the heatmap. Figure 7 shows

(a) Ours (b) w/o Ledge

Fig. 8. Dataset-level LFE heatmap. (left) Our model. (right) Our model w/o
Ledge. ∗ represents the frequency component with the largest weight, and #
represents the frequency component with the smallest weight.

that for different images, the weights of frequency components
are also different. The frequency components with the largest
weight in Figure 7a appear in the high-frequency regions, but
the distribution of the frequency weights is relatively loose.
While the frequency component with the largest weight is
located in the low-frequency regions as shown in Figure 7b,
and the distribution of frequency weights is concentrated in
low-frequency regions relatively. This shows the frequency
distribution in night-time scenes is diverse as we observe in
Figure 1 and Figure 2.

2) Dataset-level LFE: To further analyze the LFE, we
summed and averaged the LFE of all images in the validation
set, resulting in a dataset-level LFE heatmap. As shown in
Figure 7a, we can see that our model prefers low-frequency
components. The maximum weight of frequency component
(*) is located in the low-frequency part, and the large weights
are also generally concentrated in the low-frequency part,
which proves that CNN prefers to select the low-frequency
region with rich information in extracting features as [17]
[40]. However, the minimum weight of frequency component
(#) is located in the low-frequency region rather than the
high-frequency region, which reflects that the high-frequency
information is equally important.

3) LFE on semantic edge loss: Since we use the semantic
edge loss Ledge, which focuses on the prediction of high-
frequency related to semantic edges, so we visualize the
LFE heatmap for analysis to demonstrate the effectiveness of
semantic edge loss. Note that we use the same color numeric
intervals in Figure 7a to visualize the results. Figure 7b shows
the results w/o Ledge. The maximum weight (*) is located in
the low-frequency part, and the minimum (#) is located in the
high-frequency part. In contrast to method w/ Ledge, whose
minimum weight (#) appears in the low-frequency region. This
shows that semantic edge loss strengthens the attention of
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edge details to a certain extent. Furthermore, the model w/o
Ledge overall has a looser selection of frequency components
compared to the model w/ Ledge, which indicates the semantic
edge loss enforces the network to extract frequency features
more efficiently and reduce information redundancy.

V. CONCLUSION

In this paper, we propose a Frequency Domain Learning
Network (FDLNet) to handle the frequency information dis-
tribution diversification of Night-Time Scene Parsing (NTSP).
Specifically, the Learnable Frequency Encoder (LFE) adjusts
the weights of frequency components generated by the DCT.
Since high and low-frequency information is both important
for NTSP, the encoder processes all frequency components
information. Moreover, the encoder dynamically adjusts each
frequency component to adapt to changes in the frequency dis-
tribution of night images. Furthermore, the Spatial Frequency
Fusion module (SFF) leverages information from two differ-
ent domains to guide the network segmentation since only
utilizing frequency information lacks spatial context features
that are important for NTSP. Besides, our method allows a
simple modification of the day-time model to adapt it to night-
time scenes. Our model achieves state-of-the-art performance
on NightCity and competitive results on NightCity+ and
BDD100K-night.
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