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Abstract—Self-supervised learning enables networks to learn
discriminative features from massive data itself. Most state-of-
the-art methods maximize the similarity between two augmenta-
tions of one image based on contrastive learning. By utilizing
the consistency of two augmentations, the burden of manual
annotations can be freed. Contrastive learning exploits instance-
level information to learn robust features. However, the learned
information is probably confined to different views of the same
instance. In this paper, we attempt to leverage the similarity
between two distinct images to boost representation in self-
supervised learning. In contrast to instance-level information, the
similarity between two distinct images may provide more useful
information. Besides, we analyze the relation between similarity
loss and feature-level cross-entropy loss. These two losses are
essential for most deep learning methods. However, the relation
between these two losses is not clear. Similarity loss helps obtain
instance-level representation, while feature-level cross-entropy
loss helps mine the similarity between two distinct images. We
provide theoretical analyses and experiments to show that a
suitable combination of these two losses can get state-of-the-art
results. Code is available at https://github.com/guijiejie/ICCL.

Index Terms—Self-supervised learning, Image representation,
Image classification.

I. INTRODUCTION

RECENTLY, un-/self-supervised representation learning
has made steady progresses. Many self-supervised meth-

ods [1]–[12] are closing the performance gap with supervised
pretraining in computer vision. These methods leverage the
property of the data itself. Most self-supervised methods
attempt to build upon the instance discrimination [13]–[16]
task by maximizing the agreement between two augmentations
of one image and scatter different instances. The encour-
aging results of self-supervised learning depend on strong
transformations [1], [8], [17] (e.g., image crop and color
distortion) and similarity loss. BYOL [18] and SimSiam [19]
extend similarity loss and remove the dependency on negative
instances [20]–[22]. These methods implicitly do scattering
and learn robust representations of different transformations
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of the same instance. In this paper, contrastive learning based
methods represent methods such as MoCo [23] and BYOL.
The key point of those methods is to minimize the similarity
between augmentations.

Unlike contrastive learning based methods that learn in-
variance to transformations [24], some works attempt to uti-
lize clustering [25]–[32] with pseudo-labels. Most instance-
level contrastive learning based methods may suffer from the
misleading of similar backgrounds [33]. No matter which
transformation we choose, the image background may not be
discarded entirely. The background pixels provide a shortcut
to minimize similarity loss. By contrast, the similarity between
distinct images may improve the robustness of background in-
formation. Images of the same object in different backgrounds
are learned to maximize the similarity. This learning manner
is pivotal and more similar to the learning manner of human
beings. People can ignore the background because they have
already seen hundreds of thousands of the same object in
different backgrounds. Traditional clustering-based methods
classify images through pseudo-labels. Those methods may
correlate images of the same class. However, the genera-
tion of pseudo-labels needs much computation. Some online
clustering methods [31] assign labels for batch examples by
Sinkhorn-Knopp algorithm [34]. Sinkhorn-Knopp algorithm
assures that batch examples are equally partitioned by the
prototypes, preventing the trivial solution where every image
has the same label.

Mining the similarity between two distinct images is a
possible manner to improve discrimination. Most of the state-
of-the-art methods (e.g., SwAV [31] and DINO [11]) di-
rectly leverage feature-level cross-entropy loss to learn the
similarity between different images. In general, similarity
loss and feature-level cross-entropy loss are used in differ-
ent styles of self-supervised methods. In SimSiam, authors
find cross-entropy loss may not be applicable to contrastive
learning based methods. In this paper, we try to analyze the
relation between these two losses. Through theoretical and
experimental analyses, we point out that these two losses
can be complementary. From the perspective of gradients,
we analyze the difference between similarity loss and cross-
entropy loss. These findings imply that a suitable combination
may boost class-level and instance-level representations. Our
contributions are listed as follows.

• We demonstrate that supervised learning can catch the
relation between different images of the same class.
Besides, it is feasible for self-supervised methods to
leverage the similarity between two distinct images.
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• We provide theoretical and experimental analyses to
explain why previous contrastive learning based methods
(e.g., SimSiam) have inferior results with cross-entropy
loss. This point is critical to maintaining the advantages
of similarity loss and cross-entropy loss.

• In contrast to those clustering-based methods, we focus
on the relation between similarity loss and feature-level
cross-entropy loss. Based on this relation, we propose a
simple but effective method to exploit both instance-level
contrastive and intra-class contrastive learning (ICCL).
Our method attempts to mine the information between
two distinct images in a suitable way, which reduces the
impact of wrong clustering. Compared with SwAV and
DINO, our method can work without centering (used in
DINO) and Sinkhorn-Knopp (used in SwAV). The hyper-
parameter settings are robust to different datasets.

II. PRELIMILARIES

The intention of this section is to introduce some notations
of different loss functions in this paper. In particular, we pro-
vide formal definitions for loss functions in SimSiam/BYOL
(called similarity loss) and loss functions in SwAV/DINO
(called clustering/cross-entropy loss).

A. Methods Based on Similarity Loss

Many methods use similarity loss [35] to maximize the
agreement of two views of the same image. Generally speak-
ing, the loss function in MoCo is a typical similarity loss
function

Lq
contrastive = − log

⟨q, k+⟩/τ∑|B|
i=0⟨q, ki⟩/τ

. (1)

Here q is the representation of an image. Lq
contrastive denotes

the loss for representation q. As most self-supervised learning
loss functions can be divided into the sum of losses corre-
sponding to a single instance, we will omit the superscript of
loss function in the following. k+ denotes the positive example
in the batch. Traditionally, two transformations T1 and T2 will
transform image I to different views of the same image. The
representations of these views will be regarded as positives. B
denotes the batch of data and |B| denotes the batch size. The
similarity loss intends to make the similarity between positive
features large and reduce the similarity between negative
features. In [36], authors provide a detail deconstruction for
similarity loss

Lcontrastive = − log
⟨q, k+⟩/τ∑|B|
i=0⟨q, ki⟩/τ

= log

|B|∑
i=0

exp ⟨q, ki⟩/τ − ⟨q, k+⟩
τ

. (2)

The first term is called uniformity term. If q and k+ are
normalized to unit, the ⟨q, k+⟩ in the second term is the cosine
similarity. Therefore, the loss function for MoCo may also be
regarded as cosine similarity loss with uniformity term.

For similarity loss, we define the output features computed
by the neural network z′1 and z′2, respectively. z′1 and z′2

are two views of the same image. In BYOL [18] and Sim-
Siam [19], one of the features will be passed through an extra
predictor (e.g., the predictor encodes z′1 as q1). The ultimate
features are denoted as q1 and z2. It should be noted that z2
will not pass the gradients to the network (z2 = sg(z′2) and
sg() denotes the stop gradient operation). With the definition
of q̃

∆
= q

||q|| , where ||.|| denotes the l2 norm, similarity loss
can be represented by

Lsimilarity = −⟨q̃1, z̃2⟩. (3)

Here ⟨., .⟩ is inner product. The uniformity term [6], [8], [23],
[37] is ignored. This loss will maximize the similarity between
two views of the same image and learn useful representations
that are robust to strong augmentations. Contrastive learning
(include methods use Lcontrastive and Lsimilarity) based
methods are robust to various scales of datasets.

B. Methods Based on Clustering Loss

Another form of self-supervised learning are based on
clustering [11], [29]–[31]. These methods generate pseudo-
labels and use pseudo-labels to maximize cross-entropy loss:

Lce = −
D∑
i=1

f(i, z2) log p(i|q1, τ),

where p(i|x, τ) =
exp(x

(i)

τ )∑
j=1 exp(

x(j)

τ )
. (4)

Here f is the function to generate pseudo-labels (e.g., f
is Sinkhorn-Knopp algorithm in SwAV and p(i|z2) with
centering mechanism in DINO). C is the dimensionality of
vectors q1 and z2. W denotes clustering prototypes, which
is a C-by-D matrix. τ is the temperature [38] to adjust the
sharpness of the probability distribution, and the default value
is 1. These clustering-based methods attempt to exploit the
relation of different instances to learn robust representations.
However, these methods may suffer from incorrect clustering.
The learned representation is based on pseudo-labels. The
hyper-parameters may be hard to be extended to a large
number of datasets.

III. METHOD

In this section, we first illustrate the difference between
supervised learning and self-supervised learning from recall
metric. The difference indicates the distribution of intra-class
data points is dispersed for self-supervised methods. However,
supervised learning may aggregate intra-class features and
expand the distance between different categories. This point
motivates our following study. Then we analyze why Lce can
capture the similarity between two distinct images. Then we
demonstrate how to establish the relation between similarity
loss and cross-entropy loss. Finally, we describe the details
of our method and the difference from other clustering-based
methods.
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TABLE I
THE COMPARISON OF SUPERVISED METHODS AND SELF-SUPERVISED
METHODS. THE DEFAULT NETWORK BACKBONE IS RESNET-50. THE

DEFAULT TRAINING EPOCHS ARE 100.

ImageNet
Methods Precision@k = 5 top-1 acc

Supervised 52.1 76.5
SimSiam 27.1 67.3

BarlowTwins 28.2 67.4
BYOL 28.1 66.0

BYOL-300ep 32.4 72.2
MoCo 27.5 67.4

MoCo-ViT 37.0 69.1

A. The Intra-Class Distance for Self-Supervised Learning

Although self-supervised learning gets promising results
in many tasks and datasets, it still has several problems.
For example, most self-supervised learning methods should
leverage the linear evaluation protocol for image classification
tasks. The trainable fully-connected layer is used to distinguish
the features of different classes. This fully-connected layer
is essential as Table I shows. We use Precision@k =
num(true)/k to express the recall metric of different self-
supervised methods. num(true) denotes the number of pos-
itive nearest neighbors of the query image in the returned k
images. The positive examples are defined as images of the
same class. This metric denotes the ability to recall images of
the same category. In other words, if the features’ distribution
of the same class is compact and the centroid distance of
different categories is relatively large, the Precision@k may
have a good performance. The outputs of backbone are used
as the retrieval features. For top-1 accuracy, we train an extra
fully-connected layer to do classification.

As Table I shows, self-supervised learning methods are
hard to learn compact representations from views of different
instances. Although the gap of top-1 accuracy is close, we find
the recall metric of self-supervised learning methods is still far
less than supervised learning. This point indicates that most
self-supervised learning may learn rough representations.

Fig. 1 visualizes the results of the network in different
stages. Self-supervised learning is hard to capture intra-class
relation at the beginning of the training because centroids of
different classes are close. For example, SwAV will try to
do clustering at the beginning of the training. However, it
is hard to learn useful clustering information from massive
irrelevant data. By contrast, if one can do clustering in Fig. 1b,
the clustering information may help networks to compact
the features of the same class. One of the approaches is to
avoid using intra-class information at the beginning of the
training and leverage the intra-class information after several
epochs. Therefore, the key point is to find a loss function that
can directly replace the instance-level loss function from the
perspective of the gradient.

B. The Role of Cross-Entropy Loss

For simplicity, we first analyze the situation of supervised
learning. Given a batch of images X = {x1, ..., xN} and labels
Y = {y1, ..., yN}, where batch size is N , the corresponding

(a) (b)
Fig. 1. The t-SNE [39] visualizes the results of the network in different
stages. The left figure is generated at the beginning of the training. The right
figure is generated at half of the self-supervised training procedure.

outputs of the image encoder (network) is Z = {z1, ..., zN}.
All images are classified into C classes. Therefore zi is a 1-
by-C vector. The loss function is

L = − 1

|B|

|B|∑
i=1

log p(yi|zi, τ), (5)

where B denotes the batch data and |B| denotes the size of
batch. The default value of τ is 1.

Proposition 1. Assume the network has basic ability to
distinguish instances. For images xi and xj of the same
class y in batch B, minimizing loss function is equivalent
to maximizing the lower bound of the similarity between two
examples’ probability distributions.

Proof. The cross-entropy loss can be expressed by

L =− 1

|B|

|B|∑
i′=1,i′ /∈{i,j}

log p(yi′ |zi′)

− 1

|B|
(log p(y|zi) + log p(y|zj)), (6)

where xi and xj belong to the same class y. By denoting
P(zi) ∈ RC as a stack of p(c|zi) over different classes,
which represents the probability distributions for image xi,
minimizing the cross-entropy loss may maximize

p(y|zi) · p(y|zj) ≤
∑
c

p(c|zi) · p(c|zj)

≤ S(P(zi),P(zj)),

where S(p, q)
∆
=

⟨p, q⟩
∥p∥ · ∥q∥

. (7)

If another instance of the same class can not be found in
batch (e.g., can not find xj), the one-hot vector p(y|zj) = 1
and log p(y|zj) = 0 can also satisfy our proposition and do
not influence the loss. The proof is completed.

According to Prop. 1, supervised learning will learn the
similarity between two distinct images when minimizing
cross-entropy if the network has basic ability to distinguish
instances. For those clustering-based methods, cross-entropy
loss may also capture this information when the probability
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Fig. 2. Experiments of different τ in Lmce. The top-1 accuracy is obtained
by linear evaluation in Imagenette [40]. The hyper-parameters are consistent
with BYOL.

distribution of pseudo-labels is sharp. However, as Fig. 1 has
shown, it is hard to leverage the similarity between correlated
images at the beginning of the training in a self-supervised
learning manner. In self-supervised learning such as SwAV
and DINO, the cross-entropy loss is likely to draw close
uncorrelated images at the beginning of the training (Fig. 1a).
After half of the self-supervised training procedure, images
of the same classes may be close (Fig. 1b). The cross-entropy
loss may learn the similarity between correlated images at this
stage. Thus, the problem is how to convert similarity loss into
cross-entropy loss naturally during the training.

C. Relation between Lce and Lsimilarity

Cross-entropy loss is essential for capturing the similarity
between two distinct images. However, most clustering-based
methods that use Lce may suffer from the poor quality of
pseudo-labels. The scale of the dataset may also influence
those methods. The hyper-parameters such as the dimen-
sionality of output features may be sensitive. By contrast,
contrastive learning based methods may be less affected by this
problem. For example, SimSiam works well when the output
dimensionality is 2048 in CIFAR-10. However, SwAV works
worse when the number of prototypes is 2048 in CIFAR-10.
In SimSiam, authors notice that directly replacing Lsimilarity

with
Lce = −

∑
i

p(i|z2, τ) log p(i|q1, τ) (8)

may decrease the performance. In SimSiam, they do not use
τ . Thus τ = 1 here.

To discover the relation between Lsimilarity and Lce, we
first analyze gradients for Lsimilarity in (3). For two vectors
q1 and z2 ∈ RCoriginated from the same image, the gradients
for q1 is

∂L

∂q1
=

1

∥q1∥
(
∂L

∂q̃1
− q̃1 · ⟨q̃1,

∂L

∂q̃1
⟩), (9)

∥ ∂L
∂q1

∥2 =
1

∥q1∥2
(1− ⟨q̃1, z̃2⟩2) ≤

1

∥q1∥2
, (10)

when L is short for Lsimilarity. ∥q1∥2 ≈ C at the beginning
of the training if we use suitable initializer [41]. The gradients
for q1 will be bounded.

0 2000 4000 6000 8000 10000 12000 14000
steps

0.0520

0.0522

0.0524

0.0526

0.0528

0.0530

0.0532

0.0534

0.0536 ||P(p, )||

Fig. 3. ∥P(z2)∥ during the training. The value of ∥P(z2)∥ is close to
the best setting of τ in Fig. 2. In (14), ∥P(z2)∥2/τ2 directly influence
the magnitude of gradients for Lce. The measurement of ∥P(z2)∥ can help
choose the hyper-parameters of τ .

0 2000 4000 6000 8000 10000 12000 14000
steps

1.0

0.5

0.0

0.5

1.0

lo
ss

Lsimilarity

Our modified loss
Lce

Fig. 4. The correlation between Lsimilarity and our loss. The training
procedure just minimizes Lsimilarity . Other terms (blue curve and black
curve) are just recorded to show the correlation with Lsimilarity . Our loss
is subtracted by a constant logC so that curves can be displayed clearly.

Then we analyze the cross-entropy loss used in SimSiam.
For (8), the gradients for q1 is

∂Lce

∂q1
=

1

τ
(P(q1)−P(z2)), and ∥∂Lce

∂q1
∥2 ≤ 2

τ2
. (11)

Obviously, gradients for q1 in Lce are only influenced by the
distance between probability distributions P(q1) and P(z2).
Thus the update may not be under control. Although Lce

and Lsimilarity both seem to increase the agreement between
two views, these two losses cannot be associated as shown in
Fig. 4.

Notice that Lce can be expressed by

Lce = (log
∑
j

exp
q
(j)
1

τ
)− (

∑
i

p(i|z2, τ)
q
(i)
1

τ
). (12)

This equation is similar to the uniformity and alignment term
in [36]. The loss is analogous to similarity loss if we ignore the
first term. To imitate similarity loss, a modified cross-entropy
(MCE) loss can be expressed by

Lmce = −
∑
i

p(i|z2, τ)
q̃
(i)
1

τ
. (13)
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TABLE II
THE COMPARISON OF DIFFERENT LOSS FUNCTIONS. WE PROVIDE A DETAILED COMPARISON OF ANALYZED METHODS. Lalign INDICATES THE

GRADIENT FOR THE ALIGNMENT TERM. FOR CONVENIENCE, WE PROVIDE THE GRADIENT MAGNITUDE OF THE ALIGNMENT TERM.

Loss Functions Alignment Term Uniformity Term Gradient Magnitude (∥ ∂Lalign

∂q1
∥2) Upper Bound of Gradient Magnitude

Lsimilarity −⟨q̃1, z̃2⟩ - (1− ⟨q̃1, z̃2⟩2)/∥q1∥2 1/∥q1∥2

Lcontrastive −⟨q̃1, z̃2⟩/τ log
∑|B|

i=0 exp ⟨q, ki⟩/τ (1− ⟨q̃1, z̃2⟩2)/τ2∥q1∥2 1/τ2∥q1∥2

Lce −⟨q1,P(z2)⟩/τ log
∑

j exp q
(j)
1 /τ ∥P(z2)∥2/τ2 1/τ2

Lmce −⟨q̃1,P(z2)⟩/τ - (1− ⟨q̃1, P(z2)
∥P(z2)∥

⟩2) · ∥P(z2)∥2/τ2∥q1∥2 ∥P(z2)∥2/τ2∥q1∥2

Ours (Liccl) −⟨q̃1,P(z2)⟩/τ1
∑

i q(i)log
q(i)

p(i|θ) (1− ⟨q̃1, P(z2)
∥P(z2)∥

⟩2) · ∥P(z2)∥2/τ21 ∥q1∥2 ∥P(z2)∥2/τ21 ∥q1∥2 ≈ 1/∥q1∥2

Instead of using q1 as the input of softmax, we use q̃1 as the
input. This simple modification can lead to

∥∂Lmce

∂q1
∥2 =

1

∥q1∥2
(∥∂Lmce

∂q̃1
∥2 − ⟨q̃1,

∂Lmce

∂q̃1
⟩2)

=
∥P(z2)∥2

τ2∥q1∥2
(1− ⟨q̃1,

P(z2)

∥P(z2)∥
⟩2). (14)

Unlike the gradients for similarity loss, ∥∇q1Lmce∥ ≤
∥P(z2)∥/τ may lead to smaller gradients if ∥P(z2)∥ is small
(e.g., uniform distribution). Therefore, τ is proved to be crucial
for the magnitude of gradients. Fig. 2 shows the results for
different τ . The experimental results convince us that the
connection between Lsimilarity and Lmce can be established
through a suitable τ . According to Fig. 3, Fig. 2, and EQ. (14),
we can find the range of ∥P(z2)∥ is close to the best settings of
τ in Lmce. From the perspective of gradients, the increase of τ
for centering mechanism in DINO can be explained. Increasing
τ in P(z2) will decrease ∥P(z2)∥, thus the parameters may
converge better.

D. Detailed Method

Lce may capture class-level information and Lsimilarity

may capture instance-level information. Based on the afore-
mentioned analyses, we propose a simple method to leverage
the relation between Lce and Lsimilarity.

There are two τ in (8). We denote τ for q1 as τ1 and τ for
z2 as τ2. τ1 and τ2 have completely distinct roles on gradients.
In essence, τ in (14) is τ1, which directly influences the
magnitude of ∥∂Lmce

∂q1
∥2. τ2 adjusts the magnitude of ∥P(z2)∥.

τ1 and q̃1 may affect the gradients of q1, which is essential
to construct the relation between Lce and Lsimilarity . The
above analysis explains why we can set different values for τ1
and τ2. As (14) shows, a basic setting of τ1 to be adaptive
is τ1 = ∥P(z2)∥. We also provide some detailed analysis
for the setting of adaptive τ1 in the appendix. Moreover, the
difference between (14) and (11) indicates that the l2-norm of
p is essential for getting suitable gradients. Therefore, the loss
function is

Liccl = −
∑
i

p(i|z2, τ2) log p(i|
q1

∥q1∥
, τ1)

= (log
∑
j

exp
q̃
(j)
1

τ1
)− (

∑
i

p(i|z2, τ2)
q̃
(i)
1

τ1
). (15)

This loss function is similar to the loss in DINO and SwAV.
However, the inputs of the loss in DINO and SwAV are

not l2-normalized. Moreover, τ1 for q̃1 is used to control
the magnitude of ∥∇q1Lmce∥ in this formula. In SwAV and
DINO, τ1 may be used to generate a basic probability distri-
bution. As Fig. 4 shows, our loss function can be associated
with Lsimilarity. This property may prevent our loss from
unbalanced clustering and provide more reasonable training.
For instance, we can use Lsimilarity at the beginning of the
training and use Liccl when the network can basically extract
instance-level features.

The relation between Lce and Lsimilarity helps networks
benefit from both instance-level information and class-level
information. The derived method is less affected by hyper-
parameters and balancing mechanisms (e.g., Sinkhorn-Knopp
algorithm), which is different from certain clustering-based
methods. Our method can be simply understood as focusing
on the dimensionality of larger values to provide cross-instance
supervision.

E. The Uniformity for probabilities

In SwAV and DINO, the supervised labels P(z2) are gener-
ated through balancing mechanisms, such as Sinkhorn-Knopp
algorithm and moving average centering, to prevent unbal-
anced clustering. Traditional cross-entropy loss may not pre-
vent trivial solution. Based on the relation between Lsimilarity

and Liccl, our method can be less suffered from unbalanced
clustering. In our method, we just add some regularization for
the loss function. We assume that the outputs of the batch data
B is P = {q1, ..., pN}. The uniformity assumption indicates
that the outputs in each dimension should be approximately
close, which can be expressed by

p(i|θ) = 1

|B|

|B|∑
j=1

p(i|pj , τ, θ),

min
θ

DKL(P ||Q) =
∑
i

q(i)log
q(i)

p(i|θ)
, (16)

where q(i) = 1
C represents uniform distribution. θ repre-

sents the parameters. P and Q are denoted as the estimated
probability distribution and expected probability distribution,
respectively. We use KL-divergence between P and Q in (16).
The bias of representations will be used to update the network
parameters. λr is used to adjust the strength of the uniformity
regularization. The final loss is

Lfinal = Liccl + λr × (
∑
i

q(i)log
q(i)

p(i|θ)
). (17)
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By default, half of the training use Lsimilarity to maintain
instance-level information, and half of the training use Lfinal

to maintain class-level information.

F. The Details among Different Losses
Table II shows the relation among different loss functions.

For convenience, the gradient magnitude of the alignment term
is provided. The alignment term indicates how this method
learns the information between two correlated representations.
We also provide the upper bound of the corresponding gradient
magnitude for each loss function. Table II clarifies the relation
of our method with other loss functions. Lsimilarity has a
smaller upper bound than Lce due to τ ≪ ∥q1∥ (which has
been analyzed in Sec III-C). Lsimilarity is similar to our
method in the upper bound of gradient magnitude, which is the
core difference between our method and Lce. This point makes
Lsimilarity be replaceable with our method. Moreover, the
alignment term of our method and Lce are similar, indicating
that our method may leverage the cross-entropy loss to learn
the similarity between intra-class instances. Therefore, our
method can use Lsimilarity at the beginning of the training and
replace Lsimilarity with Liccl to learn intra-class information
after several epochs.

IV. EXPERIMENTS

In this section, we conduct a series of experiments on model
designs for self-supervised representation learning.

A. Baseline Settings
Our method can be easily combined with BYOL and

SimSiam. We follow the BYOL settings as our baseline.
Specifically, the default temperature τ2 equals 0.07 for all
datasets. τ1 is 0.1 as the default. We use a cosine decay learn-
ing rate schedule [42] for all experiments. All augmentation
strategies and initialization methods are the same as BYOL.
For ResNet [43], we initialize the scale parameters as 0 [44]
in the last Batch Normalization (BN) [45] layer for every
residual block. All our models are trained by mixed-precision
to accelerate training speed. The augmentation strategies and
initialization for each method are consistent to make a fair
comparison. The detail of augmentation and initialization can
be found in the appendix.

1) Imagenette settings: We use Imagenette [40] to con-
duct basic experiments. Following BYOL’s settings, we use
LARS [46] with base learning rate (lr) = 2.0 for 1000 epochs,
weight decay = 1e-6, momentum = 0.9, and batch size =
256. According to [19], the lr is (base lr) × BatchSize

256 .
The backbone is ResNet-18. The projector is a 3-layer multi-
layer perceptron (MLP), and the predictor is a 2-layer MLP.
The output dimensionality is 512. We do not use momentum
encoder here.

2) ImageNet settings: We use ImageNet [47] to verify our
representations. We use LARS with base lr = 0.3, weight
decay = 1e-6, momentum = 0.9, λr = 5, and batch size =
1024. The backbone is ResNet-50. The projector is a 3-layer
MLP with output dimensionality 256. The predictor is a 2-
layer MLP with output dimensionality 256. The momentum
for momentum encoder is 0.99.

Dimensionality

82

84

86

88

90

92

16 32 64 128 256 512 1024 2048

Our top-1 acc Our kNN-5 SwAV top-1 acc

Fig. 5. Results versus output dimensionality. kNN-5 denotes the result of
K-Nearest Neighbor when K is 5.

TABLE III
THE ANALYSES OF HYPER-PARAMETERS λr AND τ2 . THE RESULTS ARE

TOP-1 ACCURACY (%) IN IMAGENETTE, WHICH IS THE AVERAGE OVER
THREE INDEPENDENT EXPERIMENTS.

λr

τ2 0 0.5 1.0 2.5 5.0 7.5 10.0

0.05 90.77 90.90 91.04 90.91 90.95 90.72 90.76
0.07 91.18 91.15 91.21 91.14 91.08 90.71 90.71
0.1 90.74 90.93 91.02 90.89 91.05 90.79 90.56

3) Linear evaluation: Given the pre-trained network, we
train a supervised linear classifier on frozen features (after
average pooling from ResNet). For Imagenette, the classifier
uses base lr = 0.2, weight decay = 0, momentum = 0.9,
epoch = 100, and batch size = 4096. The optimizer is SGD
with Nesterov. For ImageNet, we follow settings in [10]. The
linear classifier training uses base lr = 0.3 with a cosine decay
schedule for 100 epochs, weight decay = 1e-6, momentum =
0.9, batch size = 256 with SGD optimizer.

B. Analysis of Hyper-Parameters

1) Hyper-parameter λr: In our method, we use λr to
regularize the uniformity of q1. Tab. III shows the results
for different λr. Our method may be less affected by incor-
rect clustering due to the correlation with Lsimilarity. The
instance-level learning reduces the dependence on gradients
generated by clustering. Compared with SwAV and DINO,
there is no need for our approach to impose any balancing
mechanism. Our approach works well when λr = 0. By con-
trast, SwAV relies on Sinkhorn-Knopp algorithm and DINO
relies on centering.

2) Hyper-parameter τ2: Fig. 2 shows the results for differ-
ent τ . As the τ becomes smaller, the performance becomes
better. This phenomenon is consistent with (14). An inappro-
priate τ will magnify or diminish the magnitude of ∥∇q1L∥.
Tab. III analyzes the influence of τ2. We find that τ2 = 0.07
can provide a better result in this dataset. In fact, τ2 only has
an impact on ∥P(z2)∥. ∥P(z2)∥ will only be influenced by
the dimensionality of features and τ2. Therefore, τ2 = 0.07
may be extended to other datasets.

3) Hyper-parameter of output dimensionality: Fig. 5 shows
the results of different dimensionalities. Our method is stable.
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Batch size
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Fig. 6. Experiments of different batch sizes.

TABLE IV
THE ABLATION STUDY OF f(i, z2) IN (4). SK IS SHORT FOR

SINKHORN-KNOPP ALGORITHM. CENTERING INDICATES THE CENTERING
PROCEDURE IN DINO. HERE WE JUST CHANGE f(i, z2). THUS WE USE p̃

RATHER THAN p AS THE INPUT OF Softmax.

SK Centering p(i|z2, τ = τ1) p(i|z2, τ = τ2 < τ1)

90.85 90.49 90.74 91.21

Although the dataset only has 10 categories. Our method has a
good result when the dimensionality is large. By contrast, we
find certain clustering-based methods cannot get a good result
when the number of prototypes is excessive in Imagenette.
This point indicates that the relation between Lsimilarity and
Liccl helps decrease the influence of incorrect clustering.

4) Hyper-parameter of batch size: Fig. 6 shows the results
of different batch sizes. We follow BYOL to accumulate
the gradients of N steps so that the learning rate is not
changed. As we conjecture, the performance of our method is
less influenced by batch size, which is similar to contrastive
learning based methods.

C. Ablations on Loss Function

First, as Fig. 4 shows, ∥p∥ is essential to build the relation
with Lsimilarity . The main difference between our loss and
Lce is the input of Softmax. Based on the analyses of
gradients, ∥p∥ is a more suitable form to feed into Softmax.
This point of view is pivotal to our method.

We choose different methods to generate probability distri-
bution to supervise the update of q1. Tab. IV shows results.
Sinkhorn-Knopp algorithm and centering adjust the probability
distribution based on the batch of data. The magnitude of
∥P(z2)∥ may be small, although a smaller τ2 is used. However,
our method does not have a centering mechanism, which may
lead to a large ∥P(z2)∥. Moreover, this readjustment may
disturb the pseudo-labels and confuse the training. Then in
the case when τ2 = τ1, the supervised probability may not be
sharp, which loses the ability to capture the similarity between
distinct images.

D. Comparison of Other Methods

We first compare our method with other self-supervised
methods in Imagenette. Tab. VI shows the results for different

self-supervised methods. We find that SimSiam, MoCo, and
BYOL can be easily extended to this dataset, indicating that
those methods are robust to different datasets. BarlowTwins
focuses on the correlation of different channels. We find this
method is similar to those clustering-based methods. Large
dimensionality is not suitable for this dataset. SwAV and
DINO are clustering-based methods. The hyper-parameters are
set for ImageNet. We find those hyper-parameters are less
useful in this dataset. We change the number of prototypes
and choose the best result. However, the performances are
still worse than results of contrastive learning based methods.
SwAV and DINO both heavily rely on uniformity regulariza-
tion. In ImageNet and Imagenette, those methods may fail
without uniformity regularization. Our method leverages the
instance-level information and class-level information through
(15). Therefore, our method may be less suffered from the
problem of incorrect clustering. Furthermore, τ1 and τ2 are
set manually in SwAV and DINO. In our method, adaptive τ1
can produce a competitive result. This point confirms (14) and
the analyses of gradients.

Based on the hyper-parameter in Imagenette, we conduct
the experiments in ImageNet. We find these hyper-parameters
can still work well in ImageNet. Tab. V shows the results in
ImageNet. We analyze results from the perspectives of loss
function and dimensionality. All backbones are ResNet-50.
The setting of τ1 is fixed as 0.1. This may be the problem of
hyper-parameters, and we will find suitable hyper-parameters
in the future.

1) Loss function: Traditional contrastive learning based
methods use similarity loss. For SimSiam, authors find re-
placing Lsimilarity with Lce may lead to an inferior result
(67.3 and 63.2). The results of those contrastive learning based
methods may be less influenced by dimensionality. However,
methods that use InfoNCE [2] may rely on large batch size.
MoCo requires a large queue size or large batch size to
maintain a good result. BYOL is stable in both ImageNet and
Imagenette. In general, similarity loss may be a good manner
to capture instance-level information. BarlowTwins attempts
to leverage the correlation of different dimensionalities. This
method may benefit from large dimensionality. When the
output dimensionality is 8192, Barlowtwins has a competitive
result. However, the performance may decrease a lot when
the output dimensionality becomes smaller [10]. Thus, the
hyper-parameter may be suitable for ImageNet but not suitable
for other datasets. SwAV and DINO both leverage Lce to do
online clustering. As we propose in Prop. 1, Lce may help to
correlate different instances. Our method establishes the rela-
tion between Lsimilarity and Lce. Therefore, our method also
captures class-level information. From this perspective, our
method may leverage more information than other methods.
When class-level information is hard to capture, the method
may use instance-level information to provide robust training.

2) Dimensionality: In experiments, we find those
clustering-based methods may be sensitive to the scale of the
dataset. The hyper-parameter of the number of prototypes
for those methods may not act well in tiny datasets. In
ImageNet, those methods still need a large dimensionality.
The decrease in the number of prototypes or the data diversity
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TABLE V
THE RESULTS OF DIFFERENT SELF-SUPERVISED METHODS IN IMAGENET. ALL RESULTS ARE PRETRAINED WITH TWO 224×224 VIEWS. ALL

METHODS USE RESNET-50 AS BACKBONE. WE DO NOT USE ANY TRICKS (E.G., MULTI-CROP IN SWAV AND FIXING LR IN SIMSIAM). * REPRESENTS THE
RESULT OF 400 EPOCHS. ‡ DENOTES THE RESULT WITH MULTI-CROP (THIS TRICK MAY BOOST THE RESULT). TOP-4 BEST SELF-SUPERVISED METHODS

ARE UNDERLINED.

Top-1 Acc (%)
Method Basic Loss Batch Size Dimensionality 100 epochs 300 epochs

Contrastive Methods

SimCLR [8] InfoNCE 4096 2048 66.5 *69.8
MoCo v2 [48] InfoNCE 256 (65536 queue size) 256 67.4 *71.1
MoCo v3 [23] InfoNCE 1024 256 68.1 72.3

BYOL [18] Lsimilarity 1024 256 66.0 72.2
SimSiam [19] Lsimilarity 256 2048 67.3 *70.8

Lce 256 2048 63.2 -

BarlowTwins [10] BarlowTwins Loss 1024 8192 67.4 71.4

Clustering-based Methods

SeLa [30] Lce 4096 3000 61.5 *67.2
SwAV [31] Lce 256 (4096 queue size) 3000 66.5 *70.7
DINO [11] Lce 1024 65536 67.8 ‡72.1

Ours Lce 1024 256 68.2 71.7
Ours Lce 1024 512 68.1 71.5

TABLE VI
THE RESULTS OF DIFFERENT METHODS IN IMAGENETTE. † INDICATES
THE METHODS WHERE DEFAULT SETTINGS CANNOT BE TRANSFERRED TO

IMAGENETTE EXPERIMENTS, AND WE REPORT THE BEST RESULT. ‡
INDICATES THE METHOD WITHOUT UNIFORMITY REGULARIZATION

(SINKHORN-KNOPP IN SWAV, CENTERING IN DINO, AND λr IN OUR
METHOD).

Method Top-1 Acc (%) KNN-5 Top-1 Acc (%)

Contrastive Methods

SimSiam 90.98 89.90
MoCo 90.39 88.81
BYOL 90.87 90.26

BarlowTwins† 87.06 87.31

Clustering-based Methods

SwAV† 89.99 88.61
DINO† 88.86 88.41
‡SwAV fail -
‡DINO fail -

‡Ours 91.18 89.98
Ours (fixed τ1) 91.21 90.31

Ours (adaptive τ1) 91.23 89.94

may affect those methods. However, as Fig. 5 and Tab. V
show, our method is similar to those contrastive learning
based methods. When the category is 10, our method can
get a competitive result with dimensionality 2048. When
the category is 1000, our method can also get a competitive
result with dimensionality 256. Moreover, the use of Lce

helps to discover the similarity between distinct images. On
the contrary, SimSiam gets an inferior result with Lce. The
established relation between Lce and Lsimilarity boosts the
learned information.

E. Transfer to other tasks

Following SimSiam [19], [53], we conduct several transfer
learning experiments. In Tab. VII, we compare the representa-

tion quality by transfer learning. We fine-tune the parameters
in the VOC [54] datasets. The experimental settings follow
the codebase from [55]. We find our pretrained model does
not have a competitive result with certain self-supervised
methods. We conjecture that our method attempts to learn
class-level agreement [56]. In fact, our intention is to learn
class information (the category of an image) during the self-
supervised training procedure. This attempt may weaken the
performance of object detection. Mid-level information may
be discarded. However, as mentioned in other self-supervised
methods, self-supervised training may provide a superior result
to supervised learning.

Table VIII shows transfer learning results on COCO dataset.
For COCO dataset, we only find the codebase in MoCo’s
GitHub. Therefore, we follow the settings in MoCo. The per-
formance in COCO dataset is consistent with the performance
in VOC dataset. The performance of our method is close to
the best method. In fact, we find the learning rate for MoCo
on COCO and VOC may not be suitable for our pre-trained
model. We may search for an appropriate hyper-parameter for
transfer learning in our later version.

V. CONCLUSIONS

Our method is conceptually analogous to SwAV and DINO.
All these methods leverage feature-level cross-entropy to do
unsupervised learning. However, SwAV and DINO need ap-
proaches to balance the probability distribution. For example,
SwAV uses Sinkhorn-Knopp algorithm to balance the prob-
ability distribution of all instances in the batch. DINO uses
centering on accumulating the bias of probability distribution.
The centering mechanism may modify the intensity of different
prototypes in the subsequent training. In SwAV and DINO,
authors emphasize the importance of maintaining uniformity.
However, in this paper, we reduce the dependence on unifor-
mity mechanisms. The perspective of gradients leads us to find
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TABLE VII
TRANSFER LEARNING. VOC 07 DET: FASTER R-CNN [49] FINE-TUNED IN VOC 2007 TRAINVAL, EVALUATED IN VOC 2007 TEST. VOC 07+12 DET:

FASTER R-CNN FINE-TUNED IN VOC 2007 TRAINVAL + 2012 TRAINVAL, EVALUATED IN VOC 2007 TEST. METHODS THAT USE VIT [50] AS
BACKBONE MAY NOT BE COMPATIBLE WITH FASTER R-CNN. WE ALSO PROVIDE THE TRANSFER LEARNING IN COCO [51] IN APPENDIX.

Method VOC 07 det VOC 07+12 det
APall AP50 AP75 APall AP50 AP75

Supervised 42.4 74.4 42.7 53.5 81.3 58.5

SimCLR 46.8 75.9 50.1 55.5 81.8 61.4
MoCo v2 48.5 77.1 52.5 57.0 82.5 63.3

BYOL 47.0 77.1 49.9 55.3 81.4 61.1
SwAV 46.5 75.5 49.6 55.4 81.5 61.4

SimSiam (optimal) 48.5 77.3 52.5 57.0 82.4 63.7
BarlowTwins - - - 56.8 82.6 63.4

Ours 47.2 75.7 51.4 55.5 81.9 61.5

TABLE VIII
TRANSFER LEARNING. COCO DETECTION AND COCO INSTANCE SEGMENTATION: MASK R-CNN C-4 [52] (2X SCHEDULE) FINE-TUNED IN COCO

2017 TRAIN [51], EVALUATED IN COCO 2017 VAL.

Method COCO detection COCO instance seg.
AP AP50 AP75 APmask APmask

50 APmask
75

1x schedule

Supervised 38.2 58.2 41.2 33.3 54.7 35.2

SimCLR 37.9 57.7 40.9 33.3 54.6 35.3
MoCo 39.2 58.8 42.5 34.3 55.5 36.6
BYOL 37.9 57.8 40.9 33.2 54.3 35.0
SwAV 37.6 57.6 40.3 33.1 54.2 35.1

SimSiam 39.2 59.3 42.1 34.4 56.0 36.7
BarlowTwins 39.2 59.0 42.5 34.3 56.0 36.5

Ours 38.4 58.3 41.2 33.2 54.7 35.0

2x schedule

Supervised 40.0 59.9 43.1 34.7 56.5 36.9

MoCo 40.7 60.5 44.1 35.4 57.3 37.6
Ours 39.9 59.8 43.2 34.9 56.6 37.1

a loss function that may have similar behavior as the similarity
loss. This point is critical to get rid of uniformity mechanisms.

Our method uses a completely different loss function from
those contrastive learning based methods. However, the ap-
proach is correlated with similarity loss through the derivation
of gradients. This perspective helps our approach to maintain
the robustness of those contrastive learning based methods. A
reasonable gradient also provides a stable and smooth training
perspective compared with those methods which directly feed
q1 into Softmax. As shown in Fig. 4, the input of Softmax
is crucial to establish the correlation. In fact, our method can
be interpreted as conducting similarity loss through the proba-
bility distribution. This perspective explains why our method is
less affected by dimensionality and uniformity regularization.
By maximizing the probability distribution of instances, the
method may implicitly learn the similarity between images.
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APPENDIX
DERIVATION OF EQUATIONS IN MAIN PAPER

Derivation of EQ. (9) and EQ. (10) in Main Paper

For loss function:

Lsimilarity = −⟨q̃1, z̃2⟩, (18)

we can get

q̃1 =
q1
∥q1∥

,

and
∂L

∂q̃1
= −z̃2. (19)

Here we use p(i) to index the ith element in vector p. Then
we can calculate the gradients for q1:

∂q̃
(i)
1

∂q
(i)
1

=
1

∥q1∥
− q

(i)
1

q
(i)
1

∥q1∥3
=

1

∥q1∥
(1− q̃

(i)
1 · q̃(i)1 ), (20)

∂q̃
(j)
1

∂q
(i)
1

= −q
(j)
1

q
(i)
1

∥q1∥3
=

1

∥q1∥
(−q̃

(j)
1 · q̃(i)1 ), (21)
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∂L

∂q
(i)
1

=
∑
j

∂L

∂q̃
(j)
1

∂q̃
(j)
1

∂q
(i)
1

=
∂L

∂q̃
(i)
1

∂q̃
(i)
1

∂q
(i)
1

+
∑
j!=i

∂L

∂q̃
(j)
1

∂q̃
(j)
1

∂q
(i)
1

=
1

∥q1∥
(
∂L

∂q̃
(i)
1

− q̃
(i)
1 (

∑
j

q̃
(j)
1 · ∂L

∂q̃
(j)
1

))

=
1

∥q1∥
(
∂L

∂q̃
(i)
1

− q̃
(i)
1 · ⟨q̃1,

∂L

∂q̃1
⟩)

=
1

∥q1∥
(−z̃

(i)
2 − q̃

(i)
1 · ⟨q̃1,−z̃2⟩). (22)

Therefore, EQ. (9) in main paper is established. Based on the
above equation, we can get

(
∂L

∂q
(i)
1

)2 =
1

∥q1∥2
(z̃

(i)2

2 + q̃
(i)2

1 · ⟨q̃1,−z̃2⟩2

− 2(−z̃
(i)
2 · q̃(i)1 )⟨q̃1,−z̃2⟩), (23)

∑
i

(
∂L

∂q
(i)
1

)2 =
1

∥q1∥2
(∥ − z̃2∥2 + ⟨q̃1,−z̃2⟩2 − 2⟨q̃1,−z̃2⟩2)

=
1

∥q1∥2
(∥ − z̃2∥2 − ⟨q̃1,−z̃2⟩2)

=
1

∥q1∥2
(1− ⟨q̃1, z̃2⟩2). (24)

EQ. (10) in main paper is established as above.

Derivation of EQ. (11) and EQ. (12) in Main Paper

For loss function:

Lce = −
∑
i

p(i|z2, τ) log p(i|q1, τ),

where p(i|x, τ) =
exp(x

(i)

τ )∑
j=1 exp(

x(j)

τ )
, (25)

we can get another type of cross-entropy loss:

Lce = −
∑
i

p(i|z2, τ) log
exp(

q
(i)
1

τ )∑
j=1 exp(

q
(j)
1

τ )

= −
∑
i

p(i|z2, τ)(
q
(i)
1

τ
− log

∑
j=1

exp(
q
(j)
1

τ
))

=
∑
i

p(i|z2, τ) · log
∑
j=1

exp(
q
(j)
1

τ
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∑
i
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q
(i)
1

τ

= log
∑
j=1

exp(
q
(j)
1

τ
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∑
i

p(i|z2, τ)
q
(i)
1

τ
. (26)

This is the EQ. (12) in main paper. The gradients for q1 can
be calculated by

∂Lce

∂q1(i)
=

1

τ

exp(
q
(i)
1

τ )∑
j=1 exp(

q
(j)
1

τ )
− 1

τ
p(i|z2, τ)

=
1

τ
(p(i|q1, τ)− p(i|z2, τ)). (27)

Therefore, EQ. (11) in main paper is established.

Derivation of EQ. (14) in Main Paper

For loss function

Lmce = −
∑
i

p(i|z2, τ)
q̃
(i)
1

τ
, (28)

we have

∂Lmce

∂q̃
(i)
1

= −1

τ
p(i|z2, τ). (29)
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⟩), (30)

∥Lmce

∂q1
∥2 =

1

τ2∥q1∥2
(∥P(z2)∥2 − ⟨q̃1,P(z2)⟩2)

=
∥P(z2)∥2

τ2∥q1∥2
(1− ⟨q̃1,

P(z2)

∥P(z2)∥
⟩2). (31)

Explanation of τ1 in EQ. (15) in Main Paper

For loss function

Liccl = (log
∑
j

exp
q̃
(j)
1

τ1
)− (

∑
i

p(i|z2, τ2)
q̃
(i)
1

τ1
), (32)

we have

∂Liccl

∂q̃
(i)
1

=
1

τ1
(p(i|q1, τ1)− p(i|z2, τ2)), (33)
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∂q
(i)
1

=
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j

∂Liccl

∂q̃
(j)
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∂q̃
(j)
1

∂q
(i)
1

=
1

∥q1∥
(
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∂q̃
(i)
1

− q̃
(i)
1 · ⟨q̃1,

∂Liccl

∂q̃1
⟩), (34)

∥Liccl

∂q1
∥2 =

∥P(q1)−P(z2)∥2

τ21 ∥q1∥2
(1− ⟨q̃1,

P(q1)−P(z2)

∥P(q1)−P(z2)∥
⟩2).

(35)

In main paper, we set τ1 = ∥P(z2)∥. The value of τ1 is
adaptive. However, as P(q1) is closing to P(z2), the mag-
nitude of gradients may be vanishing. Therefore, we provide
another setting for τ1. The default τ1 is a hyper-parameter
(e.g., τ1 = 0.1 in DINO [11]). To make τ1 become adaptive
for different instances, we set τ1 to be min(τ1, ∥P(z2)∥).

IMPLEMENTATION DETAILS

The code has been open-sourced. Details can be seen
in Code/README.md. We provide config files of many
methods on ImageNet and Imagenette. It is convenient to
reproduce the results for different methods.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

Initialization.

For ResNet backbone, convolution layers’ weights are ini-
tialized by HE initialization, and convolution layers’ biases
are initialized as 0. The fc layers’ weight and bias for
other components (e.g., projection, predictor) are initialized
by xavier initialization [57]. The settings follow the details in
BYOL.

Augmentation.

During self-supervised training, we use the following image
augmentations (PyTorch-like code).

• RandomResizedCrop with an area ratio uniformly sam-
pled between 0.08 and 1.0, and an aspect ratio logarith-
mically sampled between 3/4 and 4/3.

• Resize the patch to the target size of 224x224.
• RandomHorizontalF lip the image with a probability

of 0.5.
• ColorJitter the {brightness, contrast, saturation and

hue} of the image by the parameters {0.4, 0.4, 0.4, 0.1}.
This augmentation operation is randomly applied with a
probability of 0.8.

• RandomGrayscale the image with a probability of 0.2.
• GaussianBlur the image using the Gaussian kernel

with std in [0.1, 2.0]. This augmentation operation is
randomly applied with a probability of 1.0 and 0.1 for
two independent transformations, respectively.

• Solarization the image with a probability of 0.2 for one
of the transformations.

• ToTensor. Scale the value of [0, 255] to [0.0, 1.0].
• Normalize the image with estimated mean and std.

Optimizer and learning rate.

For experiments on Imagenette, we use LARS with lr =
2.0 for 1000 epochs, weight decay = 1e-6, momentum = 0.9,
and batch size = 256. For those methods that use momentum
encoder, the momentum value of momentum encoder is 0.996.
These settings are shared in BYOL’s github. For experiments
on ImageNet, we use LARS with base lr = 0.3, weight decay =
1e-6, momentum = 0.9, and batch size = 1024. The momentum
value for momentum encoder is 0.99. For linear evaluation, the
linear classifier training uses base lr = 0.3 with a cosine decay
schedule for 100 epochs, weight decay = 1e-6, momentum
= 0.9, batch size = 256 with SGD optimizer. We have also
tried LARS optimizer with base lr = 0.1, weight decay = 0,
momentum = 0.9, epoch = 100, and batch size = 4096. This
optimizer may give a competitive result.

Hyper-parameters for object detection.

We use the detectron2 library for training the detection
models and closely follow the evaluation settings from MoCo.
We use Faster R-CNN C-4 detection model. The backbone is
initialized by our pretrained model. For VOC 07 and VOC
07+12, training has 24K iterations using a batch size of 16
across 8 GPUs with SyncBatchNorm. The initial learning rate
for the model is 0.1, which is reduced by a factor of 10
after 18K and 22K iterations. We use linear warmup for 1000

iterations. For COCO dataset, we train Mask R-CNN C-4
backbone on the COCO 2017 training set. We use a learning
rate of 0.03 and keep the other parameters the same as in
MoCo’s Github.
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