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Abstract—Transformer-based architectures start to emerge in
single image super resolution (SISR) and have achieved promising
performance. However, most existing vision Transformer-based
SISR methods still have two shortcomings: (1) they divide images
into the same number of patches with a fixed size, which may not
be optimal for restoring patches with different levels of texture
richness; and (2) their position encodings treat all input tokens
equally and hence, neglect the dependencies among them. This
paper presents a HIPA, which stands for a novel Transformer
architecture that progressively recovers the high resolution image
using a hierarchical patch partition. Specifically, we build a
cascaded model that processes an input image in multiple stages,
where we start with tokens with small patch sizes and gradually
merge them to form the full resolution. Such a hierarchical
patch mechanism not only explicitly enables feature aggregation
at multiple resolutions but also adaptively learns patch-aware
features for different image regions, e.g., using a smaller patch for
areas with fine details and a larger patch for textureless regions.
Meanwhile, a new attention-based position encoding scheme for
Transformer is proposed to let the network focus on which tokens
should be paid more attention by assigning different weights to
different tokens, which is the first time to our best knowledge.
Furthermore, we also propose a multi-receptive field attention
module to enlarge the convolution receptive field from different
branches. The experimental results on several public datasets
demonstrate the superior performance of the proposed HIPA
over previous methods quantitatively and qualitatively. We will
share our code and models when the paper is accepted.
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This work was supported in part by the National Science Foundation
of China under Grant 62102338, Grant 61906162, and Grant 62172347;
in part by the Natural Science Foundation of Shandong Province under
Grant ZR2020QF031; in part by the Qingdao Postdoctoral Innovation Project
under Grant QDBSH20230101001; in part by the CUHK(SZ)- Linklogis Joint
Laboratory of Computer Vision and Artificial Intelligence; in part by the
Shenzhen Institute of Artificial Intelligence and Robotics for Society; in part
by the Shenzhen Research Institute of Big Data; and in part by the Natural
Sciences and Engineering Research Council of Canada and the University of
Alberta.(Corresponding author: David Zhang, Jun Lyu)

Qing Cai is with the Faculty of Information Science and Engineering, Ocean
University of China, Qingdao, Shandong, 266100, China.

Yiming Qian is with the Department of Computer Science, University of
Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.

Jinxing Li is with the School of Computer Science and Technology, Harbin
Institute of Technology, Shenzhen, Guangdong, 518055, China.

Jun Lyu is with the School of Nursing, The Hong Kong Polytechnic
University, Hong Kong(e-mail:ljdream0710@pku.edu.cn).

Yee-Hong Yang is with the Department of Computing Science, University
of Alberta, Edmonton, Alberta T6G 2E9, Canada.

Feng Wu is with the School of Information Science and Technology,
University of Science and Technology of China, Hefei, Anhui, 230026, China.

David Zhang is with the School of Data Science, The Chinese University
of Hong Kong, Shenzhen, Guangdong 518172, China, also with the Shenzhen
Institute of Artificial Intelligence and Robotics for Society, Shenzhen, Guang-
dong 518000, China, and also with the CUHK(SZ)- Linklogis Joint Laboratory
of Computer Vision and Artificial Intelligence, Shenzhen, Guangdong 518172,
China(e-mail: davidzhang@cuhk.edu.cn).

Fig. 1. Visual comparisons of ×4 SISR on “img 063” from Urban 100. It
can be seen that our method obtains better visual quality and recovers more
textures and details compared with that of other state-of-the-art methods. The
colors red and blue represent the best and the second best methods.

hierarchical patch Transformer, attention-based position embed-
ding

I. INTRODUCTION

Single Image Super-Resolution (SISR), aiming to recover
a high-resolution (HR) image from its corresponding de-
graded low-resolution (LR) version, plays an important and
fundamental role in computer vision and image processing
due to its wide range of real-world applications, such as
medical imaging [1], surveillance [2] and remote sensing [3],
amongst others. SISR is a very challenging and ill-posed
problem because there is no unique solution for any given
LR input [4, 5].

Deep convolutional neural networks (CNNs) have achieved
remarkable success in SISR and various architectures have
been presented so far, for example, residual learning [6–8],
dense connections [9, 10], UNet-like architectures with skip
connections [11, 12], dilated convolutions [13, 14], generative
models [15–18] and other kinds of CNNs [19–21]. However,
the convolution in CNN uses a sliding window to extract
local features and hence, is weak in capturing long-range
or non-local dependencies, which are important for SISR.
In particular, for some regions with fine textures, faithful
reconstruction depends not only on local relationships but
also on long-range dependencies [22, 23]. To alleviate this
issue, many attention mechanisms have been proposed and
introduced into SISR, such as global attention mechanism [24–
28] and non-local attention mechanism [29–32]. As shown in
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Fig. 1, although some state-of-the-art (SOTA) methods such
as NLSN [31] could recover some amounts of high-frequency
details, the reconstructed slanted line structures exhibit fuzzy
and blurry boundaries, which are faithfully restored using our
hierarchical patch Transformer.

Inspired by the significant success of Transformer in natural
language processing [33] for its advantages in modeling long-
range context, vision Transformer is also introduced into
the field of SISR [34–38] and has obtained superior results
than many SOTA CNN-based methods due to the multi-head
self-attention mechanism that is capable of modeling long-
distance dependencies [39]. Very recently, hybrid architectures
combining CNN and Transformer start to emerge in the
community [37] to fully utilize the advantage of CNN in
extracting local features and the advantage of Transformer
in establishing long-range dependencies. Although existing
Transformer-based SISR models have achieved superior re-
sults, the recovered results still exhibit blurry boundaries as
shown in the result of SwinIR [37] in Fig. 1. The main
reasons may lie in two shortcomings of existing vision
Transformer-based SISR methods. First, almost all of them
partition all input images into the same number of fixed-
size patches, which may not be ideal considering different
images on image regions have their own characteristics [40].
Second, the position encoding of most vision Transformer-
based SISR methods treats all input tokens equally. However,
the low-resolution input tokens contain abundant information
for SISR, which are treated equally across tokens and hence,
the representation ability of Transformer is limited.

In order to compensate the above two shortcomings, in this
paper, we propose a Hierarchical Patch (HIPA) Transformer
by partitioning an input image into a hierarchy of patches
with different sizes. In particular, a multi-stage architecture
is first developed by alternately stacking CNN and Trans-
former to boost their benefits in feature extraction. Then, to
achieve different size patch input for the Transformer and
to let the Transformer establish global dependencies from
different numbers of tokens, the LR image is first partitioned
into a hierarchy of subblocks, which are used as inputs to
the Transformer by starting from the small-size blocks and
gradually merging them in the next stage. In addition, we
design a novel attention-based position encoding scheme for
the Transformer based on dilated channel attention to model
the position information with a continuous dynamical model.
Besides, a multi-receptive field attention module is proposed
based on dilated convolution with different dilation factors to
enlarge the convolution receptive field from different branches.
As shown in Fig. 1, our HIPA obtains better visual quality
compared with that of other state-of-the-art SISR methods.

Briefly, the contributions of this paper mainly include:

• A novel hierarchical patch Transformer has been de-
signed to achieve multi-size patches for Transformers.
This approach is more effective than treating all samples
with the same number of fixed-size patches because
the hierarchical patch Transformer allows patches with
different texture richness to adopt different sizes, rather
a single size patch;

• A new attention-based position encoding scheme is pro-
posed for Transformer that allows the network to focus
on which tokens should be paid more attention, which is
the first time to our best knowledge;

• A multi-receptive field dilated attention module is de-
signed to enlarge the convolution receptive field from
different branches, which achieves relatively smaller in-
crease of the computational complexity compared to the
one by increasing the depth and the filter size of a CNN
to enlarge the receptive field.

The rest of the paper is organized as follows: Section II
briefly overviews related works. Section III presents the pro-
posed HIPA Transformer and discusses its advantages and
differences with existing methods. Section IV presents the
experimental results and analysis of the proposed method by
comparing it with state-of-the-art models. Finally, the paper
concludes in Section V.

II. RELATED WORK

CNN-based Models: The SRCNN model proposed by Dong
et al. [41] is a pioneering work to apply CNN to single image
super-resolution, which has achieved superior performance
than traditional methods [42–44] by using only a three-layer
CNN to represent the mapping between LF and HR images.
Based on the SRCNN, many deeper and wider CNN based
SISR models have been proposed to achieve better restoration
performance. However, blindly increasing the depth of a
network does not necessarily improve the performance but
may introduce many new issues for training, for example, the
vanishing or exploding gradient [45]. Later, residual learning
is introduced into SISR to ease the training difficulty of deeper
networks. For example, by introducing residual learning into
a deeper network, Kim et al. can stack more convolutional
layers and propose the VDSR [46]. However, all of the above
models need to first pre-process the LR input to obtain the
desired image size using interpolation, which is not only time
consuming but also often introduces noise and blurriness in
the input image. To address the above issues, Dong et al. [47]
introduce a deconvolution layer as the last layer and achieve
end-to-end training for SISR. Such a deconvolution layer is
then substituted by a more efficient sub-pixel convolution
layer [48] proposed by Shi et al., which is also adopted by
our method similar to the EDSR [45] and the RCAN [24].
However, all of these models treat the LR features equally
across channels, which inevitably limits the restoration capa-
bility of CNNs. Even worse, the convolution kernel usually
has a limited receptive field and cannot sufficiently extract
long-range or non-local features. As a result, for some regions
with fine details, these methods yield poor performance.
Attention-based Models: To address the above issues, atten-
tion mechanism [24, 26, 28, 30] is introduced into SISR to
guide the deep neural network to selectively pay more attention
on features where there is more information. For example,
by integrating channel attention and residual blocks, Zhang
et al. propose the RCAN [24], which markedly improves the
representational performance of the CNN. Dai et al. propose
the SAN [28] using a novel trainable second-order channel at-
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tention. However, the channel attention treats different convo-
lution layers independently and neglects the correlation among
them. To alleviate this issue, Niu et al. propose the HAN [26]
by integrating a layer attention module and a channel-spatial
attention module into the residual blocks. More recently, non-
local attention modules [29–32] are proposed to address the
inherent issue of CNNs in establishing long range or non-local
dependencies among exacted features. For example, Zhang et
al. [29], propose the RNAN by mixing a local masked branch
and a non-local attention mechanism, which are, respectively,
in charge of concentrating on extracting more local structures
and considering more long-range dependencies in the extracted
features. Mei et al. [30] propose the CSNLN by integrating a
Cross-Scale Non-Local prior with local and in-scale non-local
priors using a recurrent neural network, which can efficiently
explore the existing cross-scale feature similarities in images.
Xia et al. [32] propose an efficient non-local attention mod-
ule by using the kernel function of approximation and the
associative law of matrix multiplication, which successfully
achieves comparable performance compared to that of the
previous non-local attention module while requires only linear
computation and space complexity with respect to the LR size.
However, these models are still incapable of adequately and
comprehensively compensate for the shortcomings of CNNs
in establishing long-range dependencies.

Transformer-based Models: Inspired by the significant per-
formance of the vision Transformer [33, 49, 50], it has also
been applied to the SISR field [34–38]. For example, Chen et
al. propose the image processing Transformer (IPT) [35]
model for various image restoration tasks based on a pre-
trained standard Transformer [33]. Recently, to capture local
relationships, researchers begin to introduce convolutions to
Transformers by integrating the vision Transformer module
with convolution [37, 51–54]. For example, Liang et al. [37]
propose the Swin Transformer-based image resolution model
(SwinIR) by combining CNN and Transformer and achieves
superior performance while maintaining computational effi-
ciency. Huang et al. propose DGSM-Swin [52] by intro-
ducing a learned Gaussian Scale Mixture (GSM) prior into
the Swin Transformer. In addition to classic performance-
oriented SISRs, hybrid architectures have also emerged in
the field of light-weigh SISR [53–55]. For example, Lu et
al. propose a novel Efficient Super-Resolution Transformer
(ESRT) [53], which integrates a lightweight CNN backbone
and a lightweight Transformer backbone to achieve a small
GPU memory footprint using an efficient multi-head attention.
Fang et al. proposed a Hybrid Network of CNN and Trans-
former (HNCT) [54] for lightweight image SISR, which can
exploit both local and non-local priors by integrating CNN
and Transformer. Although Transformer-based SISRs have
achieved impressive results, most existing Transformers divide
images into the same number of fixed-size patches, which
may not be ideal for restoring patches with different levels of
texture richness. Besides, the position encodings used in most
existing Transformer are predefined and treat the positional
information of different tokens equally.

III. METHODOLOGY

A. Issues and Motivations

Fig. 2. Illustration of comparison between (a) the existing vision Transformer
with fixed-size patch and (b) our HIPA Transformer with multi-size patch on
regions with different texture richness.

As discussed in the contribution part of Section I and the
Transformer-based models part of Section II, using fixed-size
patches with varying level of texture richness is suboptimal
and can limit the recovery performance of many existing
Transformer-based SISR models. To further explain this, we
provide an example shown in Fig. 2 that demonstrates the
impact of patch size on the “monarch” image from the
Set14 dataset. Fig. 2(a) shows the fixed-size split of vision
Transformer-based methods (left column), in which the input
image is split into the same number of fixed-size tokens,
a selected textureless background region (middle column)
and a butterfly head region with fine detail (right column).
Fig. 2(b) shows the multi-size split of our HIPA Transformer
(left column), in which the input image is partitioned into
multiple stages, where tokens with small patch sizes are used
first and gradually merged with larger patches to form the full
resolution, two selected regions (last two columns) the same as
that in Fig. 2(a). From the visual and quantitative comparison
of the selected background region (middle column) between
using the existing fixed-size patch and our multi-size patch,
it can be observed that their visual quality and PSNR values
are very similar, which suggests that using a large patch size
for textureless region is enough for the network to finish
the final restoration. However, from the recovery performance
comparison of the selected butterfly head region (right column)
between using the existing fixed-size patch and using our
multi-size patch, it can be found that their visual quality and
PSNR values have a certain gap, which suggests that using
a large patch size for region with fine detail is not optimal.
In contrast, in this case, using a smaller patch size is more
helpful to recover fine details, which is demonstrated by the
improved PSNR value using our multi-size patch. From the
above discussion, we can summarize that: (1) using fixed-size
patches with different texture richness in the whole restoration
process is inappropriate, which is the reason that many existing
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Fig. 3. Overall framework of our HIPA method for progressive SISR. Each stage in the proposed model is constructed based on the proposed HIPA block,
which consists of two main modules. The first module is a Transformer designed to learn global dependencies between contexts (See Section III-B for details).
The second module is a multi-receptive field attention group used to exhaustively mine local features contained in the original LR image (See Section III-D
for details). The Transformers of the first two stages mainly learn the broad contextual information, while the last stage focuses more on learning the desired
details. Finally, the training loss is defined based on the summation over all outputs ℓ1(·), ℓ2(·), ℓ3(·) of different stages to optimize our HIPA.

Transformer-based models still exhibit blurry boundaries; (2)
using multi-size patches with different richness is helpful to
improve the restoration results, which motivates the proposed
HIPA Transformer.

B. Hierarchical Patch Transformer

As shown in Fig. 3, the proposed HIPA consists of three
stages to progressively recover the high-resolution (HR) image
from its low-resolution (LR) input. The Transformer of the
first two stages mainly learn broad contextual information,
while the last stage focuses on learning the desired details.
Each stage is constructed based on the proposed HIPA block,
which mainly consists of two modules: a multi-receptive field
attention group and a designed Transformer. To achieve multi-
size patch input for the HIPA, we adopt the hierarchical patch
partition on the input LR image. Specifically, we first split the
LR image into different non-overlapping patches for different
stages: four for the first stage, two for the second stage, and
the entire LR image for the last stage, and then, gradually
integrate intermediate results in the next stage.

For simplicity, in the notation that follows, ILR and IHR

denote the original LR input and the final HR output of the
HIPA, respectively. Ii,jLR denotes the j-th patch at Stage i. For
example, I1,1LR denotes the 1-st patch at Stage 1, i.e., the upper
left corner patch of Stage 1 input shown in Fig. 3.

Following [24, 45], we also use one convolution layer to
extract the shallow feature (SF) F 1,j

0 from the original LR
image. For Stage 1:

F 1,j
0 = HSF (I

1,j
LR) (j = 1, 2, 3, 4), (1)

where HSF denotes the convolution operation. Then, the
extracted shallow feature is input to the proposed HIPA block
to further extract deep features:

F 1,j
HIPA = HHIPA(F

1,j
0 ) (j = 1, 2, 3, 4), (2)

where HHIPA denotes the proposed HIPA block. After stitch-
ing F 1,1

HIPA with F 1,3
HIPA and stitching F 1,2

HIPA with F 1,4
HIPA

using concatenate operation, dubbed vertical stitching, we ob-
tain the output features of Stage 1, which are then concatenated
with the shallow features of Stage 2 as shown in Fig. 3:

F 1,1
Sti =HSti(F

1,1
HIPA, F

1,3
HIPA) +HSti(F

1,1
0 , F 1,3

0 ),

F 1,2
Sti =HSti(F

1,2
HIPA, F

1,4
HIPA) +HSti(F

1,2
0 , F 1,4

0 ),
(3)

where HSti denotes the stitch using the concatenate opera-
tion. We utilize vertical stitching for sub-patches rather than
horizontal stitching, i.e., stitching F 1,1

HIPA with F 1,2
HIPA and

stitching F 1,3
HIPA with F 1,4

HIPA using the concatenate operation.
Although we also investigated horizontal stitching, it did not
yield significant differences. Finally, the recovered HR image
of Stage 1: I1HR, is obtained by further stitching F 1,1

Sti and
F 1,2
Sti using concatenate operation, and then successively input

the stitched result into an upscale module and a reconstruction
module (i.e., one convolution layer) as follows:

I1HR = HRec(HUP (HSti(F
1,1
Sti , F

1,2
Sti))), (4)

where HUP and HRec denote the upscale and reconstruction
module, respectively.

For Stage 2 and Stage 3, the extracted shallow features
F 2,j
0 (j = 1, 2) and F 3,1

0 need to be first concatenated
with the output features of the upper stage, which is then
input into the next operation similar to Stage 1. Finally, the
recovered HR images of Stage 2: I2HR and Stage 3: IHR can
be obtained. As shown in Fig. 3, the predictions of the three
stages are gradually improved. For example, the prediction
of Stage 2 is the refinement of Stage 1. With the multi-
stage refinement, image regions with high spatial frequency
are gradually recovered.

Finally, the proposed HIPA is trained using a training loss,
which is the sum over all the outputs of I1HR (Stage 1), I2HR
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(Stage 2) and IHR (Stage 3):

L(Θ) =ℓ1(I1HR, IGT ) + ℓ2(I2HR, IGT T ) + ℓ3(IHR, IGT ),
(5)

where Θ denotes the parameter set of the proposed network.
ℓ1(·), ℓ2(·) and ℓ3(·), respectively, stand for the loss of Stage
1, Stage 2 and Stage3. This work also uses the L1 loss
following previous work for the sake of fairness. IGT denotes
the ground-truth HR image.

C. Attention-based Position Encoding

Fig. 4. Illustration of attention-based position encoding (APE). N = Hi×Wi

P2
i

denotes the number of tokens. W , H and C, respectively, denote the width,
height and channel number of the feature map.

To incorporate the order of the token sequence, position
encodings are usually adopted in Transformers [56]. However,
the original position embedding of ViT is pre-defined and
independent of input tokens. When an input LR image with
a new size is input, the number of patches will be different
from that before and the learned position embedding will
be mismatched with the new size. So, the input image with
a new size has to be first interpolated to the desired size,
which not only reduces the overall performance of the ViT
but also seriously limits its application. To address the above
issue, Chu et al. [56] propose a conditional position encoding
(CPE) by introducing a 2-D convolution to embed position
encoding, which can easily generalize to an input LR image
with a new input size. However, the CPE treats all input
tokens equally and may neglect the dependencies among them.
To address this, we propose a new attention-based position
encoding (APE) method by introducing attention into position
embedding to let the Transformer focus on important tokens.
Specifically, the patch embedding module first reshapes the
extracted feature F i,j

MRFAG ∈ RHi×Wi×Ci into a number of
flattened 2D patches xp ∈ R

Hi×Wi
P2 ×P 2×Ci by partitioning the

input into non-overlapping Pi × Pi patches where (Hi,Wi),
Ci, Hi×Wi

P 2
i

and Pi, respectively, denote the resolution of Stage
i input, the number of channel, the number of patches and the
patch size. Then, as shown in Fig. 4, the flattened feature
tokens are reshaped to the 2D image space. In the 2D image
space, a convolution and a channel attention are applied to
produce the final position encoding. With the help of attention,
the final position encoding can let the network focus on the
important tokens.

D. Multi-Receptive Field Attention Group

We now show our MRFAG, which mainly consists of G
multi-receptive field attention modules (MRFAMs) as shown
in Fig. 5. Each MRFAM consists of three dilated convolution
based channel attention connected in parallel, a fusion module

Fig. 5. The architecture of the multi-receptive field attention module (MR-
FAM). Note the numbers (kernel× kernel, input× output) in Conv and
Dconv denote kernel size and input and output feature map number. i-DConv
denotes dilated convolution with dilation factor i.

and a local feature skip (LFS). It has been verified that
although increasing the depth and the filter size of the CNN
can, respectively, enlarge the receptive field and extract more
information contained in the low-quality image, it not only in-
troduces more parameters but also increases the computational
complexity [14]. Thus, we propose the dilated convolution
based channel attention to enlarge the receptive field of the
networks, which is the most significant difference between
ours and the Squeeze-and-Excitation network (SE) [57].

Specifically, for each dilated convolution based channel at-
tention shown in Fig. 5, denote Xi = [xi,1, · · · , xi,c, · · · , xi,C ]
to be the input, which contains C 2D feature map xi,c ∈
RH×W , where H and W , respectively, are the height and
width of the feature map. Firstly, by shrinking the ex-
tracted features using max pooling, the output feature Zi =
[zi,1, · · · , zi,c, · · · , zi,C ] of each branch can be obtained,
where zi,c ∈ R

H
Stride×

W
Stride denotes the output feature. Then,

two dilated convolution layers and an activation function are
applied to fully exploit feature dependencies from the aggre-
gated information. Finally, the sigmoid function is adopted as
the activation function:

si,c = f(HGPL(WUδ(WDzi,c))), (6)

where f(·), HGPL(·) and δ(·), respectively, stand for the
sigmoid function, the global average pooling and the ReLU
function. WD is the weight set of the first dilated convolution
layer in the channel attention shown in Fig. 5, which plays the
role of downscaling with a reduction ratio γ (we set γ = 16).
After the ReLU function, the low-dimension feature is then
upsampled with ratio γ by the second dilated convolution
layer. WU denotes its weight set. The channel statistics s can
be obtained to rescale the input xi,c:

x̂i,c = si,c · xi,c, (7)

where si,c and xi,c denote, respectively, the scaling factor and
feature maps of the c-th channel.
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Besides, we introduce the LFS connection to ensure stability
in training the network and to bypass redundant features in the
low-quality image. The final output of MRFAG is obtained as

FMRFAG = F i,j
0 + ωLFS(FMRFAMG

), (8)

where ωLFS denotes the weight of the convolution layer at
the tail of MRFAG. FMRFAG and FMRFAMG

, respectively,
denote the output of MRFAG and the G-th output of MRFAM.

Fig. 6. Class activate map (CAM) comparison. (a) Input images. (b) CAM
before using MRFAG. (c) CAM after using MRFAG.

Fig. 6 shows a comparison of the class active map (CAM)
before and after using the MRFAG. It can be found that the
CAM after using MRFAG becomes sharper than before, val-
idating that the MRFAG has a better capability of recovering
high-frequency signals. This also enables the network to focus
more on recovering textures and details.

E. Discussions

Below, we discuss the significant differences between our
HIPA Transformer and two most closely related Transformers:
IPT [35] and SwinIR [37].

Differences to the IPT model: Based on a pre-trained
standard Transformer [33], Chen et al. propose the image
processing Transformer (IPT) [35] model for image restoration
tasks, which achieves superior performance than most CNN-
based SISR methods. Although it is a Transformer-based SISR
method similar to our method, there are three significant
differences between the IPT and our HIPA Transformer: (i)
the IPT model uses a pre-trained Transformer, which means
that when we apply it for image super-resolution, we need to
first pre-train the Transformer using large labeled datasets and
then fine-tune the whole network. As a result, its performance
is limited by the lack of sufficient labeled samples for training.
In contrast, our HIPA Transformer is an end-to-end network,
which successfully avoids the tedious pre-training and fine-
tuning process; (ii) IPT uses fixed-size patches for all input
tokens with different richness, which is not optimal and limits
its performance as discussed in Section III-A, while our
HIPA Transformer uses multi-size patches for tokens with
different richness, e.g., using a smaller patch for areas with
fine details and a large patch for textureless regions; (iii) The
IPT uses Transformer to extract features and to construct long-
range dependencies, while our HIPA Transformer is a hybrid

architecture combining CNN and Transformer, which can
fully utilize the advantage of CNN in local feature extraction
and the advantage of Transformer in establishing long-range
dependencies. More comparisons of experimental results are
shown in Section IV-B.

Differences to the SwinIR model: Liang et al. propose
the SwinIR [37] by combining CNN with the Swin Trans-
former [64] into one network, which is also a hybrid archi-
tecture similar to our HIPA Transformer. Our key distinctions
from it are summarized as follows: (i) The SwinIR uses a
plain concatenation of CNN and Transformer with a fixed
patch size, while we use a multi-stage model that divides the
input into different blocks and aggregates them from small to
large by alternating CNN and Transformer, which not only
explicitly enables feature aggregation at multiple resolution
but also adaptively learns patch-aware features for different
image regions; (ii) The local-resolution input tokens contain
abundant information for SISR, however, the SwinIR treats
all the input tokens equally and hence, limits its representation
ability. In contrast, we design a novel attention-based encoding
method to focus on the important tokens and to improve
its performance for regions with fine details; (iii) The CNN
used in the SwinIR model detects local image features using
the same scale, treats all LR image features equally, and
neglects the dependencies among them. In contrast, our HIPA
proposes a multi-receptive field attention module, which lets
the proposed network know where to pay more attention
and to sufficiently extract local features of LR images. The
experimental results, which demonstrate the advantages of our
method, are shown in Section IV-B.

IV. EXPERIMENTS

A. Settings

Datasets: Following previous works [24, 26, 28, 30], we also
choose DIV2K [65] as our training dataset, which contains
800 training images and 100 validation images. For testing,
we select the standard public datasets: Set5 [66], Set14 [67],
B100 [68], Urban100 [69], and Manga109 [70] as our test
datasets. All degraded datasets are obtained by the bicubic
interpolation model.
Evaluation Metrics: To quantitatively compare the recovered
HR results of the proposed model with that of the state-of-the-
art models, PSNR and SSIM are used, which are calculated
based on the luminance channel of the YCbCr space of the
recovered RGB results.
Training Settings: We set the number of MRFAMs as G =
5, 5, 20 in the MRFAG structure for Stage 1, Stage 2 and
Stage 3, respectively. In each MRFAM, we set the number
of residual blocks as M = 5. All the convolution layers have
C = 64 filters except for those in the dilated convolution
layer as shown in Fig. 5, where the convolution layer has
C = 4 filters. We use 3×3 as the filter size for all convolution
layers except for those in the dilated convolution based channel
attention where the kernel sizes are 1×1, 3×3 and 5×5, which
are shown in Fig. 5. Following previous works [24, 28, 45],
we adopt the sub-pixel convolution [48] to upsample the LR
features to HR. During training, we also augment the training
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TABLE I
QUANTITATIVE COMPARISONS WITH STATE-OF-THE-ART PERFORMANCE-ORIENTED SISR METHODS ON FIVE BENCHMARK DATASETS FOR SCALE

FACTOR ×2, ×3 AND ×4. THE BEST RESULTS ARE HIGHLIGHTED IN RED AND THE SECOND BEST IN BLUE.

Methods Scale Year Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRMD [58] ×2 2018 37.79 0.9601 33.32 0.9159 32.05 0.8985 31.33 0.9204 38.07 0.9761
DBPN [59] ×2 2018 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9324 38.89 0.9775
RDN [9] ×2 2018 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 39.18 0.9780
MSRN [60] ×2 2018 38.08 0.9605 33.74 0.9170 32.23 0.9013 32.22 0.9326 38.82 0.9768
RCAN [24] ×2 2018 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786
SRFBN [61] ×2 2019 38.11 0.9609 33.82 0.9196 32.29 0.9010 32.62 0.9328 39.08 0.9779
SAN [28] ×2 2019 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792
CSNLN [30] ×2 2020 38.28 0.9616 34.12 0.9223 32.40 0.9024 33.25 0.9386 39.37 0.9785
HAN [26] ×2 2020 38.27 0.9614 34.16 0.9217 32.41 0.9027 33.35 0.9385 39.46 0.9785
NSR [62] ×2 2020 38.23 0.9614 33.94 0.9203 32.34 0.9020 33.02 0.9367 39.31 0.9782
IGNN [63] ×2 2020 38.24 0.9613 34.07 0.9217 32.41 0.9025 33.23 0.9386 39.35 0.9786
RFANet [27] ×2 2020 38.26 0.9615 34.16 0.9220 32.41 0.9026 33.33 0.9389 39.44 0.9783
NLSN [31] ×2 2021 38.34 0.9618 34.08 0.9231 32.43 0.9027 33.42 0.9394 39.59 0.9789
SwinIR [37] ×2 2021 38.35 0.9620 34.14 0.9227 32.44 0.9030 33.40 0.9393 39.60 0.9792
TDPN [5] ×2 2022 38.31 0.9621 34.16 0.9225 32.52 0.9045 33.36 0.9386 39.57 0.9795
ELAN [51] ×2 2022 38.36 0.9620 34.20 0.9228 32.45 0.9030 33.44 0.9391 39.62 0.9793
DGSM-Swin [52] ×2 2023 38.24 0.9615 33.93 0.9217 32.36 0.9019 32.95 0.9442 39.31 0.9783
HIPA(ours) ×2 2023 38.38 0.9621 34.25 0.9235 32.48 0.9033 33.50 0.9400 39.75 0.9794
HIPA+(ours) ×2 2023 38.41 0.9623 34.30 0.9238 32.51 0.9036 33.57 0.9409 39.81 0.9795
SRMD [58] ×3 2018 34.12 0.9254 30.04 0.8382 28.97 0.8025 27.57 0.8398 33.00 0.9403
RDN [9] ×3 2018 34.71 0.9296 30.57 0.8468 29.26 0.8093 28.80 0.8653 34.13 0.9484
MSRN [60] ×3 2018 34.38 0.9262 30.34 0.8395 29.08 0.8041 28.08 0.8554 33.44 0.9427
RCAN [24] ×3 2018 34.74 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702 34.44 0.9499
SRFBN [61] ×3 2019 34.70 0.9292 30.51 0.8461 29.24 0.8084 28.73 0.8641 34.18 0.9481
SAN [28] ×3 2019 34.75 0.9300 30.59 0.8476 29.33 0.8112 28.93 0.8671 34.30 0.9494
CSNLN [30] ×3 2020 34.74 0.9300 30.66 0.8482 29.33 0.8105 29.13 0.8712 34.45 0.9502
HAN [26] ×3 2020 34.75 0.9299 30.67 0.8483 29.32 0.8110 29.10 0.8705 34.48 0.9500
NSR [62] ×3 2020 34.62 0.9289 30.57 0.8475 29.26 0.8100 28.83 0.8663 34.27 0.9484
IGNN [63] ×3 2020 34.72 0.9298 30.66 0.8484 29.31 0.8105 29.03 0.8696 34.39 0.9496
RFANet [27] ×3 2020 34.79 0.9300 30.67 0.8487 29.34 0.8115 29.15 0.8720 34.59 0.9506
NLSN [31] ×3 2021 34.85 0.9306 30.70 0.8485 29.34 0.8117 29.25 0.8726 34.57 0.9508
SwinIR [37] ×3 2021 34.89 0.9312 30.77 0.8503 29.37 0.8124 29.29 0.8744 34.74 0.9518
TDPN [5] ×3 2022 34.86 0.9312 30.79 0.8501 29.45 0.8126 29.26 0.8724 34.48 0.9508
ELAN [51] ×3 2022 34.90 0.9313 30.80 0.8504 29.38 0.8124 29.32 0.8745 34.73 0.9517
DGSM-Swin [52] ×3 2023 34.77 0.9300 30.65 0.8490 29.29 0.8109 28.93 0.8684 34.30 0.9498
HIPA(ours) ×3 2023 34.95 0.9318 30.84 0.8515 29.45 0.8140 29.41 0.8760 34.88 0.9521
HIPA+(ours) ×3 2023 35.01 0.9320 30.90 0.8530 29.49 0.8151 29.50 0.8784 34.96 0.9528
SRMD [58] ×4 2018 31.96 0.8925 28.35 0.7787 27.49 0.7337 25.68 0.7731 30.09 0.9024
DBPN [59] ×4 2018 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137
RDN [9] ×4 2018 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 31.00 0.9151
MSRN [60] ×4 2018 32.07 0.8903 28.60 0.7751 27.52 0.7273 26.04 0.7896 30.17 0.9034
RCAN [24] ×4 2018 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.83 0.8087 31.22 0.9173
SRFBN [61] ×4 2019 32.47 0.8983 28.81 0.7868 27.72 0.7409 26.60 0.8015 31.15 0.9160
SAN [28] ×4 2019 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169
CSNLN [30] ×4 2020 32.68 0.9004 28.95 0.7888 27.80 0.7439 27.22 0.8168 31.43 0.9201
HAN [26] ×4 2020 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177
NSR [62] ×4 2020 32.55 0.8987 28.79 0.7876 27.72 0.7414 26.61 0.8025 31.10 0.9145
IGNN [63] ×4 2020 32.57 0.8998 28.85 0.7891 27.77 0.7434 26.84 0.8090 31.28 0.9182
RFANet [27] ×4 2020 32.66 0.9004 28.88 0.7894 27.79 0.7442 26.92 0.8112 31.41 0.9187
NLSN [31] ×4 2021 32.59 0.9000 28.87 0.7891 27.78 0.7444 26.96 0.8109 31.27 0.9184
SwinIR [37] ×4 2021 32.72 0.9021 28.94 0.7914 27.83 0.7459 27.07 0.8164 31.67 0.9226
TDPN [5] ×4 2022 32.69 0.9005 29.01 0.7943 27.93 0.7460 27.24 0.8171 31.58 0.9218
ELAN [51] ×4 2022 32.75 0.9022 28.96 0.7914 27.83 0.7459 27.13 0.8167 31.68 0.9226
DGSM-Swin [52] ×4 2023 32.61 0.9005 28.91 0.7903 27.78 0.7445 26.73 0.8068 31.25 0.9193
HIPA(ours) ×4 2023 32.78 0.9025 29.07 0.7935 27.90 0.7479 27.27 0.8191 31.83 0.9365
HIPA+(ours) ×4 2023 32.84 0.9034 29.14 0.7955 27.98 0.7490 27.31 0.8214 31.91 0.9438

dataset by randomly rotating by 90◦, 180◦, 270◦ and flipping
horizontally [24, 28, 45]. In each training batch, LR images
with patch size 48× 48 are cropped as inputs. The proposed
model is trained by the ADAM optimizer with a fixed initial
learning rate of 10−4. The whole process is implemented in
the PyTorch platform with 4 Nvidia TITAN TRX GPUs, each
with 24GB of memory.

B. Comparisons with State-of-the-arts

In this section, we compare our HIPA with 17 state-of-
the-art SISR methods: SRMD [58] DBPN [59], RDN [9],
MSRN [60], RCAN [24], SRFBN [61], SAN [28],
CSNLN [30], HAN [26], NSR [62], IGNN [63], RFANet [27],
NLSN [31], SwinIR [37], TDPN [5], ELAN [51] and DGSM-
Swin [52]. Following previous works [24, 26, 28, 37], we
also perform self-ensemble on our HIPA to further improve
its performance and dub it HIPA+.

Quantitative Comparison: Table I reports the quantitative
comparisons between our method and 17 state-of-the-art SISR
methods on five benchmark datasets for scale factor 2×, 3×
and 4×. The best results are highlighted in red and the second
best in blue. All the reported methods are proposed in recent
5 years and have achieved competitive results. Compared with
these methods, our HIPA+ achieves the best results on multiple
benchmarks for all scaling factors and surpasses most state-of-
the-art methods in terms of PSNR and SSIM. Without using
self-ensemble our network HIPA still achieves the best results
on multiple benchmarks for all scale factors. It is noteworthy
that our proposed HIPA is superior to SwinIR [37] and DGSM-
Swin [52], both of which are all hybrid architecture similar
to HIPA. Specifically, the values of PSNR on the Urban100
dataset for scale factor ×4 are improved by 0.2 dB and
0.54 dB, respectively, compared to SwinIR and DGSM-Swin.
The main reasons may lie in that i) the designed multi-stage
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Fig. 7. Visual comparisons with state-of-the-art SISR methods for 4× SR on the B100, the Urban100 and the Manga109 datasets. Best viewed on screen.

progressive model not only can exploit features from different
size patches but also can gradually recover the HR image
from coarse to fine; and ii) the proposed MRFAG can let
the network exhaustively mine local features contained in the
original LR image from different receptive fields based on
dilated convolution with different dilation factors.

Qualitative Comparison: In Fig. 7, we also visually illustrate
the zoomed in comparison results with some state-of-the-art
methods on several images from the test datasets. From the
results, we find that our proposed HIPA can always obtain
sharper results and recover more high-frequency textures and
details, while most competing SISR models suffer from some
unpleasant blurring artifacts. Take “img 109” in Manga109
shown in Fig. 7 as an example, existing methods obtain

heavy blurring artifacts. The early proposed Bicubic fails to
generate the clear structures. Although more recent methods,
e.g. RCAN [24], SAN [28], CSNLN [30], RFANet [27],
IGNN [63], NSLN [31] and SwinIR [37] can recover the main
outlines, they fail to recover textures and details, and even
generate some distorted and deformed textures. In contrast,
our method effectively recovers textures through using the
proposed HIPA and MRFAG.

Further Comparison: Table II compares the number of
parameters, computational complexity and average running
time comparisons for various SISR methods. Except for
ESRT [53], HNCT [54] and Swin2SR-s [55], which are light
weight SISRs, the other methods (including our HIPA) are
classic performance-oriented SISRs. EDSR [45], RDN [9] and
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TABLE II
TOTAL NUMBER OF PARAMETERS, COMPUTATIONAL COMPLEXITY,

RUNNING TIME AND PSNR COMPARISON ON URBAN100 DATASET FOR
SCALE FACTOR ×4 OF DIFFERENT MODELS.

Model Params(M) FLOPs(G) Time(s) PSNR(dB)
EDSR [45] 43 2875 0.5437 26.64
RDN [9] 22.3 1305 0.3127 26.61

RCAN [24] 16 912 0.3891 26.83
IPT [35] 114 1480 1.3550 27.26

SwinIR [37] 11.8 978 0.4331 27.07
ESRT [53] 0.68 65.2 0.0106 26.39
HNCT [54] 0.37 78.8 0.0154 26.20

Swin2SR-s [55] 1 146.5 0.0223 26.58
HIPA(ours) 11.3 764 0.2615 27.27

RCAN [24] are CNN-based SISR methods, while IPT [35],
SwinIR [37], ESRT [53], HNCT [54] and Swin2SR-s [55] are
state-of-the-art Transformer-based SISRs.

Compared to EDSR [45], RDN [9] and RCAN [24], HIPA
not only has fewer parameters but also achieves a better PSNR
value. Compared to two similar performance-oriented meth-
ods: IPT [35] and SwinIR [37], our method is more efficient in
both computational time and memory usage. Although classic
performance-oriented SISRs have more parameters and high
computational complexity than light weight SISRs, they have
better PSNR values because they focus more on performance.

C. Ablation Study

TABLE III
ABLATION STUDY OF THE DESIGNED MULTI-SIZE PATCH INPUT FOR THE

PROPOSED METHOD. ALL THE EXPERIMENTS ARE CONDUCTED WITH THE
SAME EXPERIMENTAL CONDITIONS EXCEPT THAT FOR THE PATCH

EMBEDDING USED IN HIPA TRANSFORMER, AND TESTED ON THE SET14
AND URBAN100 DATASETS FOR SCALE FACTOR ×4.

Design Set14 Urban 100
×2 ×3 ×4 ×2 ×3 ×4

Fixed-size patch 34.21 30.76 28.95 33.43 29.30 27.18
Our multi-size patch 34.25 30.84 29.07 33.50 29.41 27.27

Ablation Study of HIPA Transformer: In Table III, we
report the quantitative comparisons between the proposed
HIPA Transformer with fixed-size patches and with multi-size
patches by letting the network with and without partitioning
the input LR image into a hierarchy of subblocks for scale
factor ×2, ×3 and ×4 on the Set14 and Urban100 datasets.
From the PSNR results, we find that the HIPA Transformer
using patches of different sizes outperforms that using fixed-
size patches by a maximum of 0.12dB. The main reason is
that the hierarchy of subblocks let the network learn one LR
image from different sizes and improves the overall perfor-
mance of the final results. Our result not only validates the
effectiveness of the proposed multi-size patch but also further
validates the effectiveness of the proposed hierarchical multi-
stage structure.

Besides, in Table IV, we show the effects of the HIPA
Transformer size on model performance. It can be found that
the PSNR is positively correlated with the HIPA Transformer
size. Even though the performance keeps increasing, the total
number of parameters of the proposed HIPA Transformer
grows also. To balance the performance and model size, we

TABLE IV
IMPACT OF HIPA TRANSFORMER SIZE FOR THE PROPOSED METHOD.

HIPA S, HIPA M AND HIPA L DENOTE SMALL, MEDIUM AND LARGE
VERSION OF HIPA TRANSFORMER, RESPECTIVELY. PATS, HEADN AND
LAYERN, RESPECTIVELY, DENOTE THE PATCH SIZE, THE HEAD NUMBER

AND THE LAYER NUMBER OF HIPA TRANSFORMER. ALL THE
EXPERIMENTS ARE CONDUCTED WITH THE SAME EXPERIMENTAL

CONDITIONS, AND TESTED ON THE SET14 DATASET FOR SCALE FACTOR
×4.

HIPA Index PatS HeadN LayerN Params PSNR
HIPA S 4 4 4 8.9 M 28.99
HIPA M 8 8 8 11.3 M 29.07
HIPA L 16 16 16 16.1 M 29.12

TABLE V
ABLATION STUDY ON THE HIPA TRANSFORMER USING ‘PE’, ‘CPE’ AND
THE PROPOSED ‘APE’ FOR SCALE ×2, ×3 AND ×4 ON THE MANGA109

DATASET.

Different PE ×2 ×3 ×4
PE [71] 39.69 34.80 31.74

CPE [56] 34.71 34.83 31.77
APE (Ours) 39.75 34.88 31.83

choose HIPA M (PatS = 8, HeadNr = 8 and LayerN = 8) in
the rest of the experiments.
Ablation Study of the Proposed APE: To validate the effec-
tiveness of the proposed attention position encoding (APE),
a comparison experiment between the proposed method using
the previous position embedding (PE) [71], the condition posi-
tion encoding (CPE) [56] and the proposed APE is conducted
for scale ×2, ×3 and ×4 on the Set14 and Urban100 datasets.
From the PSNR results shown in Table V, we find that the
HIPA Transformer using the proposed APE obtains superior
performance than that using the previous PE and CPE for all
scales on the two datasets, which validates the effectiveness
of the proposed APE.

TABLE VI
ABLATION STUDY OF THE MRFAG ON THE B100, URBAN100 AND

MANGA109 DATASETS FOR SCALE FACTOR ×3.
Module B100 Urban100 Manga109

w/o MRFAG 29.41 29.35 34.80
w/ RCAB [24] 29.43 29.37 34.83

w/ MRFAG 29.45 29.41 34.88

Ablation Study of the Proposed MRFAG: To validate the
effectiveness of the MRFAG, as shown in Table VI, we con-
duct a comparison experiment between the proposed method
without using the proposed MRFAG, with using a classic and
effective feature extraction module RCAB [24] and with the
proposed MRFAG. Note that, for a fair comparison, the total
number of parameters of our method with RCAB modules is
11.6M, which is close to the number of parameters for our
method with MRFAG, which is 11.3M. It is found that the
improvement of the proposed method with using the proposed
MRFAG is greater than that of the proposed method using
the RCAB, which validates the effectiveness of the proposed
MRFAG.

In addition, as shown in Table VII, another comparison
between the proposed MRFAG using SE attention and using
the proposed dilated convolution based attention to validate
the effectiveness of the proposed dilated convolution based
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TABLE VII
PSNR COMPARISON BETWEEN THE PROPOSED METHOD USING SE

ATTENTION AND USING THE PROPOSED CONVOLUTION BASED ATTENTION
ON THE B100, URBAN100 AND MANGA109 DATASETS FOR SCALE

FACTOR ×4.
Module B100 Urban100 Manga109

Standard SE attention 27.87 27.22 31.78
Dilated convolution attention 27.90 27.27 31.83

attention. It can be found that the proposed dilated convolution
based attention can improve PSNR value by a mean 0.043 dB
on the B100, Urban100 and Manga109 datasets for scale factor
×4 than that of the standard SE attention.

V. CONCLUSION

In this paper, we propose the Hierarchical Patch Trans-
former (HIPA) for accurate single image super resolution,
which progressively recovers the high resolution image by
partitioning the input into a hierarchy of patches. Specifically,
a multi-stage progressive model is employed where the earlier
stages use smaller patches as tokens and the final stage oper-
ates at full resolution. Our architecture is a cascade CNNs and
Transformers for feature aggregation across multiple stages. In
addition, we develop a novel attention-based position encoding
scheme that allows the Transformer focus on the important
tokens and easily process an input low resolution images
with varying sizes. Besides, the proposed multi-receptive
field attention module can enlarge the convolution receptive
field from different branches. The quantitative and qualitative
evaluations on different benchmark datasets demonstrate the
effectiveness of the hierarchical patch partition over using
fixed-size patches, as well as the superior performance of the
proposed HIPA over most state-of-the-art methods in PSNR,
SSIM and visual quality.
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