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Tensor Recovery Based on A Novel Non-convex
Function Minimax Logarithmic Concave Penalty

Function
Hongbing Zhang, Xinyi Liu, Chang Liu, Hongtao Fan, Yajing Li, Xinyun Zhu

Abstract—Non-convex relaxation methods have been widely
used in tensor recovery problems, and compared with convex
relaxation methods, can achieve better recovery results. In
this paper, a new non-convex function, Minimax Logarithmic
Concave Penalty (MLCP) function, is proposed, and some of its
intrinsic properties are analyzed, among which it is interesting
to find that the Logarithmic function is an upper bound of
the MLCP function. The proposed function is generalized to
tensor cases, yielding tensor MLCP and weighted tensor 𝐿𝛾-
norm. Consider that its explicit solution cannot be obtained
when applying it directly to the tensor recovery problem.
Therefore, the corresponding equivalence theorems to solve such
problem are given, namely, tensor equivalent MLCP theorem
and equivalent weighted tensor 𝐿𝛾-norm theorem. In addition,
we propose two EMLCP-based models for classic tensor recovery
problems, namely low-rank tensor completion (LRTC) and tensor
robust principal component analysis (TRPCA), and design prox-
imal alternate linearization minimization (PALM) algorithms to
solve them individually. Furthermore, based on the Kurdyka-
Łojasiwicz property, it is proved that the solution sequence of
the proposed algorithm has finite length and converges to the
critical point globally. Finally, Extensive experiments show that
proposed algorithm achieve good results, and it is confirmed
that the MLCP function is indeed better than the Logarithmic
function in the minimization problem, which is consistent with
the analysis of theoretical properties.

Index Terms—Minimax logarithmic concave penalty (MLCP),
equivalent weighted Tensor 𝐿𝛾-norm, low-rank tensor completion
(LRTC), tensor robust principal component analysis (TRPCA).

I. INTRODUCTION

DATA structures become more complex, and the pro-
cessing required by many applications becomes more

difficult as the dimensionality of the data increases. As a
representation of multi-dimensional data, tensors have played
an important role in many high-dimensional data applications
in recent years, such as color image/video (CI/CV) processing
[1], [2], [3], [4], hyperspectral/multispectral image (HSI/MSI)
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processing [5], [6], [7], [8], magnetic resonance imaging
(MRI) data recovery [9], [10], [11], [12], video foreground
and background subtraction[13], [14], [15], [16], video rain
stripe removal [17], [18], and signal reconstruction [19], [20].

These practical application problems above can be trans-
formed into tensor recovery problems. For different observa-
tion data, the tensor recovery problem can usually be modeled
as a low-rank tensor completion (LRTC) problem and a tensor
robust principal component analysis (TRPCA) problem. Their
corresponding models are as follows:

min
Z
𝑟𝑎𝑛𝑘 (Z) 𝑠.𝑡.𝑃Ω (T ) = 𝑃Ω (Z) (1)

min
Z,E

𝑟𝑎𝑛𝑘 (Z) + 𝜏1‖E‖1 𝑠.𝑡.T = Z + E, (2)

where T ∈ RI1×I2×I3 is the obesrvation; Z is initial tensor;
E is sparsity tensor; PΩ (Z) is a projection operator that keeps
the entries of Z in Ω and sets all others to zero. Let

ΦG (Z) :=
{

0, 𝑖 𝑓 Z ∈ G,
∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

where G := {Z ∈ RI1×I2×I3 ,PΩ (Z − T) = 0}.
It is not difficult to find that (1) and (2) are the problem of

solving tensor rank minimization. As we all know, the most
popular tensor recovery method is nuclear norm minimization.
However, the definition of the rank of a tensor is not unique,
different tensor rank and corresponding nuclear norm can
be induced based on different tensor decomposition. The
CANDECOMP/PARAFAC (CP) rank is equal to the smallest
number of rank-1 tensors to achieve CP decomposition [21],
but generally NP-hard to estimate accurately [22]. Another
popular rank is the Tucker rank derived from the Tucker
decomposition [23], which is defined as a vector whose 𝑖th
element corresponds to the rank of the mode 𝑖 unfolding
matrix of tensor. Liu et al. [24] first proposed sum of nuclear
norms (SNN) as a convex surrogate of Tucker rank, which
significantly facilitated the development of the tensor recovery
problem. But the SNN is not compact convex relaxation
of Tucker rank, and this matrixing technique cannot fully
exploit tensor structure information [25]. Furthermore, tensor
tubal rank and multi-rank are obtained from tensor singular
value decomposition (t-SVD) [26]. Since there is no need
tensor matrixization in the calculation process, this allows
better utilization of the tensor’s internal structural information.
Many multidimensional data in the real world can be well
approximated by low-rank tensors, due to the fact that the
singular values of the corresponding tensors are relatively
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small, while a few large ones contain the main information. On
this basis, the tensor nuclear norm (TNN) has been proposed
as a convex relaxation of tubal-rank [27]. Recently, Zheng et
al. [28] proposed a new form of rank (N-tubal rank) based
on tubal rank, which adopts a new unfold method of higher-
order tensors into third-order tensors in various directions.
Benefiting from this, t-SVD can be applied to higher-order
situations by solving third-order tensors of various directions
forms. This approach not only enables t-SVD to be applied to
higher order cases, but also makes good use of the properties
of tensor tubal rank. In view of the excellent properties of N-
tubal rank, we will use N-tubal rank to construct the model in
this paper.

However, although nuclear norm relaxation is becoming a
popular solution to the low rank tensor recovery problem, it
still suffers from some drawbacks. TNN is a convex relaxation
approximation of tensor tubal rank, and there is still a certain
distance from tensor tubal rank minimization, which usually
leads to the solution of the optimization problem being subop-
timal solution to the original problem. Recently, to break the
limitation of biased estimation of convex relaxation methods,
some non-convex relaxation strategies have been adopted to
solve the tensor recovery problem. Non-convex methods are
able to penalize larger singular values less and smaller singular
values more. In [29], a t-Schatten-p norm was proposed to
approximate tensor tubal rank by extending the Schatten-p
norm. Another non-convex approach to approximating the
tensor tubal rank is by transforming each element as a sum of
t-TNNs with the Laplace function [30]. Besides, Logarithmic
function [31], MCP function [32], [33], [34], SCAD function
[35] are also applied to carry out non-convex relaxation.
To further explore the superiority of non-convex functions
and improve the accuracy of tensor recovery, we propose a
new non-convex function in this paper, namely the Minimax
Logarithmic Concave Penalty (MLCP) function. Interestingly,
it is found that the Logarithmic function is an upper bound of
the MLCP function. The proposed function is then generalized
to higher dimensional cases, yielding vector MLCP, matrix
MLCP, tensor MLCP, and weighted tensor 𝐿𝛾-norm. However,
when the proposed function is directly applied to the tensor
recovery problem, the explicit solution cannot be obtained,
which is very unfavorable to the solution of the algorithm.
Therefore, we further put forward the corresponding equiv-
alence theorems, namely vector equivalent MLCP theorem,
matrix equivalent MLCP theorem, tensor equivalent MLCP
theorem, and equivalent weighted tensor 𝐿𝛾-norm theorem,
to tackle this problem. Furthermore, we give the proximal
operator for the equivalent weighted tensor 𝐿𝛾-norm, which
makes the tensor recovery model easier to solve. Finally,
similar to the technique employed in [36], [37], [38], [39],
using the Proximal Alternating Linearization Minimization Al-
gorithm (PALM) [40], combined with the Kurdyka-Łojasiwicz
property, we prove that the solution sequence obtained with
MLCP functions has a finite length and converges globally to
the critical point with stronger convergence.

In summary, the main contributions of our paper are:
First, a new non-convex function, Minimax Logarithmic

Concave Penalty (MLCP) function, is proposed. It is found

that the Logarithmic function is an upper bound of the MLCP
function. The function is generalized to tensor cases, yielding
tensor MLCP and weighted tensor 𝐿𝛾-norm. Considering that
applying it directly to the tensor recovery problem, the explicit
solution cannot be obtained, which is very unfavorable for
the solution of the algorithm. For this reason, we give the
corresponding equivalence theorems to solve this problem,
namely tensor EMLCP, and equivalent weighted tensor 𝐿𝛾-
norm theorems. The properties of the tensor EMLCP and the
equivalent weighted tensor 𝐿𝛾-norm are analyzed. Further-
more, the proximal operator for the equivalent weighted tensor
𝐿𝛾-norm is given, so as to make the tensor recovery model
easier to solve.

Second, we construct corresponding EMLCP-based models
for two typical problems of tensor recovery, and design a
Proximal Alternating Linearization Minimization Algorithm
(PALM) to solve these two EMLCP-based models. In par-
ticular, we adopt a model that removes mixed noise for the
TRPCA problem, which is more realistic. Furthermore, based
on the Kurdyka-Łojasiwicz property, it is proved that the
solution sequence of the proposed algorithm has finite length
and converges to the critical point globally.

Third, we conduct experiments on both LRTC and TRPCA
using real data. The LRTC experiments on HSI, MRI, CV and
the TRPCA experiments on HSI demonstrate the effectiveness
of our proposed new non-convex relaxation method. This
method yields better results than the Logarithmic relaxation
method, which is consistent with our theoretical analysis.

The summary of this article is as follows: In Section II,
some preliminary knowledge and background are given. The
definitions and theorems of the MLCP function are presented
in Section III. In Section IV, we establish the EMLCP-based
models and algorithms. In Section V, we give the theoretical
convergence analysis of the proposed algorithms. The results
of extensive experiments and discussion are presented in
Section VI. Conclusions are drawn in Section VII.

II. PRELIMIARIES

A. Tensor Notations and Definitions
In this section, we give some basic notations and briefly in-

troduce some definitions used throughout the paper. Generally,
a lowercase letter and an uppercase letter denote a vector 𝑧 and
a marix 𝑍 , respectively. An 𝑁th-order tensor is denoted by a
calligraphic upper case letter Z ∈ RI1×I2×···×I𝑁 and z𝑖1 ,𝑖2 , · · · ,𝑖𝑁
is its (𝑖1, 𝑖2, · · · , 𝑖𝑁 )-th element. The Frobenius norm of a
tensor is defined as ‖Z‖𝐹 = (∑𝑖1 ,𝑖2 , · · · ,𝑖𝑁 y2

𝑖1 ,𝑖2 , · · · ,𝑖𝑁 )
1/2. For

a three order tensor Z ∈ RI1×I2×I3 , we use Z̄ to denote the
discrete Fourier transformation (DFT) along each tubal of Z,
i.e., Z̄ = 𝑓 𝑓 𝑡 (Z, [], 3). The inverse DFT is computed by
command 𝑖 𝑓 𝑓 𝑡 satisfying Z = 𝑖 𝑓 𝑓 𝑡 (Z̄, [], 3). More often,
the frontal slice Z(:, :, 𝑖) is denoted compactly as Z (𝑖) .

Definition 1 (Mode-𝑘1𝑘2 slices [28]): For an 𝑁th-order
tensor Z ∈ RI1×I2×···×I𝑁 , its mode-𝑘1𝑘2 slices (Z (𝑘1𝑘2) , 1 6
𝑘1 < 𝑘2 6 𝑁, 𝑘1, 𝑘2 ∈ Z) are two-dimensional sections,
defined by fixing all but the mode-𝑘1 and the mode-𝑘2 indexes.

Definition 2 (Tensor Mode-𝑘1, 𝑘2 Unfolding and Folding
[28]): For an 𝑁th-order tensor Z ∈ RI1×I2×···×I𝑁 , its mode-
𝑘1𝑘2 unfolding is a three order tensor denoted by Z(𝑘1𝑘2) ∈
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RI𝑘1×I𝑘2×
∏

𝑠≠𝑘1 ,𝑘2 I𝑠 , the frontal slices of which are the lexi-
cographic orderings of the mode-𝑘1𝑘2 slices of Z. Math-
ematically, the (𝑖1, 𝑖2, ..., 𝑖𝑁 )-th element of Z maps to the
(𝑖𝑘1 , 𝑖𝑘2 , 𝑗)-th element of Z(𝑘1𝑘2) , where

𝑗 = 1 +
𝑁∑︁

𝑠=1,𝑠≠𝑘1 ,𝑠≠𝑘2

(𝑖𝑠 − 1)J𝑠 𝑤𝑖𝑡ℎ J𝑠 =
𝑠−1∏

𝑚=1,𝑚≠𝑘1 ,𝑚≠𝑘2

I𝑚.

(4)
The mode-𝑘1𝑘2 unfolding operator and its inverse operation
are respectively denoted as Z(𝑘1𝑘2) := 𝑡 − 𝑢𝑛 𝑓 𝑜𝑙𝑑 (Z, 𝑘1, 𝑘2)
and Z := 𝑡 − 𝑓 𝑜𝑙𝑑 (Z(𝑘1𝑘2) , 𝑘1, 𝑘2).

For a three order tensor Z ∈ RI1×I2×I3 , the block circulation
operation is defined as

𝑏𝑐𝑖𝑟𝑐(Z) :=
©­­­­«
𝑍 (1) 𝑍 (I3) . . . 𝑍 (2)

𝑍 (2) 𝑍 (1) . . . 𝑍 (3)

...
...

. . .
...

𝑍 (I3) 𝑍 (I3−1) . . . 𝑍 (1)

ª®®®®¬
∈ RI1I3×I2I3 .

The block diagonalization operation and its inverse opera-
tion are defined as

𝑏𝑑𝑖𝑎𝑔(Z) :=
©­­­­«
𝑍 (1)

𝑍 (2)

. . .

𝑍 (I3)

ª®®®®¬
∈ RI1I3×I2I3 ,

𝑏𝑑𝑓 𝑜𝑙𝑑 (𝑏𝑑𝑖𝑎𝑔(Z)) := Z.

The block vectorization operation and its inverse operation
are defined as

𝑏𝑣𝑒𝑐(Z) :=
©­­­­«
𝑍 (1)

𝑍 (2)

...

𝑍 (I3)

ª®®®®¬
∈ RI1I3×I2 , 𝑏𝑣 𝑓 𝑜𝑙𝑑 (𝑏𝑣𝑒𝑐(Z)) := Z.

Definition 3 (t-product [26]): Let A ∈ RI1×I2×I3 and B ∈
RI2×J×I3 . Then the t-product A ∗ B is defined to be a tensor
of size I1 × J × I3,

A ∗ B := 𝑏𝑣 𝑓 𝑜𝑙𝑑 (𝑏𝑐𝑖𝑟𝑐(A)𝑏𝑣𝑒𝑐(B)).

Since that circular convolution in the spatial domain is
equivalent to multiplication in the Fourier domain, the t-
product between two tensors C = A ∗ B is equivalent to

C̄ = 𝑏𝑑𝑓 𝑜𝑙𝑑 (𝑏𝑑𝑖𝑎𝑔(Ā)𝑏𝑑𝑖𝑎𝑔(B̄)).

Definition 4 (Tensor conjugate transpose [26]): The con-
jugate transpose of a tensor A ∈ CI1×I2×I3 is the tensor
A𝐻 ∈ CI2×I1×I3 obtained by conjugate transposing each of
the frontal slices and then reversing the order of transposed
frontal slices 2 through I3.

Definition 5 (identity tensor [26]): The identity tensor I ∈
RI1×I1×I3 is the tensor whose first frontal slice is the I1 × I1
identity matrix, and whose other frontal slices are all zeros.

It is clear that 𝑏𝑐𝑖𝑟𝑐(I) is the I1I3 × I1I3 identity matrix.
So it is easy to get A ∗ I = A and I ∗ A = A.

Definition 6 (orthogonal tensor [26]): A tensor Q ∈
RI1×I1×I3 is orthogonal if it satisfies

Q ∗ Q𝐻 = Q𝐻 ∗ Q = I.

Definition 7 (f-diagonal Tensor [26]): A tensor is called
f-diagonal if each of its frontal slices is a diagonal matrix.

Theorem 1 (t-SVD [41]): Let Z ∈ RI1×I2×I3 be a three order
tensor, then it can be factored as

Z = U ∗ S ∗ V𝐻 ,

where U ∈ RI1×I1×I3 and V ∈ RI2×I2×I3 are orthogonal tensors,
and S ∈ RI1×I2×I3 is an f-diagonal tensor.

Definition 8 (tensor tubal-rank and multi-rank [42]): The
tubal-rank of a tensor Z ∈ RI1×I2×I3 , denoted as 𝑟𝑎𝑛𝑘𝑡 (Z),
is defined to be the number of non-zero singular tubes of S,
where S comes from the t-SVD of Z : Z = U ∗ S ∗ V𝐻 .
That is

𝑟𝑎𝑛𝑘𝑡 (Z) = #{𝑖 : S(𝑖, :, :) ≠ 0}. (5)

The tensor multi-rank of Z ∈ RI1×I2×I3 is a vector, denoted as
𝑟𝑎𝑛𝑘𝑟 (Z) ∈ RI3 , with the 𝑖-th element equals to the rank of
𝑖-th frontal slice of Z.

Definition 9 (tensor nuclear norm (TNN)): The tensor
nuclear norm of a tensor Z ∈ RI1×I2×I3 , denoted as ‖Z‖𝑇 𝑁 𝑁 ,
is defined as the sum of the singular values of all the frontal
slices of Z̄, i.e.,

‖Z‖𝑇 𝑁 𝑁 :=
I3∑︁
𝑖=1

‖Z̄ (𝑖) ‖∗ (6)

where Z̄ (𝑖) is the 𝑖-th frontal slice of Z̄, with Z̄ =

𝑓 𝑓 𝑡 (Z, [], 3).
Definition 10 (N-tubal rank [28]): N-tubal rank of an Nth-

order tensor Y ∈ RI1×I2×···×I𝑁 is defined as a vector, the
elements of which contain the tubal rank of all mode-𝑘1𝑘2
unfolding tensors, i.e.,

𝑁 − 𝑟𝑎𝑛𝑘𝑡 (Y) := (𝑟𝑎𝑛𝑘𝑡 (Y(12) ), 𝑟𝑎𝑛𝑘𝑡 (Y(13) ), · · · ,
𝑟𝑎𝑛𝑘𝑡 (Y(1𝑁 ) ), 𝑟𝑎𝑛𝑘𝑡 (Y(23) ), · · · , 𝑟𝑎𝑛𝑘𝑡 (Y(2𝑁 ) ), · · · ,

𝑟𝑎𝑛𝑘𝑡 (Y(𝑁−1𝑁 ) )) ∈ R𝑁 (𝑁−1)/2. (7)

Next, we will introduce some knowledge related to conver-
gence analysis.

Definition 11 (Proper function [43]): Let = be a finite-
dimensional Euclidean space, a fuction 𝑓 : = → [−∞, +∞]
is called proper if 𝑓 (𝑧) < +∞ for at least one 𝑧 ∈ =, and
𝑓 (𝑧) > −∞ for all 𝑧 ∈ =.

The effective domain of 𝑓 is defined as 𝑑𝑜𝑚( 𝑓 ) := {𝑧 :
𝑓 (𝑧) < +∞}. For a given proper and lower semicontinuous
function 𝑓 : = → (−∞, +∞], the priximal mapping associated
with 𝑓 at 𝑦 is defined by

𝑃𝑟𝑜𝑥 𝑓 (𝑦) = arg min
𝑧∈=

{ 𝑓 (𝑧) + 1
2
‖𝑧 − 𝑦‖2}, ∀𝑦 ∈ =.

Definition 12 (Subdifferential of a nonconvex function [43]):
The subdifferential of 𝑓 : R𝑛 → (−∞, +∞] at 𝑧, denoted as
𝜕 𝑓 (𝑧), is defined by

𝜕 𝑓 (𝑧) = {𝑦 ∈ R𝑛 : ∃𝑧𝑘 → 𝑧, 𝑓 (𝑧𝑘 ) → 𝑓 (𝑧),
𝑦𝑘 → 𝑦 𝑤𝑖𝑡ℎ 𝑦𝑘 ∈ 𝜕 𝑓 (𝑧𝑘 ) 𝑎𝑠 𝑘 → +∞},
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where 𝜕 𝑓 (𝑧) denotes the Fréchet subdifferenetial of 𝑓 at 𝑧 ∈
𝑑𝑜𝑚( 𝑓 ), which is the set of all 𝑦 satisfying

lim inf
𝑥→𝑧,𝑥≠𝑧

𝑓 (𝑥) − 𝑓 (𝑧)− < 𝑦, 𝑥 − 𝑧 >
‖𝑥 − 𝑧‖ > 0. (8)

For any Z ∈ <, the distance from Z to = is defined by
𝑑𝑖𝑠𝑡 (Z,=) := inf{‖Z − Y‖𝐹 : Y ∈ =}, where = is a
subset of <. Next, we recall the Kurdyka–Łojasiewicz (KL)
property, which plays a pivotal role in the analysis of the
convergence of proximal alternating linearized minimization
(PALM) algorithm for the nonconvex problems.

Definition 13 (KL function [40]): Let 𝑓 : R𝑛 → (−∞, +∞]
be a proper and lower semicontinuous function.
(a): The function 𝑓 is said to have the KL property at 𝑧 ∈
𝑑𝑜𝑚(𝜕 𝑓 ) if there exist 𝜂 ∈ (0, +∞], a neighborhood = of
𝑧 and a continuous concave function 𝜙 : [0, 𝜂) → [0, +∞)
such that: (a) 𝜙(0) = 0; (b) 𝜙 is continuously differentiable on
(0, 𝜂), and continuous at 0; (c) 𝜙′(𝑠) > 0 for all 𝑠 ∈ (0, 𝜂);
(d) for all 𝑦 ∈ = ∩ [𝑦 ∈ R𝑛 : 𝑓 (𝑧) < 𝑓 (𝑦) < 𝑓 (𝑧) + 𝜂], the
following KL inequality holds:

𝜙′( 𝑓 (𝑦) − 𝑓 (𝑧))𝑑𝑖𝑠𝑡 (0, 𝜕 𝑓 (𝑦)) > 1.

(b): If 𝑓 satisfies the KL property at each point of 𝑑𝑜𝑚(𝜕 𝑓 ),
then 𝑓 is called a KL function.

III. MINIMAX LOGARITHMIC CONCAVE PENALTY
(MLCP) FUNCTION AND EQUIVALENT MINIMAX

LOGARITHMIC CONCAVE PENALTY (EMLCP)

In this section, we first define the definition of the Minimax
Logarithmic Concave Penalty (MLCP) function.

Definition 14 (Minimax Logarithmic Concave Penalty
(MLCP) function): Let 𝜆 > 0, 𝛾 > 0, 𝜀 > 0. The MLCP
function 𝑓𝐿,𝛾,𝜆 : R→ R>0 is defined as

𝑓𝐿,𝛾,𝜆(𝑧) =
{
𝜆 log( |𝑧 |

𝜀
+ 1) − log2 ( |𝑧 |

𝜀
+1)

2𝛾 , |𝑧 | 6 𝜀𝑒𝛾𝜆 − 𝜀,
𝛾𝜆2

2 , |𝑧 | > 𝜀𝑒𝛾𝜆 − 𝜀.
(9)

The MLCP function is a symmetric function, so we only
discuss its functional properties on [0, +∞).

Proposition 1: The MLCP function defined in (9) satisfies
the following properties:
(a): 𝑓𝐿,𝛾,𝜆(𝑧) is continuous, smooth and

𝑓𝐿,𝛾,𝜆(0) = 0, lim
𝑧→+∞

𝑓𝐿,𝛾,𝜆 (𝑧)
𝑧

= 0;

(b): 𝑓𝐿,𝛾,𝜆(𝑧) is monotonically non-decreasing and concave
on [0, +∞);
(c): 𝑓 ′

𝐿,𝛾,𝜆
(𝑧) is non-negativity and monotonicity non-

increasing on [0, +∞). Moreover, it is Lipschitz bounded, i.e.,
there exists constant 𝐿 ( 𝑓 ) such that

| 𝑓 ′𝐿,𝛾,𝜆(𝑥) − 𝑓 ′𝐿,𝛾,𝜆(𝑦) | ≤ 𝐿 (ℓ) |𝑥 − 𝑦 |;

(d): Especially, for the MLCP function, it is increasing in
parameter 𝛾, and

lim
𝛾→+∞

𝑓𝐿,𝛾,𝜆 (𝑧) = 𝜆 log( |𝑧 |
𝜀

+ 1). (10)

Proof: The proof is provided in Appendix A.
Definition 15 (Vector MLCP): Let 𝑧 ∈ R𝑛 and 𝜆 > 0, 𝛾 >

0, 𝜀 > 0. The vector MLCP 𝑓𝐿,𝛾,𝜆 : R𝑛 → R>0 is defined as

𝑓𝐿,𝛾,𝜆 (𝑧) =
𝑛∑︁
𝑖=1

𝑓𝐿,𝛾,𝜆(𝑧𝑖), (11)

where 𝑧𝑖 denotes the 𝑖th entry of the vector 𝑧 and 𝑓𝐿,𝛾,𝜆 (𝑧𝑖)
is defined in (9).

Definition 16 (Matrix MLCP): Let 𝑍 ∈ R𝑚×𝑛 and 𝜆 > 0, 𝛾 >
0, 𝜀 > 0. The matrix MLCP 𝑓𝐿,𝛾,𝜆 : R𝑚×𝑛 → R>0 is defined
as

𝑓𝐿,𝛾,𝜆(𝑍) =
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑓𝐿,𝛾,𝜆 (𝑍𝑖 𝑗 ), (12)

where 𝑍𝑖 𝑗 denotes the (𝑖, 𝑗) element of 𝑍 , and 𝑓𝐿,𝛾,𝜆 is the
same as in (9).

Definition 17 (Tensor MLCP): Let Z ∈ RI1×I2×···×I𝑁 and
𝜆̄ > 0, 𝛾 > 0, 𝜀 > 0, 𝜆̄ ∈ RI1×I2×···×I𝑁 . The tensor MLCP
𝑓𝐿,𝛾,𝜆̄ : RI1×I2×···×I𝑁 → R>0 is defined as

𝑓𝐿,𝛾,𝜆̄ (Z) =
I1∑︁

𝑖1=1

I2∑︁
𝑖2=1

· · ·
I𝑁∑︁

𝑖𝑁=1
𝑓𝐿,𝛾,𝜆̄𝑖1 ,𝑖2 ,··· ,𝑖𝑁

(Z𝑖1 ,𝑖2 , · · · ,𝑖𝑁 ), (13)

where Y𝑖1 ,𝑖2 , · · · ,𝑖𝑁 denotes the (𝑖1, 𝑖2, · · · , 𝑖𝑁 )-th element of Y,
and ℎ𝛾,𝜆̄ is defined in (9).

Definition 18 (Matrix 𝐿𝛾-norm): The 𝐿𝛾 norm of a rank-𝑟
matrix 𝑍 ∈ R𝑚×𝑛, denoted by ‖𝑍 ‖𝐿,𝛾,𝜆, is defined in terms of
the singular values {𝜎𝑖 , 𝑖 = 1, 2, . . . , 𝑟} as follows:

‖𝑍 ‖𝐿,𝛾,𝜆 := 𝑓𝐿,𝛾,𝜆(𝜎) =
𝑟∑︁
𝑖=1

𝑓𝐿,𝛾,𝜆(𝜎𝑖), (14)

where 𝜎 is singular value vector of matrix 𝑍 .
Similarly, the weighted matrix 𝐿𝛾-norm is a generalization

of weighted MLCP for matrix and is defined as follows.
Definition 19 (Weighted matrix 𝐿𝛾-norm): The weighted

matrix 𝐿𝛾-norm of 𝑍 ∈ R𝑚×𝑛, denoted by ‖𝑍 ‖𝐿,𝛾,𝜆, is defined
as follows:

‖𝑍 ‖𝐿,𝛾,𝜆 = 𝑓𝐿,𝛾,𝜆(𝜎) =
𝑟∑︁
𝑖=1

𝑓𝐿,𝛾,𝜆𝑖 (𝜎𝑖). (15)

where 𝑟 = min(𝑚, 𝑛) denotes the maximum rank of 𝑍 .
Definition 20 (Weighted tensor 𝐿𝛾-norm): The weighted

tensor 𝐿𝛾-norm of Z ∈ RI1×I2×I3 , denoted by ‖Z‖𝐿,𝛾,𝜆̄, is
defined as follows:

‖Z‖𝐿,𝛾,𝜆̄ =

I3∑︁
𝑖=1

‖Z̄ (𝑖) ‖𝐿,𝛾,𝜆̄𝑖 =
I3∑︁
𝑖=1

𝑅∑︁
𝑗=1

𝑓𝐿,𝛾,𝜆̄𝑖, 𝑗 (𝜎𝑗 (Z̄ (𝑖) )). (16)

where 𝑅 = min(I1, I2).
Further, we convert 𝜆 from a constant to a variable, for

which we propose some equivalent MLCP theorems.
Theorem 2 (Scalar EMLCP): Let 𝜆 > 0, 𝛾 > 0, 𝜀 > 0 and

𝑧 ∈ R. The scalar MLCP 𝑓𝐿,𝛾,𝜆 : R→ R>0 is the solution of
the following optimization problem:

𝑓𝐿,𝛾,𝜆 (𝑧) = min
𝜔∈R>0

{𝜔 log( |𝑧 |
𝜀

+ 1) + 𝛾
2
(𝜔 − 𝜆)2}. (17)

Proof: The proof is provided in Appendix B.
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Theorem 3 (Vector EMLCP): Let 𝛾 > 0, 𝜀 > 0, 𝜔 ∈ R𝑛>0, 𝜆 ∈
R𝑛>0 and 𝑧 ∈ R𝑛. The vector MCP is the solution of the
following optimization problem:

𝑓𝐿,𝛾,𝜆(𝑧) = min
𝜔∈R𝑛>0

{‖𝑧‖𝐿,𝜔 + 𝛾
2
‖𝜔 − 𝜆‖2

2}, (18)

where ‖𝑧‖𝐿,𝜔 is defined as

‖𝑧‖𝐿,𝜔 =

𝑛∑︁
𝑖=1

𝜔𝑖 log( |𝑧𝑖 |
𝜀

+ 1), 𝜔𝑖 > 0,

and {𝜔𝑖 , 𝑖 = 1, 2, . . . , 𝑛} denote the weights.
Proof: The proof is provided in Appendix C.

Theorem 4 (Matrix EMLCP): Let 𝛾 > 0, 𝜀 > 0,Ω ∈
R𝑚×𝑛
>0 ,Λ ∈ R𝑚×𝑛

>0 and 𝑍 ∈ R𝑚×𝑛. The matrix MLCP is the
solution of the following optimization problem:

𝑓𝐿,𝛾,Λ (𝑍) = min
Ω∈R𝑚×𝑛

>0

{‖𝑍 ‖𝐿,Ω + 𝛾
2
‖Ω − Λ‖2

2}, (19)

where ‖𝑍 ‖𝐿,Ω is defined as

‖𝑍 ‖𝐿,Ω =

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

Ω𝑖 𝑗 log(
|𝑍𝑖 𝑗 |
𝜀

+ 1),

where {Ω𝑖 𝑗 > 0, 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛} denote the
weights.

Proof: The proof is provided in Appendix D.
Theorem 5 (Tensor EMLCP): Let 𝛾 > 0, 𝜀 > 0, W, 𝜆̄ ∈

RI1×I2×···×I𝑁
>0 and Z ∈ RI1×I2×···×I𝑁 . The tensor MLCP is the

solution to the optimization problem:

𝑓𝐿,𝛾,𝜆̄ (Z) = min
W

{‖Z‖𝐿,W + 𝛾
2
‖W − 𝜆̄‖2

𝐹 }, (20)

where ‖Z‖𝐿,W is defined as

‖Z‖𝐿,W =

I1∑︁
𝑖1=1

I2∑︁
𝑖2=1

· · ·
I𝑁∑︁

𝑖𝑁=1
W𝑡 log( |Z𝑡 |

𝜀
+ 1), (21)

where W is weight tensor, and 𝑡 = 𝑖1, 𝑖2, · · · , 𝑖𝑁 .
Proof: The proof is provided in Appendix E.

Remark 1: As the order of the tensor decreases, tensor
EMLCP can degenerate into the form of matrix EMLCP,
vector EMLCP, and scalar EMLCP respectively.

Theorem 6 (Equivalent weighted matrix 𝐿𝛾-norm): Con-
sider a rank-𝑟 matrix 𝑍 ∈ R𝑚×𝑛 with the SVD: 𝑍 =

𝑈𝑑𝑖𝑎𝑔(𝜎)𝑉𝑇 , where 𝜎 = [𝜎1, 𝜎2, . . . , 𝜎𝑟 ]𝑇 . Let Ω,Λ ∈ R𝑟>0,
and 𝛾 > 0, 𝜀 > 0. The matrix 𝐿𝛾-norm is obtained equivalently
as

‖𝑍 ‖𝐿,𝛾,Λ = min
Ω

{‖𝑍 ‖𝐿,Ω + 𝛾
2
‖Ω − Λ‖2

2}, (22)

where ‖𝑍 ‖𝐿,Ω =
∑𝑟

𝑖=1 Ω𝑖 log( 𝜎𝑖

𝜀
+ 1).

Proof: The proof is provided in Appendix F.
Theorem 7 (Equivalent weighted Tensor 𝐿𝛾-norm): For a

third-order tensor Z ∈ RI1×I2×I3 , its SVD is decomposed into
Z = U ∗ S ∗ V, where S ∈ R𝑅×𝑅×I3 and 𝑅 = min{I1, I2}.
Let 𝑊, Λ̄ ∈ R𝑅×I3

>0 , and 𝛾 > 0, 𝜀 > 0. The weighted tensor
𝐿𝛾-norm is obtained equivalently as

‖Z‖𝐿,𝛾,Λ̄ = min
𝑊

{‖Z‖𝐿,𝑊 + 𝛾
2
‖𝑊 − Λ̄‖2

𝐹 }, (23)

where

‖Z‖𝐿,𝑊 :=
I3∑︁

𝑖3=1
‖Z̄ (𝑖3) ‖𝐿,𝑊(:,𝑖3 )

=

𝑅∑︁
𝑗=1
𝑊 𝑗 ,𝑖3 log(

𝜎𝑗 (Z̄ (𝑖3) )
𝜀

+ 1).

Proof: The proof is provided in Appendix G.
Remark 2: In particular, when the third dimension I3 of the

third-order tensor Z is 1, equivalent weighted Tensor 𝐿𝛾-norm
can degenerate into the form of equivalent weighted matrix
𝐿𝛾-norm.

Remark 3: Unlike the 𝑙1 penalty or the nuclear norm penalty,
the tensor MLCP (13), tensor EMLCP (20), weighted tensor
𝐿𝛾-norm (16), and equivalent weighted tensor 𝐿𝛾-norm (23)
do not satisfy the triangle inequality. Some vital properties of
the tensor EMLCP and equivalent weighted tensor 𝐿𝛾-norm
are given below.

Proposition 2: The tensor EMLCP 𝑓𝐿,𝛾,𝜆̄ (Z) is defined in
(20) satisfies the following properties:
(a) Non-negativity: The tensor EMLCP is non-negative, i.e.,
𝑓𝐿,𝛾,𝜆̄ (Z) > 0. The equality holds if and only if Z is the null
tensor.
(b) Concavity: 𝑓𝐿,𝛾,𝜆̄ (Z) is concave in the modulus of the
elements of Z.
(c) Boundedness: The tensor EMLCP is upper-bounded by
the weighted Logarithmic norm, i.e., 𝑓𝐿,𝛾,𝜆̄ (Z) 6 ‖Z‖𝐿,W .

(d) Asymptotic 𝑙1 property: The tensor EMLCP ap-
proaches the weighted Logarithmic norm asymptotically, i.e.,
lim
𝛾→∞

𝑓𝐿,𝛾,𝜆̄ (Z) = ‖Z‖𝐿,W
Proof: The proof is provided in Appendix H.

Proposition 3: The equivalent weighted tensor 𝐿𝛾-norm is
defined in (23) satisfies the following properties:
(a) Non-negativity: The equivalent weighted tensor 𝐿𝛾-norm
is non-negative, i.e., ‖Z‖𝐿,𝛾,Λ̄ > 0. The equality holds if and
only if Z is the null tensor.
(b) Concavity: ‖Z‖𝐿,𝛾,Λ̄ is concave in the modulus of the
elements of Z.
(c) Boundedness: The equivalent weighted tensor 𝐿𝛾-norm
is upper-bounded by the weighted Logarithmic norm, i.e.,
‖Z‖𝐿,𝛾,Λ̄ 6 ‖Z‖𝐿,𝑊 .
(d) Asymptotic nuclear norm property: The equivalent
weighted tensor 𝐿𝛾-norm approaches the weighted Logarith-
mic norm asymptotically, i.e., lim

𝛾→∞
‖Z‖𝐿,𝛾,Λ̄ = ‖Z‖𝐿,𝑊 .

(e) Unitary invariance: The equivalent weighted tensor 𝐿𝛾-
norm is unitary invariant, i.e., ‖U ∗Z ∗V‖𝐿,𝛾,Λ̄ = ‖Z‖𝐿,𝛾,Λ̄,
for unitary tensor U and V.

Proof: The proof is provided in Appendix I.
Theorem 8 (Proximal operator for equivalent weighted

tensor 𝐿𝛾-norm): Consider equivalent weighted tensor 𝐿𝛾-
norm given in (23). Its proximal operator denoted by S𝐿,𝛾,Λ̄ :
RI1×I2×I3 → RI1×I2×I3 , 𝑊, Λ̄ ∈ R𝑅×I3

>0 , and 𝛾 > 0, 𝜀 > 0,
𝑅 = min{I1, I2} and defined as follows:

S𝐿,𝛾,Λ̄ (Y) = arg min
L

{ 𝜌
2
‖L − Y‖2

𝐹 + ‖L‖𝐿,𝛾,Λ̄}, (24)
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Algorithm 1 EMLCPTC
Input: An incomplete tensor T , the index set of the known

elements Ω, convergence criteria 𝜖 , maximum iteration number
𝐾 .
Initialization: Z0 = TΩ, M0

𝑘1𝑘2
= X0, 𝜇0

𝑘1𝑘2
> 0, 𝜌 > 0,𝜏 >

1.
1: while not converged and 𝑘 < 𝐾 do
2: Updating 𝑊 𝑘

𝑘1𝑘2
via (32);

3: Updating M𝑘
𝑘1𝑘2

via (33);
4: Updating Z𝑘 via (36);
5: Updating the multipliers Q𝑘

𝑘1𝑘2
via (37);

6: 𝜇𝑘
𝑘1𝑘2

= 𝜏𝜇𝑘−1
𝑘1𝑘2

, 𝜌 = 𝜏𝜌 𝑘 = 𝑘 + 1;
7: Check the convergence conditions ‖Z𝑘+1−Z𝑘 ‖∞ ≤ 𝜖 .
8: end while
9: return Z𝑘+1.
Output: Completed tensor Z = Z𝑘+1.

is given by

S𝐿,𝛾,Λ̄ =

 𝑊 𝑗 ,𝑖 = max{Λ̄ 𝑗 ,𝑖 −
log(

𝜎𝑗 (L̄ (𝑖) )
𝜀

+1)
𝛾

, 0},
L = U ∗ S1 ∗ V𝐻 ,

(25)

where U and V are derived from the t-SVD of Y = U∗S2∗
V𝐻 . More importantly, the 𝑖th front slice of DFT of S1 and
S2, i.e., S̄ (𝑖)

1 = 𝜎(L̄ (𝑖) ) and S̄ (𝑖)
2 = 𝜎(Ȳ (𝑖) ), has the following

relationship

𝜎𝑗 (L̄ (𝑖) ) =
{

0, 𝑖 𝑓 𝜎𝑗 (Ȳ (𝑖) ) 6 2
√
𝛼 − 𝜀,

𝑙1+𝑙2
2 , 𝑖 𝑓 𝜎𝑗 (Ȳ (𝑖) ) > 2

√
𝛼 − 𝜀, (26)

where 𝑙1 = 𝜎𝑗 (Ȳ (𝑖) ) − 𝜀, 𝑙2 =

√︃
(𝜎𝑗 (Ȳ (𝑖) ) + 𝜀)2 − 4𝛼, 𝛼 =

𝑊𝑗,𝑖

𝜌
.
Proof: The proof is provided in Appendix J.

IV. EMLCP-BASED MODELS AND SOLVING ALGORITHMS

In this section, we apply the EMLCP to low rank tensor
completion (LRTC) and tensor robust principal component
analysis (TRPCA) and propose the EMLCP-based models with
proximal alternating linearized minimization algorithms.

A. EMLCP-based LRTC model

Tensor completion aims at estimating the missing elements
from an incomplete observation tensor. Considering an 𝑁-
order tensor Z ∈ RI1×I2×···×I𝑁 , the proposed EMLCP-based
LRTC model is formulated as follow

min
Z,𝑊

∑︁
16𝑘1<𝑘26𝑁

𝛽𝑘1𝑘2 (‖Z(𝑘1𝑘2) ‖𝐿,𝑊 + 𝛾

2 ‖𝑊(𝑘1𝑘2) − Λ̄‖2
𝐹
)

+ΦG (Z) (27)

where Z is the reconstructed tensor and T is the observed
tensor, Ω is the index set for the known entries, and PΩ (Z)
is a projection operator that keeps the entries of Z in Ω and
sets all others to zero, 𝛽𝑘1𝑘2 > 0 (1 6 𝑘1 < 𝑘2 6 𝑁, 𝑘1, 𝑘2 ∈ Z)
and

∑
16𝑘1<𝑘26𝑁 𝛽𝑘1𝑘2 = 1. Let

ΦG (Z) :=
{

0, 𝑖 𝑓 Z ∈ G,
∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(28)

where G := {Z ∈ RI1×I2×···×I𝑁 ,PΩ (Z − T) = 0}.
Next, we exploit the PALM to solve (27). We first intro-

duce auxiliary variables M𝑘1𝑘2 , and then rewrite (27) as the
following equivalent constrained problem:

min
Z,𝑊

∑︁
16𝑘1<𝑘26𝑁

𝛽𝑘1𝑘2 (‖M (𝑘1𝑘2) ‖𝐿,𝑊 + 𝛾
2
‖𝑊(𝑘1𝑘2) − Λ̄‖2

𝐹 )

+ΦG (Z) (29)
𝑠.𝑡. Z = M𝑘1𝑘2 , 1 6 𝑘1 < 𝑘2 6 𝑁, 𝑘1, 𝑘2 ∈ Z.

The augmented Lagrangian function of (29) can be expressed
in the following concise form:

𝐿𝐴𝐺 (Z,M,𝑊, Λ̄,Q) =∑︁
16𝑘1<𝑘26𝑁

𝛽𝑘1𝑘2 (‖M (𝑘1𝑘2) ‖𝐿,𝑊 + 𝛾
2
‖𝑊(𝑘1𝑘2) − Λ̄‖2

𝐹 )

+ΦG (Z) +
𝜇𝑘1𝑘2

2
‖Z −M𝑘1𝑘2 +

Q𝑘1𝑘2

𝜇𝑘1𝑘2

‖2
𝐹 ,

= 𝐻1 (M,𝑊) + 𝐻2 (𝑊, Λ̄) +ΦG (Z) + 𝐻3 (M,Z), (30)

where Q𝑘1𝑘2 (1 6 𝑘1 6 𝑘2 6 𝑁) are the Lagrange multipliers,
𝜇𝑘1𝑘2 are positive scalars. For the sake of convenience, we
denote the variable updated by the iteration as (·)+, the last
iteration result as (·)∗, and omit the specific number of itera-
tions. With the proximal linearization of each subproblem, the
PALM algorithm on the four blocks (Z,M,𝑊, Λ̄) for solving
(29) yields the iteration scheme alternatingly as follows:

𝑊+ = min𝑊 𝐻1 (𝑊) + 𝐻2 (𝑊) + 𝜌∗

2 ‖𝑊 −𝑊∗‖2
𝐹
,

M+ = minM 𝐻1 (M) + 〈M −M∗,∇𝐻3 (M∗)〉
+ 𝜌∗1

2 ‖M −M∗‖2
𝐹
,

Λ̄+ = minΛ̄ 𝐻2 (Λ̄) + 𝜌∗

2 ‖Λ̄ − Λ̄∗‖2
𝐹
,

Z+ = minZ ΦG (Z) + 𝐻3 (Z) + 𝜌∗

2 ‖Z −Z∗‖2
𝐹
,

(31)

From Theorem 8, the updates of 𝑊 and M are as follows:

𝑊+
𝑗 ,𝑖 = max(

𝛾Λ̄∗
𝑗 ,𝑖

+ 𝜌∗𝑊∗
𝑗 ,𝑖

− 𝑙𝑜𝑔( 𝜎 𝑗 (M∗(𝑖) )
𝜀

+ 1)
𝛾 + 𝜌∗ , 0), (32)

M+ = U ∗ S1 ∗ V𝐻 , (33)

where U and V are derived from the t-SVD of M∗ +
𝜇Z∗+Q∗−𝜇M∗

𝜌∗1
= U ∗ S2 ∗ V𝐻 . The relationship between S1

and S2 is given by Theorem 8.
The update for Λ̄ turns out to be straightforward:

Λ̄+ = min
Λ̄

𝛾

2
‖𝑊+ − Λ̄‖2

𝐹 + 𝜌
∗

2
‖Λ̄ − Λ̄∗‖2

𝐹

=
𝛾𝑊+ + 𝜌∗Λ̄∗

𝛾 + 𝜌∗ . (34)

Fixed 𝑊𝑘1𝑘2 , M𝑘1𝑘2 , Λ̄𝑘1𝑘2 and Q𝑘1𝑘2 , the minimization
problem of Z is as follows:

min
Z

∑︁
16𝑘1<𝑘26𝑁

𝜇𝑘1𝑘2

2
‖Z −M+

𝑘1𝑘2
+
Q∗

𝑘1𝑘2

𝜇𝑘1𝑘2

‖2
𝐹

+ΦG (Z) + 𝜌
∗

2
‖Z −Z∗‖2

𝐹 . (35)
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The closed form of Z can be derived by setting the derivative
of (35) to zero. We can now update Z by the following
equation:

Z+ = PΩ (T )

+PΩ𝑐 (
∑

16𝑘1<𝑘26𝑁 𝜇𝑘1𝑘2M∗
𝑘1𝑘2

− Q∗
𝑘1𝑘2

+ 𝜌∗Z∗∑
16𝑘1<𝑘26𝑁 𝜇𝑘1𝑘2 + 𝜌∗

).(36)

Finally, multipliers Q𝑘1𝑘2 are updated as follows:

Q+
𝑘1𝑘2

= Q∗
𝑘1𝑘2

+ 𝜇𝑘1𝑘2 (Z+ −M+
𝑘1𝑘2

). (37)

The EMLCP-based LRTC model computation is given
in Algorithm 1. The main per-iteration cost lies in the
update of M𝑘1𝑘2 , which requires computing t-SVD. The
per-iteration complexity is 𝑂 (𝐿𝐸 (∑16𝑘1<𝑘26𝑁 [𝑙𝑜𝑔(𝑙𝑒𝑘1𝑘2 ) +
min(I𝑘1 , I𝑘2 )])), where 𝐿𝐸 =

∏𝑁
𝑖=1 I𝑖 and 𝑙𝑒𝑘1𝑘2 = 𝐿𝐸/(I𝑘1 I𝑘2 ).

B. EMLCP-based TRPCA model

Tensor robust PCA (TRPCA) aims to recover the ten-
sor from grossly corrupted observations. Using the proposed
EMLCP, we can get the following EMLCP-based TRPCA
model:

min
L,E,N

∑︁
16𝑘1<𝑘26𝑁

𝛽𝑘1𝑘2 (‖L (𝑘1𝑘2) ‖𝐿,𝑊 + 𝛾
2
‖𝑊(𝑘1𝑘2) − Λ̄‖2

𝐹 )

+𝜏1‖E‖1 + 𝜏2‖N ‖𝐹 𝑠.𝑡. T = L + E + N , (38)

where T is the corrupted observation tensor, L is the low-
rank component, E is the sparse noise component, N is the
Gaussian noise component, and 𝜏1, 𝜏2 are tuning parameters
compromising L, E and N . Similarly, we introduce auxiliary
variables G𝑘1𝑘2 , and then rewrite (38) as the following equiv-
alent constrained problem:

min
L,E,N

∑︁
16𝑘1<𝑘26𝑁

𝛽𝑘1𝑘2 (‖G(𝑘1𝑘2) ‖𝐿,𝑊 + 𝛾
2
‖𝑊(𝑘1𝑘2) − Λ̄‖2

𝐹 )

+𝜏1‖E‖1 + 𝜏2‖N ‖𝐹
𝑠.𝑡.T = L + E + N ,
L = G𝑘1𝑘2 , 1 6 𝑘1 < 𝑘2 6 𝑁, 𝑘1, 𝑘2 ∈ Z. (39)

The augmented Lagrangian function of (39) can be expressed
in the following concrete form:

𝐿𝐴𝐺 (L,G,𝑊, Λ̄,R, E,N , F ) =∑︁
16𝑘1<𝑘26𝑁

𝛽𝑘1𝑘2 (‖G(𝑘1𝑘2) ‖𝐿,𝑊 + 𝛾
2
‖𝑊(𝑘1𝑘2) − Λ̄‖2

𝐹 )

+𝜏1‖E‖1 + 𝜏2‖N ‖𝐹 +
𝜇𝑘1𝑘2

2
‖L − G𝑘1𝑘2 +

R𝑘1𝑘2

𝜇𝑘1𝑘2

‖2
𝐹

+𝜏
2
‖T − L − E − N + F

𝜏
‖2
𝐹

= 𝐻1 (G,𝑊) + 𝐻2 (𝑊, Λ̄) + 𝐻3 (E)
+𝐻4 (N) + 𝐻5 (L,G) + 𝐻6 (L, E,N) (40)

where F and 𝑅𝑘1𝑘2 (1 6 𝑘1 < 𝑘2 6 𝑁) are the Lagrange
multipliers, 𝜇𝑘1𝑘2 , 𝜏1, 𝜏2 and 𝜏 are positive scalars. Similar to
EMLCP-based LRTC model, we denote the variable updated
by the iteration as (·)+, the last iteration result as (·)∗, and
omit the specific number of iterations. With the proximal
linearization of each subproblem, the PALM algorithm on

Algorithm 2 EMLCPTPRCA
Input: The corrupted observation tensor T , convergence

criteria 𝜖 , maximum iteration number 𝐾 .
Initialization: L0 = T , G0

𝑘1𝑘2
= L0, 𝜇0

𝑘1𝑘2
> 0, 𝜌0 > 0,

𝜏0 > 0, 𝜐 > 1.
1: while not converged and 𝑘 < 𝐾 do
2: Updating 𝑊 𝑘

𝑘1𝑘2
via (42);

3: Updating G𝑘
𝑘1𝑘2

via (43);
4: Updating Λ̄𝑘

𝑘1𝑘2
via (44);

5: Updating L𝑘 via (46);
6: Updating E𝑘 via (48);
7: Updating N 𝑘 via (50);
8: Updating the multipliers R𝑘

𝑘1𝑘2
and F 𝑘 via (51);

9: 𝜇𝑘
𝑘1𝑘2

= 𝜐𝜇𝑘−1
𝑘1𝑘2

, 𝜌𝑘 = 𝜐𝜌𝑘−1, 𝜏𝑘 = 𝜐𝜏𝑘−1 𝑘 = 𝑘 + 1;
10: Check the convergence conditions ‖L𝑘+1−L𝑘 ‖∞ ≤ 𝜖 .
11: end while
12: return L𝑘+1, E𝑘+1 and N 𝑘+1.
Output: L and E.

the six blocks (L,G,𝑊, Λ̄, E,N) for solving (29) yields the
iteration scheme alternatingly as follows:

𝑊+ = min𝑊 𝐻1 (𝑊) + 𝐻2 (𝑊) + 𝜌∗

2 ‖𝑊 −𝑊∗‖2
𝐹
,

G+ = minG 𝐻1 (G) + 〈G − G∗,∇𝐻5 (G∗)〉
+ 𝜌∗1

2 ‖G − G∗‖2
𝐹
,

Λ̄+ = minΛ̄ 𝐻2 (Λ̄) + 𝜌∗

2 ‖Λ̄ − Λ̄∗‖2
𝐹
,

L+ = minL 𝐻5 (L) + 𝐻6 (L) + 𝜌∗

2 ‖L − L∗‖2
𝐹
,

E+ = minE 𝐻3 (E) + 𝐻6 (E) + 𝜌∗

2 ‖E − E∗‖2
𝐹
,

N+ = minN 𝐻4 (N) + 𝐻6 (N) + 𝜌∗

2 ‖N − N∗‖2
𝐹
,

(41)

Based on Theorem 8, 𝑊 and G are updated as follows:

𝑊+
𝑗 ,𝑖 = max(

𝛾Λ̄∗
𝑗 ,𝑖

+ 𝜌𝑊∗
𝑗 ,𝑖

− 𝑙𝑜𝑔( 𝜎 𝑗 (G∗(𝑖) )
𝜀

+ 1)
𝛾 + 𝜌∗ , 0), (42)

G+ = U ∗ S1 ∗ V𝐻 , (43)

where U and V are derived from the t-SVD of G∗ +
𝜇L∗+R∗−𝜇G∗

𝜌∗1
= U ∗ S2 ∗ V𝐻 . The relationship between S1

and S2 is given by Theorem 8.
The update for Λ̄ turns out to be straightforward:

Λ̄+ =
𝛾𝑊+ + 𝜌∗Λ̄∗

𝛾 + 𝜌∗ . (44)

Fixed G𝑘1𝑘2 , E, N , R𝑘1𝑘2 and F , the minimization problem
L is converted into the following form:

min
L

∑︁
16𝑙1<𝑙26𝑁

𝛽𝑘1𝑘2

𝜇𝑘1𝑘2

2
‖L − G+

𝑘1𝑘2
+
R∗

𝑘1𝑘2

𝜇𝑘1𝑘2

‖2
𝐹

+𝜏
2
‖T − L − E∗ − N∗ + F ∗

𝜏
‖2
𝐹 + 𝜌

∗

2
‖L − L∗‖2

𝐹 .(45)

The closed form of L can be derived by setting the derivative
of (45) to zero. We can now update L by the following
equation:

L+ =
S∑

𝜇𝑘1𝑘2 + 𝜏 + 𝜌∗
, (46)
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where S =
∑
𝜇𝑘1𝑘2G+

𝑘1𝑘2
−R∗

𝑘1𝑘2
+𝜏(T −E∗−N∗) +F ∗+ 𝜌∗L∗.

Now, let’s solve E. The minimization problem of E is as
follows:

min
E
𝜏1‖E‖1 +

𝜌∗

2
‖E − E∗‖2

𝐹

+𝜏
2
‖T − L+ − E − N∗ + F ∗

𝜏
‖2
𝐹 . (47)

Problem (47) has the following closed-form solution:

E+ = 𝑆 𝜏1
𝜏+𝜌∗

(
𝜏(T − L+ + F∗

𝜏
) + 𝜌∗E∗

𝜏 + 𝜌∗ ), (48)

where 𝑆𝜆 (·) is the soft thresholding operator [44]:

𝑆𝜆 (𝑥) =
{

0, 𝑖 𝑓 |𝑥 | 6 𝜆,
𝑠𝑖𝑔𝑛(𝑥) ( |𝑥 | − 𝜆), 𝑖 𝑓 |𝑥 | > 𝜆 (49)

The minimization problem of N is as follows:

min
N
𝜏2‖N ‖2

𝐹 + 𝜏
2
‖T − L+ − E+ − N + F ∗

𝜏
‖2
𝐹 + 𝜌

∗

2
‖N − N∗‖2

𝐹 .

We update N by the following equation:

N+ =
𝜏(T − L+ − E+) + F ∗ + 𝜌N∗

2𝜏2 + 𝜏 + 𝜌∗
. (50)

Finally, multipliers R𝑘1𝑘2 and F are updated according to the
following formula:{

R+
𝑘1𝑘2

= R∗
𝑘1𝑘2

+ 𝜇𝑘1𝑘2 (L+ − G+
𝑘1𝑘2

);
F + = F ∗ + 𝜏(T − L+ − E+ − N+). (51)

EMLCP-based TPRCA model computation is given in Al-
gorithm 2. The main per-iteration cost lies in the update
of G𝑘1𝑘2 , which requires computing SVD and t-SVD . The
per-iteration complexity is 𝑂 (𝐿𝐸 (∑16𝑘1<𝑘26𝑁 [𝑙𝑜𝑔(𝑙𝑒𝑘1𝑘2 ) +
min(I𝑘1 , I𝑘2 )])), where 𝐿𝐸 =

∏𝑁
𝑖=1 I𝑖 and 𝑙𝑒𝑘1𝑘2 = 𝐿𝐸/(I𝑘1 I𝑘2 ).

V. CONVERGENCE ANALYSIS

In this section, the convergence of PALM is established
under some mild conditions, which is mainly based on the
framework in [40].

Theorem 9: Suppose that 𝜌1 = 𝛾1𝜇 with 𝛾1 > 1. Let the
sequence {(Z,M,𝑊, Λ̄)} be generated by Algorithm 1.
Then,
(a) any accumulation point of the sequence
{(Z𝑘 ,M𝑘 ,𝑊 𝑘 , Λ̄𝑘 )} is a critical point of (27).
(b) if 𝐻1 is KL functions, the sequence {(Z𝑘 ,M𝑘 ,𝑊 𝑘 , Λ̄𝑘 )}
converges to a critical point of (27).

Proof: First, in the solution process, only the non-convex
function 𝐻1 (M) is included in the iteration of M, and the
updates of other elements are solved by convex functions. The
variables solved by the convex function are strictly descending,
hence we get the following inequality:

𝐻1 (𝑊 𝑘+1) + 𝐻2 (𝑊 𝑘+1) + 𝜌
𝑘

2
‖𝑊 𝑘+1 −𝑊 𝑘 ‖2

𝐹

6 𝐻1 (𝑊 𝑘 ) + 𝐻2 (𝑊 𝑘 ) + 𝜌
𝑘

2
‖𝑊 𝑘 −𝑊 𝑘 ‖2

𝐹 , (52)

𝐻2 (Λ̄𝑘+1) + 𝜌
𝑘

2
‖Λ̄𝑘+1 − Λ̄𝑘 ‖2

𝐹 6 𝐻2 (Λ̄𝑘 ), (53)

𝐻3 (Z𝑘+1) + 𝜌
𝑘

2
‖Z𝑘+1 −Z𝑘 ‖2

𝐹 6 𝐻3 (Z𝑘 ), (54)

By the definition of 𝐻3 (M,Z) in (30), the gradients of 𝐻3
with respect to M and Z, respectively, are

∇M𝐻3 (M,Z) = 𝜇(M −Z − Q
𝜇
), (55)

∇Z𝐻3 (M,Z) = 𝜇(Z −M + Q
𝜇
). (56)

For any fixed Z, we obtain that

‖∇M𝐻3 (M1,Z) − ∇M𝐻3 (M2,Z)‖𝐹
= ‖𝜇(M1 −Z − Q

𝜇
) − 𝜇(M2 −Z − Q

𝜇
)‖𝐹

= 𝜇‖M1 −M2‖𝐹 , (57)

and for any fixed M, we get that

‖∇Z𝐻3 (M,Z1) − ∇Z𝐻3 (M,Z2)‖𝐹

= ‖𝜇(Z1 −M + Q
𝜇
) − 𝜇(Z2 −M + Q

𝜇
)‖𝐹

= 𝜇‖(Z1 −Z2)‖𝐹 . (58)

(57) and (58) imply that the gradient of 𝐻3 (M,Z) is Lip-
schitz continuous block-wise. Note that 𝐻3 (M,Z) is twice
continuously differentiable, which brings that ∇𝐻3 (M,Z) is
Lipschitz continuous on bounded subsets of RI1×I2×···×I𝑁 ×
RI1×I2×···×I𝑁 [40]. So

𝐻3 (M𝑘+1) + 𝐻1 (M𝑘+1) + (𝛾1 − 1)𝜇
2

‖M𝑘+1 −M𝑘 ‖2
𝐹

6 𝐻3 (M𝑘 ) + 𝐻1 (M𝑘 ). (59)

From [40], we get that

𝐿𝐴𝐺 (Z𝑘+1,M𝑘+1,𝑊 𝑘+1, Λ̄𝑘+1)

+ (𝛾1 − 1)𝜇
2

‖M𝑘+1 −M𝑘 ‖2
𝐹 + 𝜌

𝑘

2
(‖𝑊 𝑘+1 −𝑊 𝑘 ‖2

𝐹 )

+ 𝜌
𝑘

2
(‖Λ̄𝑘+1 − Λ̄𝑘 ‖2

𝐹 + ‖Z𝑘+1 −Z𝑘 ‖2
𝐹 )

6 𝐿𝐴𝐺 (Z𝑘 ,M𝑘 ,𝑊 𝑘 , Λ̄𝑘 ), (60)

and

lim
𝑘→+∞

‖M𝑘+1 −M𝑘 ‖𝐹

= lim
𝑘→+∞

‖𝑊 𝑘+1 −𝑊 𝑘 ‖𝐹

= lim
𝑘→+∞

‖Λ̄𝑘+1 − Λ̄𝑘 ‖𝐹

= lim
𝑘→+∞

‖Z𝑘+1 −Z𝑘 ‖𝐹 = 0. (61)

(a) Assume that there exists a subsequence
{(Z𝑘 𝑗 ,M𝑘 𝑗 ,𝑊 𝑘 𝑗 , Λ̄𝑘 𝑗 )} of {(Z𝑘 ,M𝑘 ,𝑊 𝑘 , Λ̄𝑘 )} such
that {(Z𝑘 𝑗 ,M𝑘 𝑗 ,𝑊 𝑘 𝑗 , Λ̄𝑘 𝑗 )} converges to (Z★,M★,𝑊★, Λ̄★)
as 𝑗 → +∞. By (61), we have that {(Z𝑘 𝑗 ,M𝑘 𝑗 ,𝑊 𝑘 𝑗 , Λ̄𝑘 𝑗 )}
also converges to (Z★,M★,𝑊★, Λ̄★) as 𝑗 → +∞. Moreover,
the optimality conditions of (31) gives that

0 = ∇𝐻1 (𝑊 𝑘 𝑗+1) + ∇𝐻2 (𝑊 𝑘 𝑗+1) + 𝜌𝑘 (𝑊 𝑘 𝑗+1 −𝑊 𝑘 𝑗 ),

0 ∈ 𝜕𝐻1 (M𝑘 𝑗+1) − 𝜇(Z −M𝑘 𝑗 + Q
𝜇
) + 𝜌𝑘1 (M

𝑘 𝑗+1 −M𝑘 𝑗 ),
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0 = ∇𝐻2 (Λ̄𝑘 𝑗+1) + 𝜌𝑘 (Λ̄𝑘 𝑗+1 − Λ̄𝑘 𝑗 ),

0 = ∇𝐻3 (Z𝑘 𝑗+1) + 𝜌𝑘 (Z𝑘 𝑗+1 −Z𝑘 𝑗 ),

When 𝑗 → +∞, by [45], we get that

0 = ∇𝐻1 (𝑊★) + ∇𝐻2 (𝑊★),

0 ∈ 𝜕𝐻1 (M★) − 𝜇(Z −M★ + Q
𝜇
) = 𝜕𝐻1 (M★) + ∇𝐻3 (M★),

0 = ∇𝐻2 (Λ̄★),
0 = ∇𝐻3 (Z★),

Therefore, we obtain that

(0, 0, 0, 0) ∈ 𝜕𝐿𝐴𝐺 (Z★,M★,𝑊★, Λ̄★) (62)

which implies that (Z★,M★,𝑊★, Λ̄★) is a critial point of
𝐿𝐴𝐺 (Z,M,𝑊, Λ̄).
(b) By the definition of 𝐿𝐴𝐺 (Z,M,𝑊, Λ̄), we have that
𝐿𝐴𝐺 (Z,M,𝑊, Λ̄) → +∞ as ‖(Z,M,𝑊, Λ̄)‖𝐹 → +∞.
Suppose that (Z𝑘 ,M𝑘 ,𝑊 𝑘 , Λ̄𝑘 ) is unbounded, i.e.,
‖(Z𝑘 ,M𝑘 ,𝑊 𝑘 , Λ̄𝑘 )‖𝐹 → +∞, we derive that
𝐿𝐴𝐺 (Z𝑘 ,M𝑘 ,𝑊 𝑘 , Λ̄𝑘 ) → +∞. However, it follows
from (60) that 𝐿𝐴𝐺 (Z𝑘 ,M𝑘 ,𝑊 𝑘 , Λ̄𝑘 ) is upper bounded.
Therefore, the sequence {(Z𝑘 ,M𝑘 ,𝑊 𝑘 , Λ̄𝑘 )} is bounded.
From [39], Logarithmic function is KL function. Thus,
𝐻1 also KL function. Notice that 𝐻2 and 𝐻3 are KL
function, we have that 𝐿𝐴𝐺 (Z𝑘 ,M𝑘 ,𝑊 𝑘 , Λ̄𝑘 ) is also a KL
function [40]. Then by [40], we obtain that the sequence
{(Z𝑘 ,M𝑘 ,𝑊 𝑘 , Λ̄𝑘 )} converges to a critical point of (27).

Theorem 10: Suppose that 𝜌1 = 𝛾1𝜇 with 𝛾1 > 1. Let the
sequence {(L,G,𝑊, Λ̄, E,N)} be generated by Algorithm 2.
Then,
(a) any accumulation point of the sequence
{(L,G,𝑊, Λ̄, E,N)} is a critical point of (38).
(b) if 𝐻1 is KL functions and coercive, the sequence
{(L,G,𝑊, Λ̄, E,N)} converges to a critical point of (38).

Proof: Compared with LRTC, the TRPCA algorithm has
two more variables, E and N , but its solutions are all convex
functions. Therefore, the convergence proof of the TRPCA
algorithm is similar to that of the LRTC algorithm, and will
not be repeated here.

VI. EXPERIMENTS

We evaluate the performance of the proposed EMLCP-
based LRTC and TRPCA methods. All methods are tested
on real-world data. We employ the peak signal-to-noise rate
(PSNR) value, the structural similarity (SSIM) value [46],
the feature similarity (FSIM) value [47], and erreur relative
globale adimensionnelle de synth𝑒se (ERGAS) value [48] to
measure the quality of the recovered results. The PSNR, SSIM
and FSIM value are the bigger the better, and the ERGAS
value is the smaller the better. For simplicity, EMLCP-based
LRTC and EMLCP-based TRPCA are denoted as EMLCP.
All tests are implemented on the Windows 10 platform and
MATLAB (R2019a) with an Intel Core i7-10875H 2.30 GHz
and 32 GB of RAM.

A. Low-rank tensor completion

In this section, we test three kinds of real-world data: MSI,
MRI and CV. The method for sampling the data is purely
random sampling. The comparative LRTC methods are as
follows: HaLRTC [49], and LRTCTV-I [50] represent state-
of-the-art for the Tucker-decomposition-based methods; TNN
[27], PSTNN [51], FTNN [52], WSTNN [28], and nonconvex
WSTNN [53] represent state-of-the-art for the t-SVD-based
methods; and minmax concave plus penalty-based TC method
(McpTC) [54]. Since the TNN, PSTNN, and FTNN methods
are only applicable to three-order tensors, in all four-order
tensor tests, we first reshape the four-order tensor into three-
order tensors and then test the performances of these methods.
It is not difficult to find that the NWSTNN method in the
comparison method adopts the non-convex relaxation of the
Logarithmic function, and the results obtained by comparing
with such method are consistent with our theory property.

1) MSI completion: We test 32 MSIs in the dataset CAVE1.
All testing data are of size 256 × 256 × 31. In Fig.1, we
randomly select three from 32 MSIs, and brings the different
sampling rate and different band visual results. The individual
MSI names and their corresponding bands are written in the
caption of Fig.1. As can be seen from Fig.1, the visual effect
of the EMLCP method is superior to the NWSTNN method
under all sample rate, which is consistent with our theory. To
further highlight the superiority of our method, the average
quantitative results of 32 MSIs are listed in Table I. The results
show that the PSNR value of our algorithms is 0.4dB higher
than that of the suboptimal method when the sampling rate is
20%, and even reaches 0.8dB when the sampling rate is 5%.
More experimental results are available in the Appendix K.

2) MRI completion: We test the performance of the pro-
posed method and the comparative method on MRI2 data
with the size of 181 × 217 × 181. First, we demonstrate the
visual effect recovered by MRI data at sampling rates of 5%,
10% and 20% in Fig.2. Our method is clearly superior to the
comparative methods. Then, we list the average quantitative
results of frontal slices of MRI restored by all methods at
different sampling rates in Table II. Obviously, the PSNR
value of our method is at average 0.3dB higher than that of
the suboptimal method, and the values of SSIM, FSIM and
ERGAS are significantly better than that of the suboptimal
method.

3) CV completion: We test nine CVs3(respectively named
news, akiyo, hall, highway, foreman, container, coastguard,
suzie, carphone) of size 144 × 176 × 3 × 50. Firstly, we list
the average quantitative results of 9 CVs in Table III. At this
time, the suboptimal method is the NWSTNN method. The
PSNR value of our method is average 0.4dB higher than it at
three sampling rates. Furthermore, we demonstrate the visual
results of 9 CVs in our experiment in Fig.3, in which the
number of frames and sampling rate corresponding to each
CV are described in the caption of Fig.3. It is not hard to see
from the picture that the recovery of our method on the vision

1http://www.cs.columbia.edu/CAVE/databases/multispectral/
2http://brainweb.bic.mni.mcgill.ca/brainweb/selection_normal.html
3http://trace.eas.asu.edu/yuv/
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TABLE I
THE AVERAGE PSNR, SSIM, FSIM AND ERGAS VALUES FOR 32 MSIS TESTED BY OBSERVED AND THE NINE UTILIZED LRTC METHODS.

SR 5% 10% 20%
Method PSNR SSIM FSIM ERGAS PSNR SSIM FSIM ERGAS PSNR SSIM FSIM ERGAS

Observed 15.438 0.153 0.644 845.388 15.673 0.194 0.646 822.788 16.184 0.269 0.650 775.866
HaLRTC 18.112 0.285 0.697 689.482 22.694 0.527 0.786 478.325 32.175 0.835 0.910 190.848

TNN 17.986 0.247 0.685 726.893 28.627 0.678 0.861 314.352 40.170 0.964 0.972 59.018
LRTCTV-I 25.894 0.800 0.835 276.620 30.709 0.890 0.906 162.567 35.486 0.949 0.957 94.646

McpTC 32.459 0.875 0.909 133.472 35.959 0.925 0.943 91.788 40.518 0.964 0.972 56.083
PSTNN 18.713 0.474 0.650 574.637 23.239 0.683 0.783 352.012 34.206 0.924 0.942 117.472
FTNN 32.620 0.899 0.924 131.871 37.182 0.954 0.963 78.694 43.002 0.984 0.987 41.625

WSTNN 31.439 0.806 0.911 208.988 40.170 0.981 0.981 52.895 47.059 0.995 0.995 24.914
NWSTNN 37.417 0.945 0.950 71.261 43.704 0.985 0.985 35.779 51.362 0.997 0.997 15.572
EMLCP 38.298 0.962 0.964 64.689 44.340 0.988 0.988 33.329 51.742 0.997 0.997 14.779

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Fig. 1. (a) Original image. (b) Obeserved image. (c) HaLRTC. (d) TNN. (e) LRTCTV-I. (f) McpTC. (g) PSTNN. (h) FTNN. (i) WSTNN. (j) NWSTNN. (k)
EMLCP. SR: top row is 5%, middle row is 10% and last row is 20%. The rows of MSIs are in order: balloons, beads, watercolors. The corresponding bands
in each row are: 31, 20, 10.

TABLE II
THE PSNR, SSIM, FSIM AND ERGAS VALUES OUTPUT BY BY OBSERVED AND THE NINE UTILIZED LRTC METHODS FOR MRI.

SR 5% 10% 20%
Method PSNR SSIM FSIM ERGAS PSNR SSIM FSIM ERGAS PSNR SSIM FSIM ERGAS

Observed 11.399 0.310 0.530 1021.071 11.633 0.323 0.565 994.049 12.149 0.350 0.613 936.747
HaLRTC 17.372 0.301 0.638 532.927 20.105 0.439 0.726 391.945 24.451 0.659 0.829 235.019

TNN 22.681 0.470 0.742 303.284 26.064 0.643 0.812 205.410 29.972 0.798 0.882 130.791
LRTCTV-I 19.400 0.598 0.702 431.241 22.864 0.749 0.805 294.937 28.236 0.891 0.908 155.272

McpTC 27.931 0.748 0.843 154.029 31.439 0.844 0.888 102.744 35.576 0.937 0.941 63.906
PSTNN 17.064 0.243 0.639 542.819 22.870 0.487 0.757 297.337 29.083 0.772 0.870 145.165
FTNN 24.673 0.687 0.836 234.329 28.297 0.820 0.896 152.733 32.767 0.919 0.947 89.543

WSTNN 25.524 0.708 0.825 211.315 29.059 0.837 0.888 139.177 33.497 0.928 0.940 82.851
NWSTNN 30.222 0.826 0.884 119.820 33.293 0.902 0.924 83.608 36.860 0.950 0.956 54.962
EMLCP 30.563 0.850 0.893 115.395 33.643 0.918 0.932 80.590 37.180 0.959 0.962 53.344

effect is better. More experimental results are available in the
Appendix L.

B. Tensor robust principal component analysis

In this section, we evaluate the performance of the proposed
TRPCA method through HSI mixed noise denoising. The
comparative TRPCA methods include the SNN [55], TNN
[41], 3DTNN and 3DLogTNN [53] methods.

1) HSI denoising: We test the Pavia University data sets
and Washington DC Mall data sets, where Pavia University
data size is 200×200×80 and Washington DC Mall data size

is 256× 256× 150. We divide the mixed noise into two kinds,
one is independent identically distributed Gaussian noise plus
independent identically distributed pepper and salt noise, and
the other is non i.i.d. Gaussian noise plus i.i.d pepper and salt
noise, where 𝜎 is pepper and salt noise and 𝜈 is Gaussian
noise. In Table IV, we list the quantitative numerical results
of Pavia University and Washington DC Mall Data under 3
combinations of these two kinds of noise respectively. It can be
seen that under the influence of the weakest noise , the PSNR
value of the obtained results is 0.6 dB higher than that of
the suboptimal method 3DLogTNN. Even under the influence
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Fig. 2. (a) Original image. (b) Obeserved image. (c) HaLRTC. (d) TNN. (e) LRTCTV-I. (f) McpTC. (g) PSTNN. (h) FTNN. (i) WSTNN. (j) NWSTNN. (k)
EMLCP. Each type of slice: the first row is the 120th slice with a sampling rate of 5%, the second row is the 80th slice with a sampling rate of 10%, and
the third row is the 50th slice with a sampling rate of 20%.

TABLE III
THE AVERAGE PSNR, SSIM, FSIM AND ERGAS VALUES FOR 9 CVS TESTED BY OBSERVED AND THE NINE UTILIZED LRTC METHODS.

SR 5% 10% 20%
Method PSNR SSIM FSIM ERGAS PSNR SSIM FSIM ERGAS PSNR SSIM FSIM ERGAS

Observed 6.129 0.012 0.431 1170.276 6.363 0.019 0.428 1139.091 6.875 0.033 0.426 1073.940
HaLRTC 17.439 0.497 0.700 329.176 21.207 0.625 0.776 214.604 25.178 0.775 0.864 135.612

TNN 26.940 0.764 0.881 114.770 30.092 0.845 0.922 82.293 33.193 0.902 0.950 59.164
LRTCTV-I 19.945 0.598 0.708 259.639 21.864 0.674 0.786 213.126 26.458 0.826 0.888 119.600

McpTC 23.799 0.669 0.822 161.726 28.480 0.817 0.898 93.541 31.195 0.885 0.934 68.258
PSTNN 15.274 0.307 0.670 409.255 26.822 0.776 0.886 114.335 32.739 0.900 0.948 61.799
FTNN 25.563 0.768 0.872 133.678 28.718 0.856 0.917 92.039 32.209 0.922 0.952 61.699

WSTNN 29.128 0.869 0.916 89.451 32.341 0.919 0.948 63.735 36.049 0.957 0.972 42.622
NWSTNN 30.230 0.845 0.927 81.396 34.002 0.911 0.956 54.680 38.520 0.960 0.980 32.930
EMLCP 30.872 0.871 0.934 75.578 34.570 0.926 0.961 51.204 38.752 0.966 0.981 31.756

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Fig. 3. (a) Original image. (b) Obeserved image. (c) HaLRTC. (d) TNN. (e) LRTCTV-I. (f) McpTC. (g) PSTNN. (h) FTNN. (i) WSTNN. (j) NWSTNN. (k)
EMLCP. SR: top row is 5%, middle row is 10% and last row is 20%. The rows of CVs are in order: the 15th frame of news, the 30th frame of foreman, the
45th frame of suzie.

of the most severe noise, the PSNR value of the obtained
results is still better than the suboptimal method 3DLogTNN.
In Fig.4, we show the visual results of the two kinds of data
in turn according to the order of noise levels in Table IV. The
corresponding spectral bands are 50, 30, 100 respectively. It
is easy to find from the figure that our method has better
denoising effect than the comparative method.

VII. CONCLUSION

In this paper, we propose MLCP function, a new non-convex
function, which finds that the Logarithmic function is the

upper bound of the MLCP function. It is theoretically guar-
anteed that the MLCP function can achieve better results for
the minimization problem. The proposed function is directly
applied to the tensor recovery problem, its explicit solution
cannot be obtained, which is very unfavorable to the solution
of the algorithm. To this end, we further put forward the
corresponding equivalence theorem to settle this problem. We
apply the equivalent weighted tensor 𝐿𝛾-norm to the LRTC
and TRPCA problems, giving their EMLCP-based models
respectively. According to the Kurdyka-Łojasiwicz property,
we prove that the solution sequence of the proposed algorithm
has finite length and converges globally to a critical point.
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TABLE IV
THE PSNR, SSIM AND FSIM VALUES FOR 2 HSIS TESTED BY OBSERVED AND THE NINE UTILIZED LRTC METHODS.

HSI Mixed noise Noise SNN TNN 3DTNN 3DLogTNN EMLCP

Pavia City Center

𝜎 = 0.05 𝜈 = 0.2
PSNR 11.646 26.899 27.920 35.833 37.231 37.825
SSIM 0.119 0.788 0.780 0.969 0.974 0.976
FSIM 0.532 0.868 0.890 0.979 0.982 0.984

𝜎 = 0.1 𝜈 = 0.2
PSNR 11.198 24.290 22.647 31.946 33.647 33.890
SSIM 0.105 0.632 0.527 0.928 0.943 0.945
FSIM 0.493 0.789 0.778 0.952 0.962 0.963

𝜎 follows U(0.1-0.15) 𝜈 = 0.2
PSNR 10.846 23.441 20.905 30.623 32.469 32.528
SSIM 0.095 0.566 0.432 0.903 0.927 0.927
FSIM 0.473 0.757 0.732 0.937 0.951 0.952

Washington DC

𝜎 = 0.05 𝜈 = 0.2
PSNR 11.279 27.737 28.002 36.428 38.767 39.448
SSIM 0.116 0.794 0.750 0.959 0.979 0.980
FSIM 0.517 0.883 0.882 0.978 0.986 0.988

𝜎 = 0.1 𝜈 = 0.2
PSNR 10.866 25.328 22.875 31.391 35.017 35.332
SSIM 0.103 0.671 0.510 0.872 0.950 0.951
FSIM 0.476 0.822 0.768 0.937 0.969 0.971

𝜎 follows U(0.1-0.15) 𝜈 = 0.2
PSNR 10.549 24.528 21.165 29.175 33.621 33.790
SSIM 0.094 0.623 0.424 0.798 0.935 0.935
FSIM 0.457 0.796 0.723 0.905 0.961 0.963

(a) (b) (c) (d) (e) (f) (g)

Fig. 4. (a) Original image. (b) Noise image. (c) SNN. (d) TNN. (e) 3DTNN. (f) 3DLogTNN. (g) EMLCP

Extensive experiments show that our method can achieve good
visual and numerical quantitative results. The obtained nu-
merical quantitative results outperform the NWSTNN method
using Logarithmic function, which is consistent with our
theoretical analysis. In addition, it is worth studying whether
the MLCP function can be extended in more applications.
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