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Abstract

A novel algorithm for designing optimized orthonormal transform-matrix codebooks for
adaptive transform coding of a non-stationary vector process is proposed. This algorithm
relies on a block-wise stationary model of a non-stationary process and finds a codebook
of transform-matrices by minimizing the end-to-end mean square error of transform coding
averaged over the distribution of stationary blocks of vectors. The algorithm, which belongs
to the class of block-coordinate descent algorithms, solves an intermediate minimization
problem involving matrix-orthonormality constraints in a computationally efficient manner
by mapping the problem from the Euclidean space to the Stiefel manifold. As such, the
algorithm can be broadly applied to any adaptive transform coding problem. Preliminary
results obtained with inter-prediction residuals in an H265 video codec are presented to
demonstrate the advantage of optimized adaptive transform codes over non-adaptive codes
based on the standard DCT.

1 Introduction

It is well-known that the optimal transform for coding stationary Gaussian sources
based on the mean squared error (MSE) is the Karhunen-Loéve transform (KLT) [1, 2].
However, in real-world applications where the source data is highly non-stationary,
the tendency has been to use generic fixed-transforms such as the discrete cosine
transform (DCT). Nonetheless, adaptive transform coding (ATC) remains an active
research area, and recently, some forms of ATC have also been incorporated into newer
video coding standards such as H265. ATC methods reported in the literature are
very diverse and typically specialized to signals with certain characteristics, such as
images containing various directional properties [3, 4], and video residuals produced by
intra-prediction [5–8] or motion-compensation (MC) [9–14]. Others have considered
the design of more general transforms using sparsity constraints [15, 16]. However,
such approaches do not take into account the effect of quantization errors due to finite
rate compression.

In contrast to previous work, we present a novel algorithm for designing a fixed-
size codebook of orthogonal transform matrices based on a fairly general block-wise
stationary model of a non-stationary vector process that exhibits local stationarity
properties. In this case, the best transform matrix from the codebook is adaptively
chosen for each stationary block. The matrix codebook is designed to minimize the
block-MSE, averaged over an ensemble of blocks representing the non-stationary pro-
cess. The codebook optimization is carried out by applying the algorithm to a training
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set of blocks. The only requirement to use this algorithm is the availability of a differ-
entiable expression for the quantization MSE of the transform coefficients expressed
in terms of the transform matrix. To this end, we make the general assumption that
the probability distribution of the transform coefficients is solely characterized by the
mean and the variance (e.g., Gaussian and Laplace distributions). While we have
focused on uniform quantization which has been widely used in practice, non-uniform
quantization may also be incorporated. So far, we have only considered the design of
non-separable transforms.

The proposed algorithm belongs to the class of block coordinate-descent (BCD)
algorithms [17]. In contrast to other approaches previously considered to solve re-
lated matrix-codebook design problems [18–21], in our formulation we map the harder
problem of minimizing an objective Θ(TTT ) subject to an orthonormality constraint on
the matrix argument TTT , from the Euclidian space to a simpler unconstrained problem
on the Stiefel manifold [22]. This approach, which explicitly minimizes the trans-
form coding MSE with respect to the matrix codebook, is superior to other indirect
methods used to enforce orthonormality constraints, such as the Givens parameter-
ization where a set of rotation angles rather than orthogonal matrices have to be
quantized [23]. Being a BCD algorithm based on the exact matrix-derivative of the
objective function, our algorithm is guaranteed to converge to a (locally) optimal
transform-matrix codebook.

We have so far tested the proposed algorithm on MC residuals obtained from an
H265 video codec, which contains highly non-stationary segments. Results obtained
with a substantial test set of videos showed that ATC based on proposed codebook
designs consistently outperformed non-ATC based on the standard DCT. A selected
set of results are presented in Section 4.

2 Adaptive Transform Coding Setup

First, consider the standard transform coding problem, as applied to a stationary
random vector XXX ∈ Rk. In the encoding process, rather than directly quantizing
XXX, it is first linearly transformed to obtain YYY = TTTXXX, and the transform coefficients
YYY = (Y1, . . . , Yk)

T are then scalar quantized and entropy coded, where TTT ∈ Rk×k is the
orthonormal transform matrix. In this work, we assume that uniform scalar quantizers
are used. Let the step-size of the quantizer for the transform coefficient Yi be ∆i, i =
1, ..., k and denote the quantized version of YYY by ŶYY = (Ŷ1, . . . , Ŷk)

T . The reconstructed

source vector is thus X̂XX = TTT−1ŶYY . Assume that each transform coefficient is zero mean
and that the quantization MSE is a function of the quantizer’s input variance σ2

Yi
=

E[Y 2
i ]. Accordingly, denote the quantization MSE of the coefficient Yi by θ(σ2

Yi
,∆i) =

E(Yi − Ŷi)2. Let the variances of the transform coefficients be (σ2
Y1
, . . . , σ2

Yk
)T . These

variances are the diagonal elements of CCCYYY = TTTCCCXXXTTT
T , where CCCXXX = E[XXXXXXT ] is the

covariance matrix of XXX. The MSE of transform coding XXX is given by Θ(TTT ,CCCXXX) =

E‖XXX−X̂XX‖2 =
∑k

i=1 θ(σ
2
Yi
,∆i), where we make it explicit the dependence of Θ on CCCXXX

through the variances σ2
Yi

. We will assume that ∆i, i = 1, . . . , k are given. In this
case, the optimal TTT can be found by solving



Minimize
TTT

Θ(TTT ,CCCXXX) (1)

subject to TTT TTTT = IIIk (orthonormality constraint),

where IIIk is the k×k identity matrix. It is easy to demonstrate that if XXX is Gaussian,
regardless of ∆, the KLT is the solution to (1) [1, 2].

Next, consider coding a sequence of non-stationary random vectors. In this case,
the optimal transform may vary with the input vector, and adaptive coding can
significantly improve the rate-distortion performance. We model the non-stationary
process by a block-wise stationary vector process and encode each stationary block of
vectors using a single transform optimized to local statistics. To state the problem
more concretely, let B ∈ SB be a locally stationary block of vectors in the non-
stationary process, where SB is the set of all possible (ensemble of) blocks. Also,
let CCCB be the covariance matrix for XXX ∈ B, and SCCC be the ensemble of covariance
matrices. Obviously, we can determine the optimal transform matrix for each CCCB in
the ensemble by solving (1) on a per-block basis. For example, if XXX is a Gaussian
vector, then the optimal transform for stationary block B is the KLT of CCCB [1, 2].
Instead, we use a codebook of orthonormal transform matrices T = {T̃TT 1, T̃TT 2, ..., T̃TTN}
and the best transform matrix for a given block B is selected from the codebook as
TTT ∗ = arg minTTT∈T

1
|B|
∑

XXX∈B ‖XXX − X̂XX(TTT )‖2 where X̂XX(TTT ) is the reconstructed version of

source vector XXX using the transform TTT and |B| is the number of vectors in B.

3 Transform Matrix Codebook Optimization

Let us consider the problem of designing the optimal codebook T for a given block
ensemble SB. We note that the design problem essentially involves partitioning SB
intoN non-overlapping subsets and assigning a single transform matrix to each subset,
such that the MSE of transform coding, averaged over the ensemble is minimized. As
emphasized in (1), the MSE of block B is a function of the covariance matrix CCCB.
Thus, an equivalent codebook design problem is to partition the covariance matrix
ensemble SC into N non-overlapping subsets G = {Ω1, . . . ,ΩN}, where Ωi ⊂ SC , and
to determine the optimal codeword T̃TT i for each Ωi, i = 1, . . . , N . Assume that CCCB is
distributed over SC according to some probability density function. Then, the MSE
of encoding all stationary blocks B ∈ SB using the transform codebook T is

Θ̄(T ,G) =
N∑
i=1

E
[
Θ(T̃TT i,CCCB)|CCCB ∈ Ωi

]
P (Ωi), (2)

where the expectation is taken over the distribution of CCCB. We wish to find the
codebook T ∗ which minimizes (2) with respect to the sets (T ,G). Specifically, we
seek to solve

Minimize
T ,G

Θ̄(T ,G) (3)

subject to T̃TT
T

i T̃TT i = IIIk, i = 1, . . . , N.



The direct solution of this constrained minimization problem appears intractable.
The problem is reminiscent of codebook design in vector quantization, where a BCD
algorithm, commonly referred to as the generalized Lloyd’s algorithm, is used to solve
a similar problem [1]. However, in that case there are no constraints on code vectors.
In this paper, we present a BCD algorithm incorporating orthogonal constraints on
the matrix codebook to solve (3), where one alternates between the solutions to two
sub-problems described below, such that the algorithm converges to a solution of (3).

3.1 Sub-problem 1: Optimal partition G for a fixed codebook T

It is straightforward to argue that, for a fixed T , the optimal G that minimizes Θ̄(T ,G)
is given by G∗ = {Ω∗1, . . . ,Ω∗N}, where

Ω∗i = {CCCB ∈ SCCC : Θ(T̃TT i,CCCB) < Θ(T̃TT j,CCCB) ∀j 6= i} (4)

with ties broken suitably. Note that the orthogonality constraint is irrelevant to this
sub-problem.

3.2 Sub-problem 2: Optimal codebook T for a fixed partition G

Given the partition set G, T̃TT i only affects the i-the term of the sum in (2). Thus, the

codebook T ∗ = {T̃TT ∗1, T̃TT
∗
2, ..., T̃TT

∗
N} that minimizes Θ̄(T ,G) is given by

T̃TT
∗
i = arg min

TTT∈Rk×k
E [Θ(TTT ,CCCB)|CCCB ∈ Ωi] subject to TTT TTTT = IIIk, (5)

i = 1, . . . , k. While the solution to this constrained minimization problem does not
appear to be straightforward, we note that the solution space, the set of all k × k
orthogonal matrices, is the compact manifold referred to as the orthogonal group O(k)
[22]. Therefore, rather than solving (5) as a constrained minimization problem on the
Euclidian space Rk×k, we can equivalently solve it as an unconstrained minimization
problem on O(k). Optimization on manifolds is a widely studied problem, see [22]
and references therein. We have used a low-complexity, modified steepest descent al-
gorithm on O(k) [24] to solve (5). This algorithm requires that the objective function
in (5) be differentiable. That is, Θ(TTT ,CCCB), which is the quantization MSE associated
with coding a vector with a covariance matrix CCCB using the transform matrix TTT ,
must be differentiable with respect to TTT ∈ Rk×k. We identify in the following two
models for Θ(TTT ,CCCB) satisfying this requirement, both analytically simple enough to
be incorporated in to the manifold steepest-descent algorithm.

First, let YYY (TTT ) = TTTXXX be the coefficient vector obtained by transforming XXX ∈ B
using the transform matrix TTT , and let the variances of these transform coefficients be
σ2
Yj

(TTT ), j = 1, . . . , k, which are the diagonal elements of the matrix TTTCCCBTTT
T .

1) High-rate Gaussian model: Given a target rate (quantizer output entropy) R0

bits/vector, the minimum MSE (MMSE) of transform coding a Gaussian vector is
[1, 2]

Θ(TTT ,CCCB) =
kπe

6

(
k∏
j=1

σ2
Yj

(TTT )

)1/k

2−
2R0
k . (6)



Since R0 is only a scaling factor, it can be ignored. In this case, we can show that

DTTT (E[Θ(TTT ,CCCB)]) = E

[
k∑
i=1

2eeeieee
T
i TTTCCCB

(
k∏

j=1,j 6=i

eeeTj TTTCCCBTTT
Teeej

)]
,

where DTTT (f(TTT )) ∈ Rk×k denotes the matrix of derivatives of function f : Rk×k → R
with respect to the elements of TTT ∈ Rk×k, see [24, Eqn. (2)] for the definition, and eeei
is the ith column of IIIk.

2) Laplacian model: An alternative unimodal pdf often used as a model for image
transform coefficients is the Laplace pdf. We can show that, the MSE of quantizing
a mean-zero Laplace variable with variance σ2 using a uniform quantizer with a dead
zone (− z

2
, z

2
) and quantization step-size ∆ is

θ(σ2,∆, z) = 2b2 − e−z/2b
(
z2 −∆2

4
+ zb+ ∆b

(e∆/b + 1)

(e∆/b − 1)

)
,

where b =
√

σ2

2
, and we have assumed that the quantizer has infinite-support. This

assumption is reasonable when variable rate coding is used. In this case, we have

Θ(TTT ,CCCB) =
k∑
j=1

θ(σ2
Yj
,∆j, zj), (7)

and it can be shown that

DTTT (E[Θ(TTT ,CCCB)]) = E

[ k∑
j=1

{
4bj −

e−zj/2bjzj
2b2
j

(
z2
j −∆2

j

4
+ zjbj + ∆jbj

(e∆j/bj + 1)

(e∆j/bj − 1)

)

− e−zj/2bj
(
zj +

∆jbje
2∆j/bj −∆jbj + 2∆2

je
∆j/bj

b(e∆j/bj − 1)2

)}
eeejeee

T
j TTTCCCB

2bj

]
.

Steepest-descent minimization of (5) on O(k)
The constrained minimization problem (5) can be equivalently stated as an uncon-
strained minimization problem on O(k) = {TTT ∈ Rk×k : TTT TTTT = IIIk} which is the set
of all k × k real orthogonal matrices. Specifically,

T̃TT
∗
i = arg min

TTT∈O(k)
E [Θ(TTT ,CCCB)|CCCB ∈ Ωi] . (8)

The modified steepest-descent algorithm [24, Algorithm 15] can be used to minimize a
differentiable function on the complex Stiefel manifold St(k, n) = {TTT ∈ Ck×n : TTTHTTT =
IIIk}, the set of all k × n complex matrices whose columns are orthonormal vectors.
This algorithm, which uses the Armijo’s step-size rule, almost always converges to a
local minimum. As O(k) is a special case of St(k, n), we adapted [24, Algorithm 15]
to solve (8). Due to space limitations, we will not elaborate on specifics here, but
refer the reader to [24].



3.3 Complete CD Algorithm for Transform Codebook Design

Given: A training set of covariance matrices S̃ representing SC , an initial codebook

of orthonormal matrices T (0) = {T̃TT (0)

1 , ..., T̃TT
(0)

N }, a tolerance parameter ε > 0, and
maximum allowed iterations M . Set iteration index t = 1.

1. Given T (t−1), partition S̃ into N subsets {Ω(t)
1 , . . . ,Ω

(t)
N } according to (4).

2. Given {Ω(t)
1 , . . . ,Ω

(t)
N }, find the optimal transform codebook T (t) by solving (8).

3. Estimate (by sample averaging) Θ̄(t), see (2). If
Θ̄(t−1) − Θ̄(t)

Θ̄(t−1)
6 ε or t > M

stop; Otherwise, let t→ t+ 1 and repeat from 1.

4 Experimental Results

4.1 A toy example

While the KLT is the optimal transform for coding Gaussian vectors, it is known that
the KLT is not optimal for vectors from a Gaussian mixture [25]. Using the proposed
algorithm, we optimized a single transform matrix for 2-dimensional vectors drawn
from a Gaussian mixture with 3 mean-zero components whose covariance matrices
are

CCC1 =

[
1.54 −1.84
−1.84 2.62

]
, CCC2 =

[
0.46 0.40
0.40 0.70

]
, and CCC3 =

[
2.22 0.77
0.77 0.38

]
.

Tables 1 compares the SNR and the entropy estimated from a test set of 3 × 106

vectors. The SNR is defined as 10 log10

∑
‖XXX‖2∑
‖XXX−X̂XX‖2

with sums taken over the test

set. The step-size ∆ was chosen such that the theoretically expected rate is 0.6
bits/sample. High-rate and Laplace respectively refer to transforms optimized using
the high-rate Gaussian model (6) and the Laplacian model (7). Note that the KLT
has been computed from a single covariance matrix, estimated from the complete
dataset. While the result itself is not surprising, our design algorithm does find a
transform matrix noticeably better than the KLT.

4.2 Preliminary Results for Motion-compensated (MC) Video Residuals

This section presents experimental results obtained with MC (inter-frame prediction)
residuals of video sequences. Since our transform codebook design algorithm in its
current form is applicable only to non-separable transforms, we considered transform
coding of 4× 4 pixel blocks in our experiments to keep the computational complexity
low. Thus we would encode 16-dimensional vectors using a 16×16 transform matrix.
For the purpose of generating residual frames to be used in the training of transform
codebook design, we used the HM test model, [26] and a set of 9 standard CIF resolu-
tion (352× 288), 30 fps gray-scale video sequences (Bus, Coastguard, Crew, Football,
Foreman, Mobile, Soccer, Stefan, Tennis), containing a diverse range of motion char-
acteristics. To apply the block-wise stationary model, we divided each residual frame



Table 1: SNR and entropy (bits/sample) for coding a 3-component Gaussian mixture.

Transform SNR (dB) Entropy

KLT 3.21 0.71
DCT 3.69 0.63

High-rate 4.0 0.59
Laplace 4.0 0.59

into 16× 16 non-overlapping blocks (spatially stationary blocks) and each such block
was divided into 4 × 4-pixel transform coding blocks (16-dimensional vectors). We
then considered a set of time-aligned spatially stationary blocks in 8 adjacent frames
to be a locally stationary block of 16-dimensional vectors, and estimated a single
covariance matrix for each such spatio-temporal stationary block. The total training
set thus consisted of 26639 local covariance matrices, which was used as the input
to the transform matrix codebook design algorithm. Various codebook designs were
tested using a separate set of 7 video sequences (See Table 2.)

In our experiments we used the same step-size ∆ for all transform coefficient in
a vector and set the dead zone to

(
−∆

2
,+∆

2

)
. In general, ∆ determines the bit rate.

However, when the Laplacian MSE model is used, ∆ required to achieve a given bit
rate has to be used in the transform codebook design algorithm, see (7). This can be
achieved by designing transform codebooks for many ∆ values and selecting the ∆
and the transform codebook that has (approximately) the desired rate. We however
found that, a transform codebook designed for an appropriately chosen value of ∆
remains nearly optimal for a wide range of ∆ values. We further elaborate on this
point below. Since the DCT will likely be good for some stationary blocks, we included
the DCT as an additional codeword, after designing a codebook. In the following, we
have used the estimated entropy of the quantization indices as a proxy for the rate of
variable-length coding. The total rates reported for adaptive coding include the rates
of both the quantized transform coefficients and the codebook indices identifying the
transform matrix for each stationary block.

Table 2, presents the gains in peak signal-to-noise ratio (PSNR) and rate achieved
by optimized codebooks relative to the DCT, expressed in terms of Bjøntengaard-
Delta (BD) PSNR and BD-bit-rate [27]. Note that, a positive BD-PSNR indicates a
gain in PSNR compared to the DCT while a negative BD-rate indicates a rate saving.
To further illustrate the advantage of using adaptive transforms over the DCT, we
show in Fig. 1, the histograms of codeword usage in Football and Ice sequences.

As an example of how adaptive transform coding and non-adaptive DCT compares
over a single sequence, Fig. 2 shows the absolute PSNR (not BD-PSNR) of the MC
residual for the Ice sequence, where to avoid clutter in the figure, we compute and
show the average PSNR for groups of 8 consecutive frames. As one would expect,
the difference between the codebook optimized with the high-rate Gaussian model
and the finite-rate Laplacian model diminishes as the rate increases. However, in all
our experiments with MC residuals, it was observed that the Laplacian model always
yielded a better codebook. This is because at low rates, the high-rate Gaussian model



Table 2: BD-PSNR and BD-Rate gains achieved by transform matrix codebooks over the
standard DCT. High-Rate and Laplace refer to quantization MSE model used for codebook
optimization.

Sequence

Codebook size N
3 6 9

BD-PSNR (dB) BD-Rate (%) BD-PSNR (dB) BD-Rate (%) BD-PSNR (dB) BD-Rate (%)
High-Rate Laplace High-Rate Laplace High-Rate Laplace High-Rate Laplace High-Rate Laplace High-Rate Laplace

Akiyo 0.096 0.148 -2.86 -5.10 0.122 0.185 -3.60 -5.39 0.135 0.192 -3.94 -5.43
City 0.096 0.233 -1.44 -3.80 0.180 0.332 -2.75 -5.14 0.180 0.343 -2.74 -5.35
Flower -0.009 0.152 0.15 -1.44 0.048 0.221 -0.41 -2.04 0.048 0.211 -0.39 -1.88
Hall Monitor 0.137 0.250 -3.44 -6.49 0.187 0.313 -4.46 -7.46 0.185 0.323 -4.46 -7.65
Ice 0.157 0.393 -2.91 -7.31 0.180 0.467 -3.27 -8.27 0.179 0.465 -3.29 -8.28
Mother daughter 0.224 0.290 -5.83 -8.66 0.259 0.367 -6.61 -9.08 0.264 0.379 -6.74 -9.58
Waterfall 0.152 0.239 -1.86 -3.53 0.281 0.356 -4.10 -5.00 0.292 0.354 -4.30 -5.17

Average 0.122 0.244 -2.60 -5.19 0.180 0.320 -3.60 -6.05 0.183 0.324 -3.69 -6.19

can be quite inaccurate or even outright invalid [2]. Given that the codebooks are
designed off-line, the slight complexity increase associated with the use of Laplacian
model (compare (6) and (7)) would be of no consequence. An interesting issue however
is the robustness of a codebook designed with the Laplacian model for a specific ∆:
how different are codebooks designed for significantly different ∆ values? In HM test
model (H265 codec), the parameter QP whose value can range from 0 to 51, is used to
set the bit-rate and hence the quantization step-size. Our experiments showed that,
a single Laplace codebook optimized for QP=34 is nearly as good as the codebooks
optimized for each QP value in the entire range.

5 Future Work

There exist other descent-type algorithms for optimization on manifolds, which can
be explored, see [22]. While these algorithms may converge faster, they perform de-
scent steps on geodesics of the manifold which can be computationally quite complex.
The algorithm we have used performs descent steps on tangent spaces of the manifold
which is much simpler, but results in slower convergence. It seems possible to ex-
tend our codebook design procedure to use the Newton-type algorithm for manifold
optimization presented in [24], which also takes descent steps on tangent spaces, but
will likely converge faster. Finally, while we have considered only non-separable trans-
forms in this paper, an extension to separable transforms is being currently developed.
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