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Uncertainty-aware Source-free Domain Adaptive
Semantic Segmentation

Zhihe Lu, Da Li, Yi-Zhe Song, Senior Member, IEEE, Tao Xiang, Timothy M. Hospedales, Senior Member, IEEE

Abstract—Source-Free Domain Adaptation (SFDA) is becom-
ing topical to address the challenge of distribution shift between
training and deployment data, while also relaxing the require-
ment of source data availability during target domain adaptation.
In this paper, we focus on SFDA for semantic segmentation,
in which pseudo labeling based target domain self-training is a
common solution. However, pseudo labels generated by the source
models are particularly unreliable on the target domain data due
to the domain shift issue. Therefore, we propose to use Bayesian
Neural Network (BNN) to improve the target self-training by
better estimating and exploiting pseudo-label uncertainty. With
the uncertainty estimation of BNNs, we introduce two novel self-
training based components: Uncertainty-aware Online Teacher-
Student Learning (UOTSL) and Uncertainty-aware FeatureMix
(UFM). Extensive experiments on two popular benchmarks,
GTA5 → Cityscapes and SYNTHIA → Cityscapes, show the
superiority of our proposed method with mIoU gains of 3.6%
and 5.7% over the state-of-the-art respectively.

Index Terms—Source-free Domain Adaptation, Semantic Seg-
mentation, Self-training, Bayesian Neural Network, Uncertainty
Estimation.

I. INTRODUCTION

Semantic segmentation is a fundamental task in computer
vision that has been widely studied for decades [1]. With
the advance of deep learning in the past years, semantic
segmentation performance has been improved dramatically [2].
However, such strong performance relies heavily on large-
scale annotated training data, which is extremely expensive
in dense pixel-wise annotation for segmentation masks. For
example, the popular COCO [3] segmentation dataset with
only 80 commonly-seen object classes has taken over 70,000
worker hours. Meanwhile, in line with other applications in
machine learning and computer vision [4], [5], segmenta-
tion performance degrades rapidly under domain shift that
inevitably occurs between training data and deployment condi-
tions [6]. This is a severe problem for semantic segmentation
in practice, as it is infeasible to repeat dense annotation for
each deployment domain.

Unsupervised domain adaptation (UDA) has thus gained
significant interest as a route to tackling this problem by
adapting models trained on labeled source domain data to
unlabeled target domain data [6]–[8], [8], [9], [9]–[14]. The
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Fig. 1: blue Directly deploying the source model [17] on target
domain leads to large Pseudo-Label (PL) noise. The top-5
wrongly predicted classes per category are further given in
Table I.

majority of UDA methods assume the source and target
domain data is available jointly such that the trained models
can adapt to the target domain by methods such as adversarial
training [8], [9] and feature alignment [15], [16]. However,
the requirement to jointly process both labeled source and
unlabeled target domain data is prohibitive in reality. e.g., the
source data has privacy or copyright constraints, or is simply
too large to be re-distributed.

For this reason, Source-Free Domain Adaptation (SFDA) is
becoming topical [17], [18]. In this setting, only the source
trained model and unlabeled target domain data are available
during target domain adaptation. blue Most approaches to
SFDA are based on self-training in the target domain using
some kind of pseudo labels generated from the source model
[17], [18]. This is because pseudo labeling is the most effective
technique for a SFDA model to achieve good performance,
thus the focus of this work. However, pseudo labels generated
from the source model are not always accurate in the target
domain data due to distribution-shift (blue see noisy label ratio
in Figure 1 and top-5 wrongly predicted classes per category
in Table I), or there would be no need for adaptation. blue
These methods therefore attempt to make use of prediction
confidence thresholds to select reliable pseudo labels, which
are less affected by noise and enjoy high confidence (above
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TABLE I: blue Top-5 wrongly predicted classes per category. The results indicate that the model trained on source domain
tends to mis-classify the classes sharing similar appearances, thereby leading to label noise when deploying the model on target
data for pseudo label generation.

class/top-k road sidewalk building wall fence pole t-light t-sign vegetation

1 car road vegetation building building building building building building
2 sidewalk building sky vegetation vegetation vegetation vegetation vegetation terrain
3 building terrain fence fence wall fence pole pole sky
4 terrain car wall terrain sidewalk sidewalk sky t-light fence
5 fence wall pole sidewalk terrain sky fence fence pole

class/top-k terrain sky person rider car truck bus train motorcycle bicycle

1 sidewalk building building person truck building truck building car building
2 road vegetation vegetation building building car building bus building vegetation
3 vegetation terrain sidewalk vegetation road vegetation car truck vegetation road
4 building pole car car vegetation road vegetation car rider car
5 car t-light road bicycle bus wall road fence road person

a certain threshold) predicted by a trained model. However,
the adaptation process then hinges on model uncertainty
estimation: can prediction uncertainty be used to differentiate
between reliable pseudo labels that have been correctly esti-
mated and should be used for learning; vs. unreliable pseudo
labels that were not correctly estimated and should not be
used for adaptation? This question has not been studied well
in source-free domain adaptive semantic segmentation, and
unfortunately conventional neural networks used in modern
segmentation systems are well known to suffer from poor
uncertainty estimation [19].

To address this issue, our first contribution is to introduce a
Bayesian Neural Network (BNN) based adaptation approach
to SFDA. BNNs are widely considered the gold standard
for providing proper uncertainty estimation [20], [21], but
are not often used in domain adaptation. In particular, for
the neural network blocks to be adapted from source to
target, we use the source pre-trained model to define a prior
distribution over neural network weights. Then during the
adaptation process, we learn a posterior distribution over the
target domain adapted weights. Learning this posterior BNN
enables us to better estimate both target domain confidence
and uncertainty (noise ratio descends/ascends wrt confidence
and uncertainty respectively in Figure 2) and thus develop an
improved adaptation pipeline.

Building on our BNN, we then introduce two novel self-
training based components that exploit uncertainty estimation:
Uncertainty-aware Online Teacher-Student Learning (UOTSL)
and Uncertainty-aware FeatureMix (UFM). blue First, we
construct a teacher-student learning pipeline, in which pre-
dictions averaged by multiple Monte Carlo (MC) samples of
our BNN after argmax operation are regarded as teacher
pseudo labels to guide the (student) predictions. However, as
with any teacher-student setup, incorrect teacher predictions
can be detrimental for the student. Therefore, we use the
uncertainty estimation of our BNN to weight each teacher
supervision of the student. That is, a pixel-wise uncertainty
map is employed to weight the supervision to emphasis
the effect of high certainty pseudo labels. Second, we take
inspiration from the semi-supervised learner ClassMix [22],
and propose a new feature-space extension called FeatureMix,
that enjoys better performance and faster speed. blue Vanilla

ClassMix essentially performs data augmentation by sampling
pseudo-labeled class masks from two images and generating
a new synthetic image for training. As with any pseudo-label
setup, this introduces detrimental noise if pseudo labels are
incorrect. Therefore we introduce uncertainty-awareness into
FeatureMix such that class-wise masks with high certainty
are preferred for data generation. Concretely, the class-wise
uncertainty is estimated by our BNN based MC sampling,
which then can be used as guidance for class selection, i.e.,
classes with higher certainty are more likely to be chosen.
Together these uncertainty aware training objectives enable
effective adaptation with reduced influence of incorrect self-
training supervision (a consistent lower noisy label ratio of
our BNN shown in Figure 2 (left)), thus leading to the state-
of-the-art SFDA for semantic segmentation.

We summarize our contributions as follows:
• We provide the first analysis of the pseudo label noise

issue in self-training of SFDA for semantic segmentation,
and the first solution by upgrading the network backbone
to a Bayesian Neural Network (BNN) which enables
uncertainty estimation for improved self-training.

• We introduce an Uncertainty-aware Online Teacher-
Student Learning (UOTSL) pipeline that adapts to the
unlabeled target domain by using a multiple Monte Carlo
sample teacher to guide a student network; and ensure its
reliability by exploiting prediction uncertainty.

• Furthermore we propose Uncertainty-aware FeatureMix
(UFM), a faster feature-level extension of ClassMix [22]
with uncertainty-awareness. UFM mask generation ex-
ploits BNN prediction uncertainty to ensure high-quality
images and labels are synthesized for training.

• Extensive experiments on two popular benchmarks
demonstrate that our method outperforms the existing
state of the art significantly.

II. RELATED WORK

A. UDA for Semantic Segmentation

UDA for semantic segmentation has been widely studied
in the literature [6]–[9]. These methods can be categorized
into three groups: generative model based [8]–[10], [12]–[14],
feature-alignment based [15], [16], [23], [24] and self-training
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Fig. 2: blue Left: Histogram of noisy PL by prediction confidence. Lower label noise ratio at high confidence means that
detecting noisy PLs by conventional confidence thresholding works better in our BNN than both the normal NN baseline [17]
and the MC dropout based method. Right: Our BNNs uniquely provides a second way to detect noisy PLs by computing
prediction uncertainty over Monte Carlo samples of network weights. High uncertainty predictions are more likely noisy PLs
in our BNN, but the noise ratio is not increasing with the higher uncertainty for MC dropout.
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Fig. 3: blue Our method consists of three branches: self-training baseline, Uncertainty-aware Online Teacher-Student Learning
(UOTSL) and Uncertainty-aware FeatureMix learning (UFM). BNN adapter (fŴ) is the only trainable part during target
adaptation. Fθ: feature extractor. Hψ: segmentation head. p: predictions. (fmix, ŷmix): mixed features and labels via the class-
wise guidance (pseudo labels). u: estimated uncertainty (Ep. 4). ȳ: teacher pseudo labels (Ep. 6). The basic self-training branch
is omitted for simplicity.

based [25], [26]. Due to GANs’ [27] success of generating
high-fidelity images, [8], [9] proposed to transfer the source
domain data into the target domain style such that the target-
style source data can be leveraged to train the model directly
with labels. Feature-alignment based methods often resorted
to attention mechanisms [15], [16] or used an extra domain-
adversarial discriminator [23], [24]. Self-training approaches
based on pseudo labels [28] have also been adapted to UDA for
semantic segmentation [26]. As with semi-supervised learning
the key issue with self-training and Pseudo Labels (PLs) is
to prevent noisy PLs from causing model drift. Thus studies
focused on techniques such as regularisation [25] and class-
balancing [26] to improve confidence-based detection of valid
PLs for training. Our approach is also based on self-training
and PLs but we extend to address the source-free case, and
propose a BNN-based adaptation framework that enables both
confidence- and uncertainty-based rejection of poor PLs.

B. Source-free Domain Adaptation

Source-Free Domain Adaptation (SFDA) assumes that the
source data is inaccessible during the target domain adap-
tation. Due to its practical significance, SFDA for image
classification [29], [30] and semantic segmentation [17], [18],
[31], [32] have obtained increasing attention recently. For
image classification, SHOT [29] proposed to learn a target-
specific feature extractor with a frozen source-domain-trained
classifier by using information maximization learning and
pseudo-labeling based self-training. 3C-GAN [30] leveraged
the collaboration between a conditional GAN and the frozen
prediction model to synthesize target-style training samples,
which can be used for model adaptation. In the semantic
segmentation applications, [31] used class-ratio as a prior to
guide the entropy minimization for adapting model across
different MRI modalities. [18] introduced data-free knowledge
distillation and patch-level self-supervision to improve SFDA



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

for semantic segmentation. [32] proposed to minimize the
uncertainty between the feature-corrupted and feature-intact
branches. In contrast, [17] focused on training a domain-
generalizable source model by mimicking multiple domains
with various augmentations before conventional PL-based self-
training. In this work, we emphasize the negative impact of
PL noise and propose an uncertainty-aware BNN framework
to detect noisy PLs. We then show how to use this to enhance
both a teacher-student self-training branch and a feature aug-
mentation based self-training branch.

C. Uncertainty Estimation

Uncertainty and confidence estimation in deep learning [20],
[21], [33] are increasingly studied due to their significance
for trustworthy and explainable AI. This is also important
in the context of PL and self-training based semi-supervised
learning and domain adaptation, where reliable labels should
be selected for learning [17], [32]. However, conventional deep
networks are overconfident [19] – assigning high probabil-
ities to incorrect labels; and do not provide any epistemic
uncertainty estimates. This undermines existing schemes to
select good PLs for training [17], [32]. While Bayesian Neural
Networks can in principle provide both confidence (aleatoric
uncertainty) and uncertainty (epistemic uncertainty) estimates
[20], these have not been widely used in practical semi-
supervised or domain-adaptive learning. A few initial attempts
have used Monte Carlo dropout as a means to estimate
epistemic uncertainty for use with PL weighting [34], based
on the notion that it can approximate BNN inference [35].
However, this corresponds to inference in an arbitrary BNN.
blue In contrast, Ciosek et al. [36] proposed to fit randomly
initialized prior distributions for uncertainty estimate while
Deep Ensembles [37] used model ensemble to against the
impact of uncertainty. blue The similar ensemble technique,
e.g., multi-rater agreement/consensus modeling, was adopted
in [38], [39]. blue Moreover, some theoretical research [40] for
examining the limitations of common variational methods, i.e.,
mean-field variational inference (MFVI) (used in our BNNs)
and Monte Carlo dropout (MCDO) [35], have been proposed.
However, their examination was conducted under the low-
dimensional and small data regime with mainly 2-hidden layer
BNNs, which limits its applicability to scenarios that exist
a large amount of data and use multi-layer BNNs, e.g., in
our set-up. In this paper, we perform variational inference to
learn a posterior BNN after adaptation to the target domain,
given the source domain model as a prior. We further show
how to use the uncertainty estimates of this BNN to improve
adaptation performance.

III. METHODOLOGY

A. Task Definition and Overview

SFDA for semantic segmentation has two stages: 1) source
model training and 2) target domain adaptation. In source
model training, a set of source data image-segmentation map
pairs Ds := {Xs,ys} are used to train a source model.
During target domain adaptation, only the trained source
model and unlabeled target domain data Dt := {Xt, null} can

be leveraged. We follow the same setting as [17] for the source
model training and focus on improving the target domain
adaptation in this paper. Our method consists of ResNet feature
extraction followed by three head branches: basic self-training
(reused from [17], omitted for simplicity), Uncertainty-aware
Online Teacher-Student Learning (UOTSL) and Uncertainty-
aware FeatureMix (UFM), as shown in Figure 3. We follow
[17]’s choice of feature extraction modules to update, but
differently learn a BNN posterior for the adapted module,
rather than a point estimate for it. We denote the frozen feature
extractor and segmentation head as fθ and fψ , and the adaptive
BNN modules or adapter as fŴ, which will be detailed in the
following section.

B. Bayesian Neural Networks

Given a pretrained source model ws, one typically adapts it
onDt using some unsupervised objective, such as self-training.
In our framework, we use source model ws to define a fixed-
variance prior p(W) = N (ws, σ

2
0), which we adapt to a BNN

posterior model p(W|Dt) = N (wt, σ
2
t ) using the target data

Dt, by learning new mean wt and variance σ2
t parameters.

Specifically, given the training samples Xt from Dt and the
current pseudo labels Ŷ as D̂t := {Xt, Ŷ}, the goal is to
estimate a posterior distribution p(W|D̂t). However, directly
computing p(W|D̂t) = p(W, D̂t)/p(D̂t) is intractable, due
to the unknown marginal p(D̂t). Therefore, we use variational
inference [41], [42] and define a variational distribution q(W)
to approximate the posterior p(W|D̂t) by minimizing their KL
divergence

q(W) = argmin KL(q(W)||p(W|D̂t))
= argmin E[log q(W)]− E[log p(W, D̂t)] + log p(D̂t)
= argmin − ELBO(W, D̂t) + log p(D̂t).

(1)
where ELBO is the evidence lower bound objective,

ELBO(W, D̂t)
= E[log p(W, D̂t)]− E[log q(W)]

= E[log p(W)] + E[log p(D̂t|W)]− E[log q(W)]

= E[log p(D̂t|W)]−KL(q(W)||p(W))

= E[log p(Ŷ|Xt,W)]−KL(q(W)||p(W))

(2)

Maximizing ELBO is equivalent to minimizing the KL di-
vergence in Eq. 1. The first term in Eq. 2 corresponds to
the standard pseudo-label self-training objective Lp, and the
second to prior regularization Lkld. Both can be estimated by
Monte Carlo samples of W [41], [42]. Rather than using a
standard Gaussian, q(W) is set as p(W) in our case.

1) Uncertainty Estimation with BNNs: Standard NNs esti-
mate prediction confidence via the label posterior p(y|x, Ŵ)
where Ŵ are a set of learned weights using D̂t. This enables,
e.g., rejecting of pseudo labels ŷ as unreliable if their confi-
dence is below a threshold p(ŷ|x, Ŵ) < τ [17], [32]. BNNs
provide the opportunity to marginalize over the weights as
p(ŷ|x, D̂t) =

∫
Ŵ

p(ŷ|x,Ŵ)p(Ŵ|D̂t), thus accounting for
weight uncertainty in inference. This has two effects: (i) It
improves standard confidence calibration [21], as illustrated in
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Figure 2 (left). This makes pseudo-label filtering p(ŷ|x, D̂t) <
τ more reliable. (ii) blue It provides the ability to estimate
uncertainty of predictions based on multiple sets of sampled
weights, which conventional NNs cannot provide [20], as
illustrated in Figure 2 (right).

With our BNN, we can draw N Monte Carlo samples from
the weight posterior p(Ŵ|D̂t) and compute prediction uncer-
tainty w.r.t. these samples. Specifically, given T predictions
for each of B input images, we have a prediction tensor
P = [p1, . . . ,pT ] ∈ RT×B×C×H×W , we estimate uncertainty
by calculating the standard deviation σ as,

µ =
1

T

T∑
i

Pi (3)

σ =

√√√√ 1

T

T∑
i

(pi − µ)2. (4)

Finally, we average σ along dimension C to get pixel-wise
standard deviation (STD) σ∗ ∈ RB×H×W . We then normalize
each element of σ∗ to (0, 1] as

u = e−σ∗
∈ RB×H×W . (5)

u now provides a pixel-wise uncertainty measure for each
image, which we will use to guide self-training based domain
adaptation, e.g., by down-weighting high uncertainty pixel
pseudo labels.

blue
a) The Advantage of Using Uncertainty: The optimiza-

tion on deterministic weights used in normal neural networks
often fails into a sub-optimal solution when noisy labels exist,
while the estimated uncertainty of predictions from multiple
sets of weights by our BNN can be leveraged to downplay
the low certain predictions and stress the high certain ones,
thereby alleviating the noisy impact and approaching to the
optimal solution.

C. Uncertainty-aware Online Teacher-Student Learning

We introduce here our first new self-training based compo-
nent, uncertainty-aware online teacher-student learning. Given
an input x we can use Monte Carlo sampling of a BNN model
to get T different corresponding predictions [p1, . . . ,pT ].
Then, for the teacher branch, we average the multiple pre-
dictions and generate a pseudo label as

ȳ = argmax(p̄) = argmax(mean[p1, . . . ,pT ]) (6)

, and use it to guide a single (student) prediction pi. Impor-
tantly, since pseudo labels provided by the teacher supervi-
sions vary in reliability, we use our uncertainty estimator u
(Sec III-B, Eq. 5) to weight the loss, leading to

Luotsl =
1

|Dt|
∑
Dt

1

HW

H,W∑
h,w

uh,wℓce(ȳ
h,w,ph,wi ), (7)

which automatically down-weights noisy teacher pseudo la-
bels.

D. Uncertainty-aware FeatureMix

1) Revisting ClassMix.: ClassMix [22] is a strong aug-
mentation mechanism, shown successful in semi-supervised
semantic segmentation. A network’s predicted pseudo-label
masks are used to mix two initially unlabeled samples to a
new synthesized labeled sample. Given two images xA and
xB and their pseudo-label masks ŷA, ŷB , ClassMix produces a
new image-mask pair xC , ŷC for learning by pixel-wise binary
mixing of both input images and labels. Specifically, ClassMix
randomly selects half of classes shown in xA as foreground
and the remaining classes as the background, defining a pixel-
wise binary mask m. Applying this mask, a new mixed image
and pseudo mask are generated as follows:

xC ←m⊙ xA + (1−m)⊙ xB

ŷC ←m⊙ ŷA + (1−m)⊙ ŷB

where ⊙ is element-wise multiplication, xC the new mixed
image and ŷC the corresponding mixed pseudo mask. The
newly generated images and pseudo-label masks can then be
added to enrich the training data. However, through visualizing
the mixed image, we found arbitrarily selecting half of classes
shown in xA often generates some unrealistic images (as
shown in top two rows of Figure 4), which do not benefit
training. This is because the learned model is needed to work
for the real data.

2) Uncertainty-aware FeatureMix.: To address the afore-
mentioned problem in ClassMix, we propose an uncertainty-
aware sampling where classes with higher certainty have
higher probability to be sampled. In addition, we do the class-
mixing in the feature level. The implementation details are
shown in Algorithm 1.

a) Uncertainty-aware Sampling: Given an input image
xA, we can obtain its predicted segmentation probability map
using the training model, and maximize over classes to obtain
a pseudo mask ŷA. Now we define a class-wise sampling
probability q taking into account the prediction uncertainty
u from Sec III-B Eq. 5 as

qk =
1

HW

H,W∑
h,w

p(ŷh,wA = k)⊙ uh,w (8)

where k is the class index. Now sampling foreground classes
from qk, rather than uniformly as in [22], leads to high-
certainty classes being preferentially sampled.

b) FeatureMix: SFDA aims to adapt the source-domain
trained model to the unlabeled target domain data. No adequate
and accurate supervision during model adaptation makes train-
ing the whole model error-prone. Existing methods empirically
found adapting part of the source model, e.g., feature extractor
[29] and Block3 of ResNet-101 [17], performs well. We
follow [17] such that the early layers before Block3 are frozen
during target adaptation. Denoting fA = fθ(xA) as the feature
encoding of image xA prior to the adaptation block (resp.
fB = fθ(xB) and xB), feature mixing computes

fC ←m⊙ fA + (1−m)⊙ fB

ŷC ←m⊙ ŷA + (1−m)⊙ ŷB
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Image A Image B Binary Mask from A Mixed Image

Fig. 4: Top two rows are from ClassMix while bottom two rows are from ClassMix with uncertainty-aware sampling. From
left to right: image A, image B, binary mask generated from image A’s pseudo mask and mixed image. Mixed images from
ClassMix are obviously artificial, e.g., the red-circle regions. Zoom in for better observation

Algorithm 1: Uncertainty-aware FeatureMix

Inputs: Two unlabeled images xA and xB ;
Model: Fixed feature encoder fθ and segmentation
head fψ; a learnable BNN adapter fŴ;

Uncertainty Map: uA of xA via Eq. 4 and Eq. 5;
1: (fA, fB)← (fθ(xA), fθ(xB));
2: pA ← SF((fψ ◦ fŴ)(fA)) ▷ SF is softmax;
3: pB ← SF((fψ ◦ fŴ)(fB));
4: ŷA ← argmax(pA, dim = 1) ▷ Pseudo mask;
5: ŷB ← argmax(pB , dim = 1);
6: C ← Set of the classes present in ŷA;
7: Get uncertainty-aware (uA) class-wise sampling

probability q as Eq. 8;
8: {c} ← Sample |C|

2 classes according to q;
9: m(i, j)=1 if ŷA(i, j) ∈ {c} else 0 ▷ Binary mask;
10: fC ←m⊙ fA + (1−m)⊙ fB ▷ Mixed feature;
11: ŷC ←m⊙ ŷA + (1−m)⊙ ŷB ▷ Mixed mask;
12: return fC , ŷC ;

We now have a synthetic example {fC , ŷC} for which we can
supervise the network’s prediction pC .

Lufm =
1

|Dt|
∑

xA,xB∼Dt

1

HW

H,W∑
h,w

uh,w · ℓce(ŷh,wC , ŷpred) (9)

where ŷpred = fψ(fŴ(fC))
h,w and the uncertainty map again

weights supervisions according to their reliability as estimated
by our uncertainty estimator u as in Eq. 7, resulting in an
uncertainty-aware self-training.

E. blue Loss Function

In summary, our framework as shown in Figure 3 performs
BNN adaptation of a source model to the target domain.
This is driven by three heads/objectives: The standard pseudo-
label loss Lp and KL regularizer from from Eq. 2, the
uncertainty-aware teacher-student loss Luotsl from Eq. 7 and
the uncertainty-aware FeatureMix loss Lufm from Eq. 9. The
complete loss function is

L = Lp + Luotsl + Lufm + λLkld. (10)

IV. EXPERIMENTS

A. Datasets and Evaluation Metric

a) Datasets: We evaluate the proposed method on two
commonly-used synthetic-to-real benchmarks: GTA5 [52] →
Cityscapes [53] and SYNTHIA [54] → Cityscapes. Specif-
ically, the GTA5 dataset is collected from a popular video
game GTA5 with 24,966 images. We follow [17] exactly to
split it into a training set (24,500 images) and a validation
set (466 images). For SYNTHIA, a dataset rendered from a
virtual city scene, it has 9,400 images with 9,000 images used
for training and 400 images for validation. The target dataset,
i.e., Cityscapes, contains 2,975/500 training/validation images
from real street-view scenes in 50 different cities. As per [17],
[55], GTA5 images are resized to 1280× 720 then randomly
cropped to 1024 × 512; SYNTHIA images are resized to
1280 × 760 before random crop to 1024 × 512; Cityscapes
images are directly resized to 1024× 512.
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TABLE II: Quantitative evaluation on GTA5→Cityscapes. Architecture: DeepLab-V2 with ResNet-101. SF: source-free setting.
†: reproduced by us. Best results are in bold.
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mIoU

STAR [11] × 88.4 27.9 80.8 27.3 25.6 26.9 31.6 20.8 83.5 34.1 76.6 60.5 27.2 84.2 32.9 38.2 1.0 30.2 31.2 43.6
CBST [26] × 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9
PLCA [7] × 84.0 30.4 82.4 35.3 24.8 32.2 36.8 24.5 85.5 37.2 78.6 66.9 32.8 85.5 40.4 48.0 8.8 29.8 41.8 47.7
CrCDA [43] × 92.4 55.3 82.3 31.2 29.1 32.5 33.2 35.6 83.5 34.8 84.2 58.9 32.2 84.7 40.6 46.1 2.1 31.1 32.7 48.6
PIT [44] × 87.5 43.4 78.8 31.2 30.2 36.3 39.9 42.0 79.2 37.1 79.3 65.4 37.5 83.2 46.0 45.6 25.7 23.5 49.9 50.6
TPLD [45] × 94.2 60.5 82.8 36.6 16.6 39.3 29.0 25.5 85.6 44.9 84.4 60.6 27.4 84.1 37.0 47.0 31.2 36.1 50.3 51.2
RPT [46] × 89.7 44.8 86.4 44.2 30.6 41.4 51.7 33.0 87.8 39.4 86.3 65.6 24.5 89.0 36.2 46.8 17.6 39.1 58.3 53.2
FADA [47] × 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1
IAST [48] × 94.1 58.8 85.4 39.7 29.2 25.1 43.1 34.2 84.8 34.6 88.7 62.7 30.3 87.6 42.3 50.3 24.7 35.2 40.2 52.2
DACS [49] × 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
CorDA [50] × 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6
ProDA [51] × 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5

URMA [32]
√

92.3 55.2 81.6 30.8 18.8 37.1 17.7 12.1 84.2 35.9 83.8 57.7 24.1 81.7 27.5 44.3 6.9 24.1 40.4 45.1
SRDA [31]

√
90.5 47.1 82.8 32.8 28.0 29.9 35.9 34.8 83.3 39.7 76.1 57.3 23.6 79.5 30.7 40.2 0.0 26.6 30.9 45.8

GTA [17]
√

90.9 48.6 85.5 35.3 31.7 36.9 34.7 34.8 86.2 47.8 88.5 61.7 32.6 85.9 46.9 50.4 0.0 38.9 52.4 51.6
GTA† [17]

√
90.1 46.3 83.8 33.6 28.6 34.8 35.3 29.0 85.1 46.4 86.1 61.0 31.8 85.3 41.9 46.9 0.0 39.7 45.3 50.1

Ours
√

94.4 64.5 86.6 42.3 28.4 38.0 43.8 45.3 86.7 47.0 90.0 62.6 32.2 84.9 36.1 46.0 0.0 38.1 53.8 53.7

b) Evaluation Metric: We report IoU per class and mIoU
over all classes. For GTA5 → Cityscapes, IoU for 19 classes
are reported. For SYNTHIA → Cityscapes, we report both
13-class and 16-class IoU results [17]. We test our model on
the standard validation set as per [17], [55]. We also adopt
multi-scale evaluation as the final results following [17], [26],
[47], [48].

B. Implementation Details

a) Network Architecture: We use DeepLab-V2 [56] with
backbone ResNet-101 [57] in this work as per [17], [34], [55],
[58].

b) Source Training: We adopt five augmentations fol-
lowing [17]: FDA [55], style [59], AdaIN [60], weather [61],
cartoon [62], to train one global head Hg and five leave-one-
out heads Hi, i ∈ {1, 5}. We use SGD optimizer (momentum
0.9, weight decay 5e − 4), initial learning rate 2.5e − 4 with
a polynomial learning rate decay powered by 0.9, batch size
4, and training iterations 50k.

c) Target Adaptation: Self-training with pseudo labels
is our baseline method for target adaptation as in [17]. Con-
cretely, pseudo labels are generated by averaging the predic-
tions over all heads with class-wise confidence thresholds as
per [17]. To initialize the target training, the optimal head is
chosen by the lowest averaged entropy on the target training
set. When training, only Block3 is trainable while other
modules are frozen. We replace the standard Conv layers in
Block3 with Bayesian Neural Network (BNN) layers. The
means of posterior and prior Gaussian distributions in BNN
are initialized by weights of the trained source model while the
diagonal variance matrix is randomly initialized. As per [17],
[55], we use SGD optimizer with batch size 4, momentum 0.9,
weight decay 5e−4. The learning rate is initialized as 2.5e−4
scheduled with a polynomial learning rate decay powered by
0.9. Each round of self-training has 50k iterations. We do 3-
round self-training as in [17]. λ is set as 0 which is the best
as we found. We also adopt entropy minimization learning as
per [17]. During inference, only the mean of the BNN posterior

distribution is used without including extra cost beyond with
a typical deterministic model.

C. Comparison with State-of-the-art
a) GTA5 → Cityscapes Results: Table II compares our

results against existing domain adaptive semantic segmenta-
tion methods with/without source-free setting. Overall, our
proposed method achieves a new state-of-the-art performance
for most cases, often outperforming other competitors by a
large margin. Specifically, our method surpasses the best prior
art [17] by 2.1% (comparing reported) / 3.6% (comparing
reproduced). We also have two interesting observations from
experiments. First, the proposed source-free method can even
beat the majority of non-source-free competitors. This is
because we address a key issue, i.e., pseudo label noise, and
design a targeted solution to deal with it, thereby gaining
even better performance than many UDA methods. Second,
comparing with source-free methods, our method has an
evident superiority over class-wise IoU. For example, we gain
by 9.3% on “sidewalk” class, 7.0% on “wall” class, 7.9% on
“traffic light” class, etc. blue Despite the high performance
on most classes, we found our method under-performs in
some semantic classes, e.g., “car”, “truck” and “bus”. We
further investigate the top-1 wrongly predicted classes for
these classes and observe that “car”/“truck”/“bus” is often
mis-classified as “truck”/“car”/“truck”. This indicates that our
method tends to make mistakes when the given classes share
similar appearances. In the qualitative evaluation (see Fig-
ure 5), our method shows clearly better segmentation results
than prior state of the art [17], which is consistent with our
quantitative observations.

b) SYNTHIA → Cityscapes Results: We further show
the comparison on SYNTHIA → Cityscapes in Table III.
Overall, our method again outperforms all other alternatives
with larger margins. Concretely, we exceed the best competitor
by 5.7% on 13-class mIoU and 4.9% on 16-class mIoU. More
interestingly, the performance of our method is much closer to
that of the methods leveraging source data for adaptation (only
1.6% gap in 13-class mIoU). Furthermore, our method wins on
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Image OursGT GTASource Only

Fig. 5: Qualitative evaluation. From left to right: images, ground-truth labels, source only results, GTA [17] results and our
results. Task: GTA5 → Cityscapes. Architecture: DeepLab-V2 with ResNet-101. Note that the black pixels in GT are void and
ignored in loss computation.

most class-wise IoUs except four classes where performance
is comparable.

D. Further Analysis

We conduct comprehensive further analysis to verify the
contributions of each component in our proposed method. Note
that we do all experiments on task GTA5 → Cityscapes with
DeepLab-V2 using ResNet-101 backbone, and the reported
mIoU is obtained by 3-round self-training under multi-scale
evaluation.

a) Effect of Different Components: blackTable IV shows
the quantitative results of Uncertainty-aware Online Teacher-
Student Learning (UOTSL), Uncertainty-aware FeatureMix
(UFM) and the combination of they two. Note that the baseline
is the source only model and simple pseudo-label self-training
system of GTA [17]. Improving on this with our framework,
UOTSL alone boosts performance by 1.6% while UFM alone
gains 2.8% improvement. The combined version, i.e., our
proposed method, outperforms baseline by 3.6%. This demon-
strates the efficacy of our proposed components. We also
show some qualitative results in Figure 6. Both our UOTSL
and UFM show better segmentation results than source-only,

and our full model performs best, which is consistent to the
observations in the previous quantitative results.

b) Ablation Study of UFM: We compare our FeatureMix
with vanilla ClassMix [22] and further explore the effect of
Uncertainty-aware Sampling (US) of Eq. 8 and Uncertainty-
aware Pseudo-labeling (UP) of Eq. 9 used in our UFM. The re-
sults can be seen in Table V. blackWe can see that FeatureMix
achieves slightly better performance than ClassMix, although
it runs with significantly less (149.68) GFLOPs. Further, the
proposed US and UP each improves the vanilla FeatureMix
separately and gives the best boost when used in combination.

c) Effect of Uncertainty-awareness: blackWe first com-
pare the Uncertainty-aware Pseudo-labeling (UP) with the
widely-used alternative hard thresholds in Table VI upon our
Uncertainty-aware FeatureMix (UFM) component. From the
results, we can see UP outperforms the ones using hard thresh-
olds by 0.5%. Furthermore, we investigate UP’s effect on the
Uncertainty-aware Online Teacher-Student Learning (UOTSL)
component. Interestingly, we can see UP also outperforms the
one using the best threshold by 0.5% mIoU. More importantly,
UP offers an automatic weighting scheme without the need of
tuning thresholds for different tasks.
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TABLE III: Quantitative evaluation on SYNTHIA → Cityscapes. Architecture: DeepLab-V2 with ResNet-101. SF: source-free
setting. †: reproduced by us. ⋆ is the 13-class mIoU. ‡: excluded classes for 13-class mIoU. The best results are in bold.
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mIoU mIoU⋆

STAR [11] × 82.6 36.2 81.1 - - - 12.2 8.7 78.4 82.2 59.0 22.5 76.3 33.6 11.9 40.8 - 48.1
CAG [63] × 84.8 41.7 85.5 - - - 13.7 23.0 86.5 78.1 66.3 28.1 81.8 21.8 22.9 49.0 - 52.6
APODA [64] × 86.4 41.3 79.3 - - - 22.6 17.3 80.3 81.6 56.9 21.0 84.1 49.1 24.6 45.7 - 53.1
CBST [26] × 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 42.6 48.9
PyCDA [65] × 75.5 30.9 83.3 20.8 0.7 32.7 27.3 33.5 84.7 85.0 64.1 25.4 85.0 45.2 21.2 32.0 46.7 53.3
TPLD [45] × 80.9 44.3 82.2 19.9 0.3 40.6 20.5 30.1 77.2 80.9 60.6 25.5 84.8 41.1 24.7 43.7 47.3 53.5
USAMR [66] × 83.1 38.2 81.7 9.3 1.0 35.1 30.3 19.9 82.0 80.1 62.8 21.1 84.4 37.8 24.5 53.3 46.5 53.8
RPL [34] × 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1 47.9 54.9
DACS [49] × 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 90.8 67.6 38.3 82.9 38.9 28.5 47.6 48.3 54.8
IAST [48] × 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 49.8 57.0
RPT [46] × 89.1 47.3 84.6 14.5 0.4 39.4 39.9 30.3 86.1 86.3 60.8 25.7 88.7 49.0 28.4 57.5 51.7 59.5
CorDA [50] × 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 90.4 69.7 41.8 85.6 38.4 32.6 53.9 55.0 62.8
ProDA [51] × 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 55.5 62.0
URMA [32]

√
59.3 24.6 77.0 14.0 1.8 31.5 18.3 32.0 83.1 80.4 46.3 17.8 76.7 17.0 18.5 34.6 39.6 45.0

GTA [17]
√

89.0 44.6 80.1 7.8 0.7 34.4 22.0 22.9 82.0 86.5 65.4 33.2 84.8 45.8 38.4 31.7 48.1 55.5
GTA† [17]

√
85.7 42.0 80.2 12.7 0.0 34.1 24.1 25.8 81.6 85.7 63.1 30.0 76.7 39.5 36.6 49.8 48.0 55.5

Ours
√

93.0 59.0 83.8 16.7 1.2 35.1 36.9 35.2 84.2 89.1 64.9 34.3 82.3 38.8 41.4 52.9 53.0 61.2

TABLE IV: The effectiveness of different components. UFM:
Uncertainty-aware FeatureMix. UOTSL: Uncertainty-aware
Online Teacher-Student Learning. Task: GTA5 → Cityscapes.
Archtecture: DeepLab-V2 with ResNet-101.

UFM UOTSL mIoU
50.1√
52.9√
51.7√ √
53.7

TABLE V: Ablation study of Uncertainty-aware FeatureMix.
US: Uncertainty-aware Sampling. UP: Uncertainty-aware
Pseudo-labeling. Task: GTA5 → Cityscapes. Archtecture:
DeepLab-V2 with ResNet-101.

ClassMix FeatureMix US UP mIoU√
51.7√
51.8√ √
52.4√ √
52.2√ √ √
52.9

d) Effect of Monte Carlo Sampling Number: The MC
sampling number influences the uncertainty estimation and
the teacher prediction of Online Teacher-Student Learning
(OTSL). We analyze the performance variation by varying
the MC sampling number as shown in Table VIII. From the
results, we can see more MC samples induce better model
performance, which is expected.

e) blue BNN based vs. Other Uncertainty Estimate Meth-
ods: Dropout enables a simple way to estimate uncertainty
in neural networks [32], [35] where uncertainty is estimated
over predictions corresponding to different sampled dropout
masks. It is worth noting that the uncertainty here is governed
by the dropout rate and is usually not learned. In contrast, our
variational inference framework learns the correct posterior
distribution for each neuron end-to-end simply using our
objective (Eq. 10). Table IX shows the results of our BNN and
the conventional Monte-Carlo dropout. Our BNN outperforms
MC dropout by a margin of 4.6% and 4.4% with 3 and 5
MC samples, respectively. This comparison shows the better

TABLE VI: Effect of Uncertainty-awareness upon
Uncertainty-aware FeatureMix (UFM). UP: Pncertainty-aware
Pseudo-labeling. Task: GTA5 → Cityscapes. Archtecture:
DeepLab-V2 with ResNet-101.

FeatureMix UP/Threshold mIoU√
τ = 0.90 52.4√
τ = 0.93 52.4√
τ = 0.95 52.3√

UP 52.9

TABLE VII: Effect of Uncertainty-awareness upon
Uncertainty-aware Online Teacher-Student Learning
(UOTSL). UP: Pncertainty-aware Pseudo-labeling. Task:
GTA5 → Cityscapes. Archtecture: DeepLab-V2 with ResNet-
101.

OTSL UP/Threshold mIoU√
τ = 0.90 51.0√
τ = 0.93 51.3√
τ = 0.95 51.2√

UP 51.8

value of end-to-end learning of a Bayesian neural network than
a Dropout based approximation when accurate uncertainty
estimation is needed, such as using it against pseudo-label
noise.

blue We also compare Deep Ensembles [37], which lever-
ages the model ensemble to obtain more reliable predictions.
Specifically, to implement [37] in SFDASS, we manually set
the seed for network initialization from 1 to 5. Following the
training pipeline of the baseline method [17], 5 models are
obtained after training. We then use these 5 models for deep
ensemble [37], i.e., the 5 predictions from these 5 models are
averaged as the final prediction for evaluation. From Table IX,
we found that despite the promising performance gain over
the baseline method [17], i.e., 51.2%/52.0% vs. 50.1, deep
ensemble [37] still performs worse than our method.

f) Initialization of BNN Posterior: We tried two differ-
ent types of initialization of our BNN posterior, including
a diagonal (element-wise variance) and a spherical (shared
single variance) Gaussian distribution. We can see that the
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Image GT UOTSLSource Only UFM UOTSL+UFM

Fig. 6: Qualitative evaluation with different components. UOTSL: Uncertainty-aware Online Teacher-Student Learning. UFM:
Uncertainty-aware FeatureMix. From left to right: images, ground-truth labels, source only results, UOTSL only results, UFM
only results and UOTSL+UFM (our full model) results. Task: GTA5 → Cityscapes. Architecture: DeepLab-V2 with ResNet-
101. Note that the black pixels in GT are void and ignored in loss computation.

TABLE VIII: The Effect of Monte Carlo Sampling Num-
ber. FM: FeatureMix. OTSL: Online Teacher-Student Learn-
ing. US: Uncertainty-aware Sampling. UP: Uncertainty-aware
Pseudo-labeling. MC: Monte Carlo sampling number. Task:
GTA5 → Cityscapes. Archtecture: DeepLab-V2 with ResNet-
101.

FM OTSL US UP/Threshold MC mIoU√ √
τ = 0.90 1 52.8√ √ √

UP 3 53.1√ √ √
UP 5 53.7

results are comparable in Table X, demonstrating our method
is insensitive to the type of BNN posterior distributions. While
a spherical Gaussian is preferred when there is a constraint
about the total trainable parameters.

blue

TABLE IX: blue Comparison between our BNN, Dropout
based [35] uncertainty estimation (dropout rate 0.5) and Deep
Ensembles [37]. Setting: GTA5 → Cityscapes with DeepLab-
V2 and ResNet-101.

Method # MC Samples / # Ensemble Models mIoU

MC Dropout [35] 3 48.5
Deep Ensembles [37] 3 51.2
Our BNN 3 53.1

MC Dropout [35] 5 49.3
Deep Ensembles [37] 5 52.0
Our BNN 5 53.7

g) The Effect of KL Regularization: Table XI shows
the effect of KL regularization. We found that performance
increases when the KL regularization is lowered. This is
reasonable in SFDA as the target domain at deployment is
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TABLE X: Diagonal vs. Spherical Gaussian Posteriors. Task:
GTA5 → Cityscapes. Archtecture: DeepLab-V2 with ResNet-
101.

Diagonal/Spherical mIoU
Spherical 53.4
Diagonal 53.7

quite different from the source domain, forcing the target
posterior close to the source prior model may harm the
performance.

TABLE XI: blue The effect of KL regularization.

λ 1 1e-1 1e-2 1e-3 0

mIoU 50.1 51.0 52.2 52.9 53.7

blue
h) Evaluation on Other Architectures: In Table XII,

we further evaluate our method on another architecture, i.e.,
FCN8s [67] with the VGG-16 [68] backbone. To save space,
we cluster 19 classes into four groups. That is, Background
(BG): building, wall, fence, vegetation, terrain, sky; Minority
Class (MC): rider, train, motorcycle, bicycle; Road Infras-
tructure Vertical (RIV): pole, traffic light, traffic sign; Road
Infrastructure Ground (RIG): road, sidewalk; and Dynamic
Stuff (DS): person, car, truck, bus. The results indicate that
our method keeps the superiority on various architectures.

TABLE XII: blue Evaluation on the architecture – FCN8s with
the VGG-16 backbone.

Method BG MC RIV RIG DS mIoU

SFDA [18] 51.6 7.8 15.9 58.6 43.7 35.8
GTA [17] 49.9 30.3 32.9 74.9 50.8 45.9

Ours 52.1 32.2 39.8 78.2 53.7 49.1

Image Ours GTSource Only

WallRoadTerrain Truck Car Sky Building SidewalkVegetationColor Legend:

Fig. 7: blue Failure cases.

blue
i) Failure Case: Figure 7 shows some failure cases

produced by our method. We found the failure often happens

when two categories share a similar appearance. For example,
part of the “road” is mis-segmented as “terrain” in the 1st row,
some cars are regarded as trucks in the 2nd row, the white
building similar to “sky” is mis-classified (row 3), “sidewalk”
mis-classified to “road” (row 4), “building” mis-classified to
“wall” (row 5) and “vegetation” on the wall mis-classified to
“wall” (row 6). This observation can be used to further advance
our method.

V. CONCLUSION

We proposed a Bayesian Neural Network (BNN) based
approach to addressing pseudo-label noise in SFDA for
semantic-segmentation. Our BNN’s improved uncertainty es-
timation underpins two novel self-training components in-
cluding Uncertainty-aware Online Teacher-Student Learning
(UOTSL) and our simple but effective feature augmentation,
Uncertainty-aware FeatureMix (UFM). These self-training ob-
jectives are effective on their own and together set a new state-
of-the-art performance on two standard SFDA segmentation
benchmarks. Further analysis shows the efficacy of each
component.
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