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CONVIQT: Contrastive Video Quality Estimator

Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik

Abstract—Perceptual video quality assessment (VQA) is an
integral component of many streaming and video sharing plat-
forms. Here we consider the problem of learning perceptually
relevant video quality representations in a self-supervised manner.
Distortion type identification and degradation level determination
is employed as an auxiliary task to train a deep learning
model containing a deep Convolutional Neural Network (CNN)
that extracts spatial features, as well as a recurrent unit that
captures temporal information. The model is trained using a
contrastive loss and we therefore refer to this training framework
and resulting model as CONtrastive VIdeo Quality EstimaTor
(CONVIQT). During testing, the weights of the trained model are
frozen, and a linear regressor maps the learned features to quality
scores in a no-reference (NR) setting. We conduct comprehensive
evaluations of the proposed model on multiple VQA databases by
analyzing the correlations between model predictions and ground-
truth quality ratings, and achieve competitive performance when
compared to state-of-the-art NR-VQA models, even though it
is not trained on those databases. Our ablation experiments
demonstrate that the learned representations are highly robust
and generalize well across synthetic and realistic distortions. Our
results indicate that compelling representations with perceptual
bearing can be obtained using self-supervised learning. The
implementations used in this work have been made available
at https://github.com/pavancm/CONVIQT,

Index Terms—no reference video quality assessment, blind
video quality assessment, self-supervised learning, deep learning

I. INTRODUCTION

HE smartphone revolution has led to an explosion of
Tvideo consumption over the internet. A recent report by
Cisco [1] estimates that more than 82% of internet traffic will
be dominated by online videos. Popular video sharing and
streaming platforms such as YouTube, Facebook, Netflix, and
Amazon Prime Video are accessed by hundreds of millions
of people over the globe, and more than one billion hours
of video are watched every day. Given the central nature of
videos as a primary medium of communication, it is important
that these platforms be able to monitor and control perceptual
video quality and to deliver better consumer experiences. The
problem of objectively quantifying and estimating perceptual
video quality is referred to as Video Quality Assessment
(VQA). Although subjective VQA, where quality judgments
are obtained by human observers, provides the most accurate
and reliable quality estimates, it is generally impractical, and
does not scale with the number of videos being assessed.
This necessitates the need for developing objective VQA
models that can reliably predict the responses of human
observers on the task of quality estimation. The goal of
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VQA models is to obtain predictions that correlate well with
subjective opinions. No-reference (NR, or blind) VQA models
are constrained to predict the quality of distorted videos without
any knowledge of any high quality reference or of the artifacts
that afflict them. The easy availability of affordable video
capture devices coupled with surge in smartphone usage has
led to massive amount of User Generated Content (UGC) videos
being continuously uploaded to social media sites. Since UGC
videos vary considerably in the amount of distortions that
come from capture, and since they are usually compressed
introducing further distortions. To achieve efficient handling
of this video traffic it is necessary to be able to objectively
quantify perceptual video quality and to guide subsequent
processing tasks such as further compression [2]], enhancement,
and optimization of bandwidth versus video quality.

Due to the practical significance of NR-VQA, a diverse set
of VQA databases and objective models have been created over
the last decade. A VQA database contains a set of distorted
videos, along with corresponding human opinion scores of them
obtained either in a laboratory or a crowd-sourced environment.
Earlier databases, such as LIVE-VQA [3], CSIQ-VQA [4],
EPFLPoliMI [5]], and MCL-V [6] datasets each contain a small
set of pristine, high quality source contents corrupted with
compression and transmission artifacts. Each source video was
synthetically degraded by only one or two types of distortions
applied in a controlled manner. Although these databases
were influential in improving video quality models, they do
not represent the reality of pervasive UGC videos that are
commonly corrupted by innumerable combinations of multiple
distortions. Because of this, several large scale databases that
contain authentic UGC distortions are now available such as
LIVE-VQC [7], KoNViD [8]], YouTube-UGC [9] and LSVQ
[10]. The UGC-VQA problem is particularly challenging due to
the large variety of distortions that can occur, as the influence
of video content on perceived quality. Advancements in capture
and display technologies has led to the widespread adoption
of videos of 4K/ultra high definition (UHD) resolution, high
dynamic range (HDR) and high frame rate (HFR). This has
led to the creation of datasets like AVT-VQDB-UHD-1 [11]],
ETRI-LIVE STSVQ [12], BVI-HFR [13]] and LIVE-YT-HFR
[14] which now make it possible to analyze the perceptual
implications of these new developments. From an NR algorithm
design standpoint, having a single reliable model that is able
to accurately quantify both synthetic and authentic artifacts
would be quite advantageous, since it could be used in wide
ranges of scenario presenting highly diverse of the distortions
and combinations of them.

Popular NR-VQA models employ a two stage design, where
in the first stage quality relevant features are extracted followed
by a regression stage that maps the features to perceptual
quality scores. Earlier techniques relied heavily on the use
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of Natural Scene Statistics (NSS) to derive features that are
highly sensitive to visual quality. Although these models have
been successful at predicting the perception of synthetically
applied distortions, their performance has proven to be limited
on the realistic distortions encountered in UGC videos. End-to-
end trained deep learning based VQA models [[10], [15]-[17]
have achieved significant improvements over these traditional
methods on UGC content. These performance improvements
have mainly been arrived at using transfer learning techniques,
whereby a deep model is first trained on a large labeled dataset
such as ImageNet [18] or Kinetics-400 [19], then later fine-
tuned on human opinion scores. Transfer learning is employed
since currently available VQA datasets are generally too small
to train deep models from scratch. Although fine-tuning can
be an effective way to obtain good performance on both
synthetic and realistic distortions, it requires careful choice
of hyperparameters, which may change on different VQA
databases.

A recent still picture (spatial) model called CONTRIQUE
[20] employs a self-supervised training approach, where a deep
model was trained to distinguish between different types of
image artifacts and also to determine the degree of perceptual
degradation present. The main advantage of this approach is
that it does not require human opinion scores of visual quality
for training, making model training feasible on unlabeled
image databases. The performance of CONTRIQUE was shown
to be highly competitive on multiple image quality datasets
comprising both synthetic and authentic artifacts. Motivated
by the successes of CONTRIQUE, here we extend the idea
to video quality prediction, which is a much harder problem
of higher dimensionality. We refer to the new model as the
CONtrastive VIdeo Quality EstimaTor (CONVIQT). Notable
attributes of CONVIQT are as follows:

1) Similar to CONTRIQUE, the CONVIQT model is first
trained from scratch to solve the auxiliary tasks of
distortion type and degradation level discrimination.
Training is done on an unlabeled video dataset containing
a mix of synthetic and realistic video distortions, using
a contrastive loss function.

2) The CONVIQT architecture includes the existing CON-
TRIQUE model which is used to capture spatial attributes
of video quality. The weights of the CONTRIQUE
model are frozen and not modified during the training
of CONVIQT.

3) In addition, recurrent unit processes the spatial features
to extract temporal quality information. The recurrent
unit is the only trainable component in the CONVIQT
pipeline.

4) During evaluation of the CONVIQT representations, all
of the weights are frozen and a linear regressor on each
VQA dataset learns to map CONVIQT features quality
scores. The quality predictions produced by CONVIQT
obtain competitive performance as compared to other
state-of-the-art (SOTA) VQA models across multiple
databases even though those models are trained on them.
This is achieved without any additional fine-tuning of
the backbone deep learning model.

5) The CONVIQT framework is simple but effective, and
generalizes well across synthetic and realistic distortions.

The rest of the paper is organized as follows: In Section
we discuss related work on VQA and self-supervised learning.
Section provides a detailed description of the design
of CONVIQT. Section [IV] analyzes and compares various
experimental results obtained with CONVIQT, and Section
[V] provides concluding remarks.

II. RELATED WORK

Next we discuss related work on NR-VQA and self-
supervised learning.

A. NR-VQA Models

Objective VQA models can be broadly categorized based
on the availability of reference information: Full-Reference
(FR), Reduced-Reference (RR) and No-Reference (NR). FR/RR
VQA [21]]-[24] models employ high quality pristine reference
videos against which the perceptual fidelity of distorted videos
are compared when determining quality, while NR models
make judgments without any reference information. Here our
primary focus will be on NR-VQA methods.

Blind assessment of perceptual video quality is challenging
due to the extreme diversity of spatio-temporal artifacts that
may be present. Moreover, the perception of these distortions
is deeply affected by the video content, adding additional
difficulty to the VQA problem. Although NR-IQA models
can be used to conduct VQA in a simple way by computing
quality scores at the frame-level, then temporally pooling
them, this often neglects vital temporal quality information.
Prior authors [25], [26] have demonstrated the significance of
change and motion in VQA. Thus, to obtain better performance,
VQA models need to account for the spatio-temporal nature
of video distortions and content. Early VQA models used
extensive domain knowledge about video artifacts in their
feature extraction frameworks, employing regressors to map
features to quality scores. Using features derived from Natural
Scene Statistics (NSS) and distorted image and video statistics
models [27] has been a popular example employing this
approach, whereby the videos are first transformed to a
band-pass domain, where deviations from expected statistical
regularities of the band-pass coefficients due to distortion
are used to capture perceptual aspects of quality. Exemplar
VQA models include VBLIINDS [28]], Li et al. [29], which
uses bandpass DCT coefficients, and BRISQUE [30], NIQE
[31]], VIIDEO [32] and Dendi et al. [33] which employ mean
subtracted contrast normalized (MSCN) bandpass coefficients
to obtain perceptually relevant quality features. V-CORNIA
[34]] employs codebook based unsupervised feature learning to
conduct frame quality prediction, and hysteresis pooling [35] to
obtain final video quality predictions. Korhonen proposed a two-
level quality model TLVQM [36] containing a comprehensive
set of low complexity features extracted from all frames present
in the video, along with high complexity features such as spatial
activity, exposure etc. computed on a representative subset
of the frames. VIDEVAL [37] uses an ensemble approach
whereby features from multiple NR models were carefully
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selected, yielding a feature set that was shown to perform well
on UGC videos.

Recently, end-to-end trained Deep Neural Networks (DNN)
have achieved significant performance gains on NR-VQA
problems. Since there is lack of large scale VQA datasets
to pretrain DNNs from scratch, most of the DNN based
models employ transfer learning, whereby a pretrained DNN
(pretrained on large datasets like ImageNet [18] or Kinetics-
400 [[19]) is fine-tuned in a supervised manner on human
opinion scores. The RAPIQUE model proposed by Tu et al.
[38]] employs a hybrid set of features derived from NSS and
an ImageNet pretrained CNN. Zhang et al. [39]] used FR-VQA
model predictions as weak labels to train a Convolution Neural
Network (CNN), then used this weakly trained CNN to conduct
NR-VQA. V-MEON [40] uses a multi-task training objective,
where codec classification and video quality regression are
jointly optimized. VSFA [15] employs ImageNet pretrained
CNN to extract content dependent features, along with a Gated
Recurrent Unit (GRU) to model temporal memory effects.
Ying et al. [10] demonstrated that features expressive of both
combining local patch quality and global video quality can
yield significant performance gains. GSTVQA [16]] employs
a pyramid temporal aggregation of short-term and long-term
memory effects to achieve efficient quality prediction. Li et
al. [17] employs transfer learning on IQA databases, along
with a list-wise ranking loss objective to achieve competitive
performance. All of the above methods employ supervised fine-
tuning techniques to obtain good performances. By contrast, we
focus on self-supervised feature learning with no requirement
of human quality labels during training, and no additional
fine-tuning during evaluation.

. Temporal Features from Authentic Distortions

Ilustration of CONVIQT training pipeline.

B. Self-Supervised Learning

Self-supervised techniques rely on generating supervisory
signals from unlabeled data. This is achieved by using an
auxiliary/proxy task from which labels can be easily obtained.
The auxiliary task is usually closely related to the original
task, so that model trained for the auxiliary problem can
be easily applied to the original task. Example tasks that
have been previously studied include rotation prediction [41]],
predicting the relative positions of image patches [42], image
colorization [43]], [44], and image inpainting [45]. Recent works
employing contrastive learning [46]]-[50] have used instance
discrimination to distinguish a data samples and augmented
versions of them from other input data samples, to achieve
significant performance gains on multiple computer vision
problems.

Several of the above ideas have been extended to learn
video representations. Fernando et al. [51]] employed rankings
of frame level video features in chronological order as a
proxy, to learn representations for action recognition. In [52f,
a temporal coherency measure is used as a supervisory signal
to learn video representations. Han et al. [53]] proposed Dense
Predictive Coding (DPC) framework by recurrently predicting
future representations. In [54], video playback rate perception
is used as an auxiliary task for learning video embeddings.
The successes of contrastive learning on pictures have been
extended to videos in [S5[]-[58]. A recently proposed self-
supervised VQA model called CSPT [59] employs distortion
and content specific contrastive loss to predict features of
future video frames. Further, a cross-entropy loss is added to
discriminate different distortions. Our proposed method greatly
differs from CSPT, since we employ a pure contrastive loss
trained model with the main goal of discriminating different
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distortion types and perceptual degrees of degradation. This
formulation achieves significantly better performance than
CSPT.

III. METHOD

Our goal here is to learn generic video representations
that may be used to predict video quality, with no require-
ment of having ground-truth quality labels during training.
Given a video = of dimensions H x W x T, where H, W
and T correspond to height, width and number of frames
respectively, we are interested in learning a transformation
f oo R3>XHXWXT  Rd that maps = to a d—dimensional
representation h. Prior NSS inspired VQA models have
employed band-pass transformations such as the DCT [28]],
[29], local mean-subtraction [30]], [32f], [33] and so on, to
obtain perceptually relevant quality features. Recent models
employing deep learning based transforms [[10]], [[L5], [17], [59]
have also been highly successful in capturing perceptual video
distortions.

Our proposed training workflow is illustrated in Fig. [T} The
pipeline can be divided into two parts: (a) Spatial component -
spatial features from CONTRIQUE [20] model are extracted
from every video frame. (b) Temporal component - a recurrent
unit maps the observed temporal variations of spatial features
to a d—dimensional feature vector h. In the following sections,
each component present in the pipeline is described in detail.

A. Proxy/Auxiliary Task

In self-supervised learning the original problem is modified
into an alternate but closely related auxiliary task, for which
ground-truth labels are easily available or can be obtained.

Encoder
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The workflow used to obtain synthetically distorted sequences.

A model is then trained to solve the auxiliary task, then
during the inference stage the trained model is evaluated on the
original problem. Inspired by the success of CONTRIQUE in
capturing still picture distortions, we follow the idea of learning
representations that can discriminate different distortion types,
as well as the strength of degradations. Thus, the auxiliary
task is a classification problem, where each class contains
videos corresponding to similar distortion type and degree of
degradation.

Generating data for auxiliary task: Since the auxiliary task
requires a database of videos spanning different distortion types
and degradation levels, the first step is to create a database of
synthetically distorted videos. In this work we mainly focus on
three widely observed synthetic video distortions: compression,
scaling, and temporal artifacts arising due to changes in frame
rate. To obtain holistic learning of different artifact types, the
created dataset should contain videos which reflect individual
as well as the combined effects of the above distortion types.
A pristine high quality source sequence x is provided as input
to the distorted video generator module. A high level block
diagram illustrating the workflow used to obtain synthetically
distorted sequences is shown in Fig. [2] The description of each
of the blocks shown in Fig. [2] is provided below.

o Frame Rate Control: This block modifies the frame rate
of the source sequence, and generates videos having frame
rates equal to or smaller than that of the source video. Sim-
ilar to the LIVE-YT-HFR database [14]], the frame rates
are chosen from the set F' = {24, 30, 60, 82, 98, 120}. The
values in the set F' denote frames per second (fps). Note
that we only choose values from F’ that are either equal
to or smaller than the source frame rate. For example, for
a source video having 120 fps, all of the values in F' are



chosen, while for a 60 fps source video only three values
(60, 30 and 24 fps) are used. The low-frame rate versions
were obtained by dropping frames, method by modifying
the fps filter present in FFmpeg [60]].

o Scaling: The output videos from the frame rate control
block are fed as input to the scaling module, which
modifies the spatial resolutions of the videos. Scaling
block consists of a downsampling module preceding a
compression encoder, both followed by an upsampler, so
that the resulting video has the same resolution as the
original. This is done to replicate scenarios usually seen
in streaming and social media platforms, where videos are
encoded after reducing them to lower spatial resolutions
before transmission. Encoding at lower resolutions might
be preferable when either the content has low complexity
leading to minimal loss when downsampled, or when
there are limitations on the bandwidth available for
transmission [61]-[63]]. The Lanczos kernel was used
when downsampling and upsampling the videos. To ensure
that the aspect ratios of the videos remained unchanged
after downsampling, the resizing factors were chosen
from the set D = {1,2,4,8}. We also did not include
downsampling factors that would have resulted in videos
having resolutions less than 240p (320 x 240), since these
are rarely used. For example, a 1080p source content will
therefore only have three scaled versions: 1980 x 1080,
960 x 540 and 480 x 270.

o Compression: Each of the subsampled sequences were
subjected to 5 levels of VP9 compression using single
pass Ffmpeg encoding in constant quality mode. Constant
Rate Factor (CRF) values were varied to obtain different
compression levels. The CRF values were chosen from the
set CF = {lossless, 24,36, 48,63}, and the same CRF
values were applied to all of the source contents. The
values in the set C'F' were chosen to include extreme
cases (lossless and CRF=63, the latter corresponding to
the highest possible compression level in VP9) as well as
the wide range of compression levels between. Here, we
make the simplifying assumption that the CRF values can

be used as proxies to measure the degree of compression.

Frame rate changes may introduce temporal artifacts such
as judder and strobing, while spatial downsampling and
upsampling procedures can introduce scaling distortions. Our
approach to generating distortions, coupled with compression,
aims to realize realistic video representation currently available
over internet, social media and streaming platforms. These
kind of videos are included so that the learned representations
will be sensitive to the synthesized distortion types.

Let a pristine source sequence x be subjected to the distortion
pipeline shown in Fig. 2] resulting in a distorted sequence
a7 where f € F,d € D, and ¢ € CF. We define the
auxiliary task of identifying the values f, d and c on a given
distorted video x/?¢. This defines a classification problem

having |F| x | D| x |C'F| classes, where [.| is the set cardinality.

In our experimental setting, |F'| = 6,|D| =4, and |CF| = 5,
resulting in a total of 120 classes.

B. Contrastive Loss

Motivated by the success of using contrastive loss for
learning representations in CONTRIQUE [20]], we follow a
similar approach to capture space-time video distortions in
CONVIQT. To obtain embeddings, we defined a deep model
consisting of three components: a spatial encoder, a recurrent
unit and a projector. The spatial encoder extracts features on
every frame of the input video, then these features are fed to the
recurrent unit. The recurrent unit extracts temporal information
from these features. The projector is a fully connected network
(FCN) that reduces the dimensionality of the features produced
by the recurrent unit. Since CONTRIQUE representations have
been shown to achieve impressive performance in capturing
spatial artifacts, we employ CONTRIQUE with frozen weights
as a spatial encoder, and the CONTRIQUE weights are not
modified during training. Thus, the recurrent unit and the
projector network are the trainable components of CONVIQT.
Let f(.) and g(.) denote the recurrent unit and the projector
network, respectively. For a given video x € R3*H>xWxT

y = CONTRIQUE(z"), t={1,2,...,T} (1)
T
1
t) — t) pt-1) - — (t) )
WO =y REY), T;h7 @
z=g(h) heRyzecRE 3)

where (") is the #* frame of video z, and h is the d-
dimensional temporal pooled output from the recurrent unit.
The representation h is Lo normalized [20], [49], [S0] before
being fed to the projector. The projector reduces the feature
dimensions from d to K (K is a hyperparameter in this
setting). The objective is to obtain similar embeddings z
for videos belonging to the same class. The cosine distance
between the representations z; and z;, given by ¢(z;,z;) =
2Lz /||zil|2]|5]]2 is used as a similarity measure. The loss
function is similar to the supervised contrastive loss proposed
in [66]. For a video z; it is defined as

syn 1 exp(¢(zi’ Zj)/T)
ﬁiy = — —log )
V(l)| je;(i) ZZ:I ]]-m;éi eXP(QS(Zi’ Zm)/T)
4)

where NN is the number of videos present in the batch, 1 is
the set indicator function, 7 is a temperature parameter, V()
is a set containing video indices belonging to the same class
as x; (but excluding the index %), and |V (4)| is its cardinality.
For example, if z; is a video which was encoded at 540p,
60fps and CRF=24, V(i) will contain indices of all videos
(excluding index 7) which were encoded at 540p, 60fps and
CRF=24 setting. There exists transformations of a video z;
(video transformations are discussed in Sec. guaranteeing
that V' (7) contains at least one sample. Note that a distorted
video’s class is uniquely determined by its frame rate, spatial
subsampling factor, and compression level, and is independent
of the native resolution of the source video. For example, a
4K 120fps source encoded at 1080p, 60 fps, and CRF=48
will belong to the same class as that of a 1080p 120 fps
source encoded at 540p, 60 fps, and CRF=48, since both are




TABLE I
SUMMARY OF VQA DATABASE CHARACTERISTICS USED FOR EVALUATION.

[ Database [[ Number of Videos [ Number of Scenes | Resolution | Time Duration |  Distortion Type |
KoNViD [8] 1200 1200 540p 8s
LIVE-VQC [7] 585 585 240p-1080p 10s
YouTube-UGC [9] 1380 1380 360p-4K 20s Diverse distortions
LSVQ [10] 39075 39075 99p-4K 5-12s (authentic / UGC)
CVD2014 [64] 234 5 480p 10-25s
LIVE-Qualcomm [65] 208 54 1080p 15s
LIVE-VQA [3] 160 10 768 x 432 10s
CSIQ-VQA [4] 228 12 832 x 480 10s Compression,
ETRI-LIVE STSVQ [12] 437 15 540p-4K 4-Ts scaling, transmission
AVT-VQDB-UHD-1 [11] 432 10 360p-4K 8-10s
LIVE-YT-HFR [14] 480 16 1080p-4K 8-10s Frame rate,
BVI-HFR [13] 88 22 1080p 10s compression

spatially downsampled twice before encoding. This resolution
independent class setting enables us to employ source videos
spanning multiple spatial resolutions during training, without
requiring any need to resize videos to predetermined sizes. The
objective defined in (@) is a normalized temperature-scaled
cross entropy (NT-Xent), and is calculated between every pair
of videos present in the batch.

C. Multiscale Learning and Temporal Transformations

Images, and by extension videos are inherently multi-scale,
and perceived quality is influenced by local details as well as by
global characteristics. Prior VQA models [28], [30], [38] have
achieved significant gains in performance by employing multi-
scale representations. In CONVIQT, we use two scales: native
resolutions, and half-scale resolutions obtained by downscaling,
twice along both spatial dimensions. An anti-aliasing filter is
used before downscaling as shown in Fig. [] to avoid aliasing
artifacts. Note that this downscaling operation preserves the
aspect ratio of the input video, which is desirable since changing
this could modify the perceived quality of the input video.

The aim of the objective function in (@) is to obtain dis-
criminative representations that can differentiate different video
classes, and also demonstrate invariance to quality preserving
transformations. Operations on videos which preserve video
quality we will collectively refer to as quality preserving
transforms. Depending on the coordinates on which video
transforms are applied, they can be further categorized as
spatial and temporal transforms. Spatial transforms are applied
independently on each video frame, while temporal transforms
are applied along the time axis. Since the CONTRIQUE model
is only used to obtain spatial features, and during training of
CONTRIQUE, spatial transforms such as horizontal flipping,
color-space conversion were employed, we do not include any
spatial transforms when training CONVIQT.

We employ temporal band-pass transforms inspired by
similar successes [23], [24], [38], [67], [68] capturing tempo-
ral distortions. Temporal band-pass coefficients demonstrate
reliable statistical regularities on very high quality videos, but
these are predictably disturbed by the presence of distortions.
We use them to access temporal quality information over
multiple scales (subbands). Similar to [23]], we employ three
temporal band-pass filters: Haar, Daubechies-2 (db2), and
Biorthogonal-2.2 (bior2.2) with wavelet packet decomposition

[[69]. In each case, we use three levels of wavelet decomposition
resulting in 7 subbands (ignoring the low pass response).
During training, the wavelet filter and subbands were randomly
chosen for each input video. The transformed videos at two
spatial scales were then fed as input to the CONTRIQUE
model to obtain spatial representations. Since the CONTRIQUE
weights remain unchanged during CONVIQT training, the
spatial representations of all the transformed videos present
in the training data can be pre-computed and stored in the
disk. This significantly reduces the overall training time of
CONVIQT.

To facilitate batch training, the videos are randomly cropped
along the temporal axis to length of 7" frames. This ensures that
every video in the batch contained the same number of frames,
which is necessary when training deep networks. We presume
that this cropping operation did not alter the distortion class,
and that the cropped portion inherits the class of the original
video. Temporal cropping is performed on every video at both
full-scale and at half-scale. We ensured that all of the videos in
the training set contain at least 7" frames to avoid zero padding.

D. Realistic Distortions

In the contrastive objective (@), prior knowledge of the
distortion types and degradation degrees were used to learn
video representations. However, this kind of information is
usually not readily available for UGC videos, despite the
massive volumes of streamed and shared on social media
platforms like YouTube, Facebook, Instagram and TikTok.
Given their consumer ubiquity, it is vital that the learned
embeddings be sensitive to the realistic artifacts found on UGC
sequences, which often include mixtures of multiple unknown
distortion types. Thus, the classes used in (@) are only poorly
applicable to UGC videos. Since identifying the distortion type
and degree of degradation of UGC videos is not easy task (even
for human eyes), we instead simplify the problem by treating
each UGC video as a unique class containing a distinctive
blend of multiple distortions, separate and different from other
UGC videos, as well as from synthetically distorted sequences.
Thus, given a UGC video z;, only its scaled (and temporally
transformed) version x; belongs to the same class. The loss
objective in (@) is modified to reflect this change as

exp(p(zi, 24)/T)
Lypti exp(@(zi, 2m)/T)

LYY = —log O

N
Zm:l



This is essentially the instance discrimination objective used
in prior work [49], [50]]. Combining (@) and (3}, the overall
training objective is then

N

L= % Z Lpigvao) L3 + Vg evaoy £L29C,  (6)
i=1

where N is the total number of videos present in the batch,

and 1 is the indicator function determining whether the

input video is UGC. To avoid any bias during training, at

each iteration we sampled equal numbers of synthetic and

authentically distorted videos.

E. Evaluating Representations

The learned representations are evaluated with respect to their
video quality prediction power by correlating their responses
against human opinion scores. After the CONVIQT model is
trained, the projector network g(.) is discarded and the outputs
of the recurrent unit h = f(y™), ... y®*) are used as video
quality embeddings. A regularized linear (ridge) regressor is
trained on top of the frozen CONVIQT model in order to map
embeddings to video quality scores. The regression expression
is given by

y\" = CONTRIQUE(«\"),t = {1,...,T},j = {1,...,N}

T
() _ g (0) 2 (t=1) _ 1 3 (t)
t=1

N d

p=Wh, W*=argmin Z(GT]- — pj)2 + )\Z W2,
w4 i=1
where GT); are ground-truth quality scores, p; are predicted
scores, W is a trainable vector having the same dimensions as 5,
A is a regularization parameter, d is the number of dimensions
of h, and N is the number of videos present in the VQA
database training set. Similar to training, multiscale processing
is conducted during evaluation, and features are computed at
two scales: full-scale and half-scale, with the final embedding
being a concatenation of embeddings from both scales. During
the evaluation phase, all of the features were calculated without
performing any additional temporal transforms or cropping.
Note that when the ridge regressor was trained, the weights
of the recurrent unit (as well as those of CONTRIQUE) were
frozen without any additional fine-tuning. Although fine-tuning
could lead to better correlations, it modifies the encoder weights,
and would not be a true measure of the effectiveness of the
unsupervised learning process. However, we show in Sec. [V-B
that even without fine-tuning, CONVIQT obtains competitive
performance against SOTA VQA models.

IV. EXPERIMENTS AND RESULTS

In this section we evaluate the performance of CONVIQT
by carrying out a series of experiments. First we will describe
the experiment settings used when pretraining CONVIQT, the
evaluation protocol, and the VQA models used for comparison.
We also report the performance of CONVIQT against SOTA
VQA models on multiple VQA datasets. To investigate the
generalizability of the CONVIQT representations, we further

performed cross-dataset evaluations. We also performed a
collection of ablation experiments to analyze the significance of
distortion types present in the pretraining data, and the impact
of the various temporal transforms.

A. Experimental Settings

Pretraining Data: The pretraining data contains a mix of
videos afflicted with synthetic and realistic artifacts.

o Synthetic distortions: To learn synthetic artifacts, we
first generated data as detailed in Sec. The high
quality pristine contents required to generate the distorted
sequences were obtained from 5 different sources as
described below.

1) Waterloo GRD database [71]]: Contains 1000 videos
of 1080p resolution captured at 24/30 fps and
10s in duration. We randomly sampled 500 source
sequences from this database.

2) Dareful [72]: The Dareful website contains open
source high quality 4K stock video footages shot at
30 fps. We used 46 sequences from this platform.

3) REDS [73]: The REDS dataset contains videos of
720p resolution captured at 120 fps. This dataset was
originally created to benchmark video deblurring and
super-resolution algorithms. We used a total of 270
(240 from training set and 30 from validation set)
videos from this database.

4) MCML [74]: MCML is a VQA dataset containing
240 distorted videos obtained from 10 reference
sequences of 4K resolution captured at 30 fps. We
used all of the reference sequences from this dataset.

5) UVG [75]: Ultra Video Group (UVG) dataset con-
tains 16 diverse 4K contents at 50/120 fps. To avoid
overlap of contents between the VQA databases
used for evaluation, we used only three contents of
4K resolution at 120 fps: ’Bosphorus’, 'Lips’ and
’ShakeNDry’.

Thus, 829 pristine sequences spanning multiple resolutions
and frame rates were used to generate a total of 30855
synthetically distorted sequences.

o Authentic distortions: To capture realistic distortions
we used videos from the training set of Kinetics-400
dataset [19]. Kinetics-400 is a human action video dataset
containing 400 human action classes where each video is
of duration around 10s. The training set of Kinetics-400
contains 240K videos of which we randomly sampled
30K videos, discarding all labels before training.

Thus, a total of 60K videos were used to pretrain CONVIQT.
Additionally, we ensured that there was no content overlap
between the pretraining sequences and the sequences present
in VQA datasets used for evaluation.

Pretraining Details: We employed a Gated Recurrent Unit
(GRU) [76] as the recurrent unit f(.) for modeling temporal
information, and 2 layers of MLP as the projector g(.). The
GRU contains a single layer with a hidden size of 1024. The
output f(.) of the GRU is temporal average pooled (as shown
in (2)) before being fed to the MLP g(.). The dimension of
the final output z was fixed to K = 128. The batch size for



TABLE I
PERFORMANCE COMPARISON OF CONVIQT AGAINST DIFFERENT NR MODELS ON VQA DATABASES CONTAINING AUTHENTIC DISTORTIONS. IN EACH
COLUMN, THE THREE BEST MODELS ARE BOLDFACED. ENTRIES MARKED ’-’ DENOTE THAT THE RESULTS ARE NOT AVAILABLE.

g : : LSVQ [10]
Method Model Type KoNViD [8] LIVE-VQC [7] YouTube-UGC [9] _— TesET080p
SROCCT PLCCT | SROCCT PLCCT | SROCCT PLCCT | SROCCT PLCCT | SROCCT  PLCCT
BRISQUE [30] 0.649 0.651 0.593 0.624 0393 0.407 0579 0576 0.497 0.531
VBLIINDS [28] Traditional/ 0.706 0.701 0.681 0.699 0.534 0.540 - - - -
TLVQM [36] Handcrafted 0.758 0.759 0.787 0.794 0.656 0.647 0.772 0.774 0.589 0.616
VIDEVAL [37] Features 0.770 0.770 0.743 0.747 0.776 0.771 0.794 0.783 0.545 0.554
RAPIQUE [37| 0.788 0.805 0.741 0.761 0.747 0.756 - - - -
VSFA [15] 0.794 0.798 0.717 0.770 0.787 0.788 0.801 0.796 0.675 0.704
PVQ (0] Supervised 0.791 0.786 0.827 0.837 - - 0.814 0.816 0.686 0.708
GSTVQA [16 Pretrainin 0.814 0.825 0.784 0.787 - - - - - -

Li et al. [17] & 0.835 0.833 0.841 0.839 0.825 0.817 0.852 0.853 0.771 0.787
Resnet-50 [70] 0.820 0.823 0.770 0.804 0.805 0.811 0.820 0.817 0.706 0.735
CSPT [59] 0.701 0.673 0.622 0.630 N N N N N N
CONTRIQUE [20] || Unsupervised 0.844 0.842 0.815 0.822 0.825 0.813 0.828 0.826 0.662 0.697
CONVIQT Pretraining 0.851 0.849 0.808 0.817 0.832 0.822 0.821 0.820 0.668 0.702

TABLE III

PERFORMANCE COMPARISON OF CONVIQT AGAINST DIFFERENT NR
MODELS ON THE CVD2014 AND LIVE-QUALCOMM DATABASES. IN EACH
COLUMN, THE THREE BEST MODELS ARE BOLDFACED. ENTRIES MARKED

’-” DENOTE THAT THE RESULTS ARE NOT AVAILABLE.

Method CVD2014 [64] LIVE-Qualcomm [65] |
SROCCT | PLCCT | SROCCT | PLCCT
BRISQUE [30] 0.790 0.804 0552 0.598
VBLIINDS [28] 0.795 0.806 0.570 0.626
TLVQM [36] 0.779 0.790 0.785 0.815
VIDEVAL [37] 0.814 0.832 0.670 0.705
RAPIQUE [38] 0.807 0.823 0.665 0.691
VSFA i3] 0.850 0.869 0.708 0.774
GSTVQA [l6] 0.831 0.844 0.801 0.825
Li et al. [I7] 0.862 0.882 0.833 0.837
Resnet-50 [70] 0.835 0.838 0.650 0.691
CSPT [59] 0.653 0.691 - -

CONTRIQUE [20] 0.826 0.836 0.765 0.777
CONVIQT 0.858 0.837 0.797 0.802

pretraining was N = 1024, with equal numbers of videos
randomly sampled from synthetic and authentically distorted
sequences. The spatial features from the CONTRIQUE engine
were extracted at the native resolution of the input videos,
while temporal crops of length 7" = 16 frames were fed to
the GRU to learn temporal information. During training, the
videos were loaded in RGB format, and the same temporal
transform was applied to all 3 channels of the input video. The
transformed video was normalized to lie in the range [0, 1]
before being fed as input. The temperature parameter present
in expressions @) and (5) was fixed at 7 = 0.1. The GRU
and the projector network were trained from scratch for 10
epochs using stochastic gradient descent (SGD) at a learning
rate of 1.2 using a batch size N = 1024. A linear warmup
over the first two epochs was applied to the learning rate,
followed by a cosine decay schedule without restarts [[77]]. All
the experiments were done in Python using the PyTorclﬂ deep
learning modules.

Evaluation Datasets: We evaluated CONVIQT on 12 large

VQA datasets spanning both synthetic and realistic distortions.

The characteristics of the VQA datasets used for evaluation are
summarized in Table [l When using the LSVQ [10] database,
which also has human-labeled space-time video patches, we

Uhttps://pytorch.org/

only used the full videos (and corresponding human opinion
scores), leaving out the video patches.

Compared Methods: We compared the performance of
CONVIQT against a variety of SOTA NR-VQA models. The
compared models can be classified into three categories based
on the feature design methodology: (a) Traditional/hand-crafted
features - BRISQUE [30]], VBLIINDS [28]], TLVQM [36],
VIDEVAL [37]], and RAPIQUE [38]]. These models employ
support vector regressors (SVRs) to map features to quality
scores. (b) Supervised deep learning based models - VSFA
[15], PVQ [10], GSTVQA [16], and Li et al. [17]. Note
that RAPIQUE is a hybrid model employing a combination
of NSS and deep CNN features. (c) Self-supervised deep
learning based models - CSPT [59]] and CONTRIQUE [20]. To
numerically compare the above models, we copied the values
reported by the respective authors or in the literature. For
PVQ, which is capable of inferencing on video patches, we
only report the performance of the model trained on videos,
since video patch quality scores are not employed in our
evaluation. To compare the results obtained by the supervised
and unsupervised pretraining techniques, we also included a
2D Resnet-50 [70] model pretrained on Imagenet [18]]. Since
BRISQUE, Resnet-50 and CONTRIQUE are IQA models, the
respective features were computed on each video frame then
average pooled along the temporal dimension to obtain the
final video embedding. These embeddings were then mapped
to quality scores using an SVR on the BRISQUE features, and
a linear regressor on the Resnet-50 and CONTRIQUE features.
For fair comparison of CSPT with CONVIQT, we report the
CSPT performance under linear evaluation.

Evaluation Protocol: Spearman’s rank order correlation
coefficient (SROCC) and Pearson’s linear correlation coefficient
(PLCC) were used as evaluation metrics to compare the
VQA models. A four-parameter logistic non-linearity [[78] was
applied to the quality predictions before PLCC was computed.

During evaluation, the videos were processed at their native
resolution, and were partitioned into non-overlapping clips of
T continuous frames. From each clip CONVIQT produced a
single feature vector as output, and the features from all clips
were average pooled to obtain the final video representations.
These representations, along with the corresponding human
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PERFORMANCE COMPARISON OF CONVIQT AGAINST DIFFERENT NR MODELS ON VQA DATABASES CONTAINING SYNTHETIC DISTORTIONS. IN EACH

TABLE IV

COLUMN, THE THREE BEST MODELS ARE BOLDFACED. ENTRIES MARKED ’-’ DENOTE THAT THE RESULTS ARE NOT AVAILABLE.

LIVE-VQA 3] CSIQ-VOQA [4] ETRI-LIVE STSVQ [12] | AVI-VODB-UHD-1 [11] |
Method Model Type | —sp5ecT — PLOCT | SROCCT — PLCCT | SROCCT PLCCT SROCCT PLCCT
BRISQUE [30] Trditional/ 0.567 0571 0.654 0.672 0.351 0,341 0.838 03815
VBLIINDS [28] H;‘; (;C‘r‘;‘]}; g 0.724 0.748 0.784 0.771 0.480 0.534 0.875 0.876
TLVQM [36] Features 0.733 0.751 0.794 0.774 0.426 0.423 0.832 0.823
VIDEVAL [37] 0.475 0.463 0.368 0.300 0.360 0.332 0.664 0.609
VSEA [19] Supervised 0.700 0.727 0.798 0.781 - - - §
Resnet-50 [70] Pretraining 0.442 0.385 0.703 0.686 0.889 0.902 0.865 0.880
CSPT [59] ; 0.713 0.726 0.751 0.749 - - - -
CONTRIQUE [20] Uli’sipe.”.lsed 0.636 0.623 0.795 0.775 0.931 0.930 0.873 0.920
CONVIQT retraming 0.622 0.595 0.766 0.749 0.939 0.936 0.867 0.906
TABLE V

PERFORMANCE COMPARISON OF CONVIQT AGAINST DIFFERENT NR
MODELS ON VARIABLE FRAME RATE VQA DATABASES. IN EACH COLUMN,
THE THREE BEST MODELS ARE BOLDFACED.

opinion scores were used to learn the regressor weights. When
learning regressor weights, each VQA dataset was randomly
split into 70%, 10%, and 20% partitions corresponding to
training, validation, and testing sets, respectively. The validation
set was used to calculate the regularization coefficient of the
regressor via grid search. For VQA datasets containing multiple
distorted videos belonging to the same content, the random
splits were conducted in a way that ensured no content overlap
between the training and testing sets. The training protocol
was repeated 100 times to avoid biases towards the choice of
videos present in the training set, and the median performance
was reported. Due to the large size of the LSVQ dataset, the
single split reported by the authors [10] was used.

B. Correlation Against Human Judgments

We compared the performance of CONVIQT against SOTA
VQA models on authentically distorted videos, as shown in
Table [} It may be observed from the Table that CONVIQT
achieved competitive correlation values compared to the other
VQA models. The compared VQA models are categorized
based on the type of feature extraction techniques employed.
The performance differences between CONTRIQUE and CON-
VIQT is indicative of the significance of the recurrent unit. This
difference depends on the VQA dataset being used, but in most
cases employing the recurrent unit yielded better performance.
Notably, the performances of CONTRIQUE and CONVIQT
were achieved without any supervised fine-tuning, unlike the
other models.

Table [[II| shows performance comparisons on the CVD2014
[64] and LIVE-Qualcomm [65] datasets. These datasets contain

multiple videos of the same scene impaired by authentic
distortions. Thus, the train/test splits were done ensuring no
content overlap between them. Again, CONVIQT obtained
excellent correlations when compared to other VQA models.

Method LIVE YTHER [14] BVI-HFR [13] | i :
etho SROCCT [ PLCCT | SROCCT | PLCCT The performance of CONVIQT on videos modified by
BRISQUE [30] 0319 0.419 0.260 0.444 synthetic distortions is analyzed in Table [V] CONVIQT obtains
V%%\I]Igﬁs[ 3[62]8] 8-3’3; 3'45‘8471 . 0,490 superior correlations on recent VQA datasets such as ETRI-
VIDEVAL [37] 0474 0.566 0.344 0474 LIVE STSVQ [[12] and AVT-VQDB-UHD-1 [11]], while its
RAPIQUE [38] 0.456 0.566 0.303 0.463 performance is slightly lower on legacy datasets like LIVE-
RFAVIE1§OI6[§(I) ] ggzi 3333 gfﬁg gfﬁ? VQA [3] and CSIQ-VQA [4]. This may be attributed to the type
esnet- . . K . . .
CONTRIQUE [20] 0.650 0706 0.568 0.556 of dlStOl‘th.nS presen.t. ETRI—LIVE STSVQ.and AVT—VQ]?B—
CONVIQT 0.672 0.734 0.641 0.626 UHD-1 mainly contain scaling and compression artifacts which

were well modeled in the data used to pretrain CONVIQT. The
legacy datasets contain distortions such as transmission errors
arising in wireless and IP networks, and packet loss errors,
which were not included in the training data and could be a
contributing factor in obtaining lower correlation values.

C. Performance Comparison on Variable Frame Rate Videos

Table [V| compares CONVIQT against other VQA models
on variable frame rate (VFR) videos. The LIVE-YT-HFR [14]
and BVI-HFR [13] VQA databases contain videos of same
content but sampled at multiple combinations of frame rates
and compression factors, along with corresponding human
opinion scores. VFR-VQA is a challenging problem, since
quality predictors must account for subtle perceptual quality
changes occuring along the temporal dimension due to frame
rate changes. As comparisons we also included FAVER [/6§],
which is a current SOTA no-reference VFR-VQA model.
From Table [V] it may be observed that CONVIQT achieved
competitive performance when compared against other NR-
VQA models, indicating the frame rate discrimination capability
of CONVIQT representations. We may also observe significant
performance gaps between CONTRIQUE and CONVIQT on
same datasets, highlighting the importance of the recurrent
unit.

D. Cross Dataset Evaluation

We conducted a cross dataset analysis in Table The
regressors were trained and tested on different VQA datasets.
Cross data evaluations are beneficial when analyzing the
generalizability of compared models. We compared CON-
TRIQUE and CONVIQT to study whether the inclusion of
the recurrent unit yields better generalization. We chose a



TABLE VI
SROCC PERFORMANCE COMPARISON TO ANALYZE DIFFERENT CONVIQT TRAINING PROTOCOLS. syn AND UGC INDICATE MODELS TRAINED ON DATA
CONTAINING ONLY SYNTHETIC AND AUTHENTIC DISTORTIONS, RESPECTIVELY. IN EACH ROW THE TOP PERFORMING MODEL IS BOLDFACED.

[ Training [ Testing [[ CONVIQT-syn | CONVIQT-UGC | CONVIQT |

YouTube-UGC KoNViD 0.728 0.750 0.761
KoNViD YouTube-UGC 0.580 0.601 0.731
ETRI-LIVE STSVQ | AVT-VQDB UHD-1 0.709 0.759 0.774
AVT-VQDB UHD-1 ETRI-LIVE STSVQ 0.697 0.607 0.651
LIVE-YT-HFR AVT-VQDB UHD-1 0.754 0.730 0.767
AVT-VQDB UHD-1 LIVE-YT-HFR 0.593 0.448 0.556
TABLE VII TABLE VIII

CROSS DATABASE SROCC COMPARISON OF VQA MODELS. IN EACH ROW
THE TOP PERFORMING MODEL IS BOLDFACED.

SROCC PERFORMANCE COMPARISON TO ANALYZE THE IMPORTANCE OF
TEMPORAL TRANSFORMATION. IN EACH ROW TOP PERFORMING MODEL IS

BOLDFACED
\ Training [ Testing [[ CONTRIQUE | CONVIQT |
YouTube-UGC KoNViD 0.718 0.761 Training Testing H w/o Temporal | w/ Temporal
KoNViD YouTube-UGC 0.498 0.731 Transform Transform

ETRI-LIVE STSVQ | AVI-VQDB UHD-I 0.785 0.774 YouTube-UGC KoNViD 0.739 0.761

AVT-VQDB UHD-1 | ETRI-LIVE STSVQ 0.550 0.651 KoNViD YouTube-UGC 0.722 0.731

LIVE-YT-HFR AVT-VQDB UHD-1 0.740 0.767 ETRI-LIVE STSVQ | AVI-VQDB UHD-1 0.759 0.774

AVT-VQDB UHD-1 LIVE-YT-HFR 0.378 0.556 AVT-VQDB UHD-1 | ETRI-LIVE STSVQ 0.722 0.651

LIVE-YT-HFR AVT-VQDB UHD-1 0.716 0.767

AVT-VQDB UHD-1 LIVE-YT-HFR 0.599 0.556

subset of VQA datasets from Table[I] two containing synthetic
distortions, two containing UGC videos and one containing
VEFR videos. From the Table, it may be observed that in most
cases, CONVIQT delivered much better performance than
CONTRIQUE, highlighting the importance of the recurrent
unit in obtaining more generalized representations. Note that
even for cross dataset evaluation, only the regressor weights
were modified based on the training data, while the weights
of the CONVIQT model were kept intact.

E. Significance of Training Data

We noted in Sec. [IT]] that the pretraining data for CONVIQT
contains a combination of videos afflicted by synthetic and
authentic distortions. In this experiment we investigate the
generalization of the learned representation when CONVIQT is

pretrained with either only synthetic or only authentic artifacts.

The results are reported in Table [VI|following similar evaluation
strategy as in Sec. to train and test on different VQA
datasets to analyze generalizability. From the Table, it may be
seen that using combined datasets yielded better performance
on most train/test combinations, as compared to individual
trainings indicating the complementary nature of the quality
information present in the different distortion types.

FE. Importance of Temporal Transforms

To obtain more robust representations, the CONVIQT
pipeline contains a temporal transform module as illustrated in
Fig. [} In this experiment we analyzed the importance of the
temporal transform by removing the module during CONVIQT
training. The resulting model performance is compared in Table

II1| where it may be observed that the absence of a temporal
transform leads to less generalizable representations.

G. Qualitative Analysis

In this subsection we qualitatively compare successful and
failure examples of CONVIQT sampled from different VQA

datasets in Fig.[3]and Fig.[d Fig.[3|contains cases with authentic
distortions sampled from the KoNViD [8] dataset, while Fig.
H] shows examples from LIVE-VQA [3]] containing synthetic
distortions. The failure example in Fig. contains flicker
artifacts, while those in Figs. fic| and [d] are corrupted by IP
and wireless distortions respectively. We believe that the limited
number of samples corresponding to these distortion types in
the pretraining data were a contributing factor for these less
accurate predictions.

H. Limitations

From Table it may be observed that CONVIQT under-
performed on the legacy datasets LIVE-VQA and CSIQ-VQA.
In this subsection we investigate this behavior by analyzing
the performance of CONVIQT on each individual distortion
types present in these datasets.

These artifacts were not included in the pretraining data since
they are less prevalent in current video sharing and streaming
scenarios. Table [[X] and [X] contain the computed correlations
of CONVIQT for each type of distortion present in LIVE-
VQA and CSIQ-VQA respectively. It maybe observed from
the Tables that CONVIQT obtained lower correlations on the
wireless, IP and packet loss distortions than on the others. The
lack of training examples corresponding to these distortion
types could be a factor contributing to this lower performance.

V. CONCLUSION AND FUTURE WORK

We proposed a self-supervised training procedure to obtain
perceptually relevant video quality representations. The model
was trained with the goal of discriminating different distortion
types and degradation degrees using a large unlabeled video
database, containing videos afflicted by both synthetic and
realistic distortions. We performed comprehensive evaluations
of our proposed design, and found that the performance of CON-
VIQT is comparable to many supervised deep VQA models.
Notably, CONVIQT achieves this performance even without



(b) Predicted = 2.85, GT = 2.86
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(c) Predicted = 3.33, GT = 2.52 (d) Predicted = 3.4, GT = 2.58

Fig. 3.  TIllustration of successful and failure examples sampled from
the KoNViD dataset. Top-row: Successful cases sampled from the
7136906983 .mp4 and 5668795950 .mp4 sequences. Bottom-row: Fail-
ure examples sampled from the 5621374631 .mp4 and 9524637688 .mp4
sequences. GT refers to ground truth quality scores.

TABLE IX
CONVIQT PERFORMANCE COMPARISON ON INDIVIDUAL DISTORTION
TYPES PRESENT IN THE LIVE-VQA DATASET.

[ Distortion Type [[ SROCCT [ PLCCT |

Wireless 0.595 0.629
1P 0.486 0.510
H264 0.738 0.719
MPEG 0.810 0.800
Overall 0.622 0.595

fine-tuning, underscoring the effectiveness of the auxiliary
task. We conducted ablation experiments to understand the
significance of the temporal transformations, and inferred that
these transformations lead to better generalization performance.
We also studied the impact of the distortion types present in
training data, and deduced that a training database containing
a combination of synthetic and authentic distortions yielded
more robust features. A software release of CONVIQT has
been released onlineEl to promote reproducible research.

Though CONVIQT achieves competitive performance on
VER videos, there is significant room for improvement, viz., the
representations can be made more sensitive to reflect perceptual
quality changes occurring due to frame rate variations. As part
of future work, we would like to explore auxiliary tasks which
promote feature learning with high sensitivity to frame rate
artifacts.
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(c) Predicted = 55, GT = 68 (d) Predicted = 59.76, GT = 78.34

Fig. 4. Illustration of successful and failure examples sampled from the LIVE-
VQA dataset. Top-row: Successful cases sampled from the pr14_25fps
and rh13_25fps sequences. Bottom-row: Failure examples sampled from
the rb6_25fps and mc2_50fps sequences. GT refers to ground truth
quality scores.

TABLE X
CONVIQT PERFORMANCE COMPARISON ON INDIVIDUAL DISTORTION
TYPES PRESENT IN THE CSIQ-VQA DATASET.

[ Distortion Type [[ SROCCT [ PLCCT |

H264 0.817 0.819
Packet Loss 0.533 0.417
MIPEG 0.800 0.806
Wavelet 0.867 0.867
White Noise 0.800 0.796
HEVC 0.717 0.735
Overall 0.766 0.749
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