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Abstract—Existing methods for Salient Object Detection in
Optical Remote Sensing Images (ORSI-SOD) mainly adopt Convo-
lutional Neural Networks (CNNs) as the backbone, such as VGG
and ResNet. Since CNNs can only extract features within certain
receptive fields, most ORSI-SOD methods generally follow the
local-to-contextual paradigm. In this paper, we propose a novel
Global Extraction Local Exploration Network (GeleNet) for ORSI-
SOD following the global-to-local paradigm. Specifically, GeleNet
first adopts a transformer backbone to generate four-level feature
embeddings with global long-range dependencies. Then, GeleNet
employs a Direction-aware Shuffle Weighted Spatial Attention
Module (D-SWSAM) and its simplified version (SWSAM) to
enhance local interactions, and a Knowledge Transfer Module
(KTM) to further enhance cross-level contextual interactions. D-
SWSAM comprehensively perceives the orientation information
in the lowest-level features through directional convolutions
to adapt to various orientations of salient objects in ORSIs,
and effectively enhances the details of salient objects with an
improved attention mechanism. SWSAM discards the direction-
aware part of D-SWSAM to focus on localizing salient ob-
jects in the highest-level features. KTM models the contextual
correlation knowledge of two middle-level features of different
scales based on the self-attention mechanism, and transfers the
knowledge to the raw features to generate more discriminative
features. Finally, a saliency predictor is used to generate the
saliency map based on the outputs of the above three modules.
Extensive experiments on three public datasets demonstrate
that the proposed GeleNet outperforms relevant state-of-the-art
methods. The code and results of our method are available at
https://github.com/MathLee/GeleNet.

Index Terms—Salient object detection, optical remote sensing
image, transformer, directional convolution, shuffle weighted
spatial attention.

I. INTRODUCTION

SALIENT Object Detection (SOD) focuses on finding and
locating the most visually prominent objects/regions in a

scene [1]–[3]. It is a common pre-processing step for many
tasks in computer vision, such as quality assessment [4],
[5], object segmentation [6]–[10], video compression [11],
and object tracking [12]. Recently, SOD in Optical Remote
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Fig. 1. Saliency maps produced by our method and three state-of-the-
art ORSI-SOD methods, including ACCoNet [16], CorrNet [17], and ERP-
Net [18]. Please zoom in for details, especially the first row.

Sensing Images (ORSI-SOD) [13]–[15], as an emerging topic,
has attracted the attention of many researchers, and has been
widely used in agriculture, forestry, environmental science, and
security surveillance.

With the rapid development of deep learning, Convolutional
Neural Networks (CNNs) [19] have dominated the field of
computer vision with their powerful feature representation
capabilities. Many effective CNN-based solutions for ORSI-
SOD are proposed [15]–[18], [20]–[23]. While a few methods
follow the local-to-local paradigm [18], [20], most methods
adopt the local-to-contextual paradigm1 [15]–[17], [21]–[25].
Both paradigms first use a CNN backbone, such as VGG [26]
and ResNet [27], to extract basic feature embeddings. The
local-to-local paradigm focuses on exploring valuable infor-
mation in single-level feature embeddings. Differently, since
the local-to-contextual one considers that CNNs only extract
features within certain receptive fields, it focuses on designing
specific modules to mine the contextual information between
feature embeddings at multiple levels. The above paradigms
promote the development of ORSI-SOD and achieve promis-
ing performance.

However, due to the characteristics of ORSI scenes, such
as variation in object orientation, scale, and category, the
above paradigms suffer from obvious limitations. The local-
to-local paradigm ignores contextual information that is useful
for handling the above scenes. The contextual information
captured by the local-to-contextual paradigm is still based
on convolution layers with limited receptive fields, which is
also insufficient to handle challenging scenes of ORSIs. For

1Here, the first “local” in both paradigms specifically refers to using CNN
backbones to extract features with limited receptive fields.
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intuitive understanding, we show the saliency maps generated
by typical methods for both paradigms in Fig. 1, where
ACCoNet [16] and CorrNet [17] belong to the local-to-
contextual paradigm, and ERPNet [18] belongs to the local-
to-local paradigm. We find that these methods suffer from
orientation insensitivity, incomplete detection, and missing
salient objects.

Inspired by the above observations, in this paper, we pro-
pose to design new solutions following the global-to-local
paradigm. Our main idea is to replace the CNN backbone
with a transformer one that can establish global relationships
(i.e., changing the first “local” in two existing paradigms to
“global”) and to perform local enhancement on the extracted
global features. With this idea, we build a novel Global
Extraction Local Exploration Network (GeleNet) for ORSI-
SOD with a transformer backbone. Transformers [28]–[31]
are known to be good at modeling the global long-range
dependencies between feature patches. This unique ability of
transformer enables GeleNet to deal with complex scenes and
changeable objects in ORSIs. Furthermore, in GeleNet, we
focus on local and cross-level contextual interactions, which
are beneficial for highlighting salient objects in ORSIs.

In particular, we adopt the popular PVT [32], [33] as the
backbone of our GeleNet. To alleviate the orientation insensi-
tivity issue of previous methods, we propose a Direction-aware
Shuffle Weighted Spatial Attention Module (D-SWSAM), and
assign it to the lowest-level features to adequately identify the
orientation of objects through directional convolutions with
four directions. D-SWSAM is also equipped with an improved
attention mechanism to outline the details of salient objects.
Since high-level features contain location information rather
than orientation and texture information, we extract the cor-
responding part containing the improved attention mechanism
from D-SWSAM, i.e., SWSAM, and assign it to the highest-
level features to determine the location of salient objects.
The above modules can well enhance local interactions of
intra-level features. In addition, we propose a Knowledge
Transfer Module (KTM) for the remaining adjacent features
to explore contextual interactions between inter-level features
and transfer the specific knowledge of salient objects between
adjacent features to the raw features. In this way, the proposed
GeleNet can generate saliency maps with accurate orientations
and complete objects, as illustrated in the third column of
Fig. 1, and consistently outperforms compared methods on
three datasets.

Our main contributions are summarized in three aspects:

• We propose a transformer-based ORSI-SOD solution,
GeleNet, with the global-to-local paradigm, which is
different from the local-to-contextual paradigm followed
by most existing CNN-based methods. To the best of our
knowledge, this is the first transformer-driven ORSI-SOD
solution.

• We propose the D-SWSAM and its variant SWSAM
to enhance local interactions of the extracted global
feature embeddings. D-SWSAM can tackle the problem
of objects with various orientations in ORSIs and enhance
the details of salient objects in the lowest-level features,

while SWSAM can locate salient objects in the highest-
level features.

• We propose the KTM to enhance contextual interactions
of two middle-level features. In KTM, we model the
contextual correlation knowledge of two types of com-
binations (i.e., product and sum) of these features, and
transfer the knowledge to the raw features to generate
more discriminative features.

The rest of this paper is arranged as follows. In Sec. II, we
review the related work. In Sec. III, we describe the details of
the proposed GeleNet. In Sec. IV, we conduct comprehensive
experiments and ablation studies. In Sec. V, we present the
conclusion.

II. RELATED WORK

A. Salient Object Detection in Optical Remote Sensing Images

Salient object detection in optical remote sensing images
plays an important role in understanding ORSIs. Recently,
with the successive construction of the three datasets [14],
[15], [22], numerous ORSI-SOD methods are proposed. Here
we focus on CNN-based methods, which dominate this topic
and achieve promising performance.

Existing CNN-based ORSI-SOD methods mainly follow
two paradigms, i.e., the local-to-local paradigm and the local-
to-contextual paradigm. The local-to-local paradigm typi-
cally extracts feature embeddings containing local informa-
tion through the CNN backbone, and then explores valuable
information in single-level feature embeddings. For example,
in [18], Zhou et al. extracted multi-level features through the
CNN backbone, and performed edge extraction and feature
fusion on each level of features in two parallel decoders.
Li et al. [20] explored the complementarity of foreground,
edge, background, and the global image-level content of
single-level features, and aimed at generating complete salient
objects. They focused on the extraction of various specific
information on single-level features (i.e., local features), ig-
noring the contextual interactions between local features at
different levels.

The local-to-contextual paradigm, by contrast, explores
contextual information between local feature embeddings at
different levels, and is therefore popularly adopted by recent
solutions. For example, Li et al. [15] extracted multi-level
features from multiple inputs, and employed nested connec-
tions to aggregate them. Similarly, Zhou et al. [23] proposed
a cascaded feature fusion module to fuse multi-level features
from different branches. In [21], Huang et al. aggregated three
high-level features to produce contextual semantic information
to approximately locate salient objects. Li et al. [17] proposed
a correlation module for continuous semantic features, gener-
ating an initial coarse saliency map for location guidance of
low-level features. Tu et al. [22] proposed two decoders to
aggregate three adjacent features twice with salient boundary
features. Li et al. [16] designed a specific module for adjacent
features, aiming at coordinating cross-scale interactions and
mining valuable contextual information.

Despite great progress achieved by the local-to-contextual
paradigm, the explored contextual interactions only mine
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interactions between features at different levels through
convolution-based modules. In this paper, inspired by the
popular transformer [28]–[32], we propose the global-to-local
paradigm that first models the global long-range dependencies
between feature patches and then enhances the local and
contextual interactions, and build a novel GeleNet for ORSI-
SOD. Benefiting from the global view of the transformer
and the local enhancement of our proposed modules, our
GeleNet can better perceive salient objects with numerous
scales, diverse types, and multiple numbers in ORSIs.

B. Salient Object Detection with Transformer

Transformer was first proposed for Natural Language Pro-
cessing (NLP) [28], which is good at modeling global long-
range dependencies between word vectors. Following its suc-
cess in NLP, researchers have extended it into computer
vision and achieved remarkable progress on numerous tasks,
especially on dense prediction tasks [31]–[33].

Here, we introduce some representative works on
transformer-based SOD, involving SOD in Natural Scene
Images (NSI-SOD) [34], [35], RGB-D/T SOD [36]–[38], co-
saliency detection [39], and video SOD [39]. In general,
transformer-based SOD methods can be roughly divided into
three types depending on where the transformer is used. The
first type of method adopted transformer as the feature extrac-
tor in the encoding phase. For instance, Liu et al. [36] used
Swin Transformer [31] to extract basic features from RGB-D/T
pairs, and aligned cross-modality features through attention
mechanism to generate discriminative features. Liu et al. [34]
achieved effective context modeling using the same back-
bone as [36] for NSI-SOD. The second type of method
adopted transformer to develop modules in the decoding phase.
Liu et al. [37] proposed a triplet transformer embedding
module to enhance high-level features by learning long-range
dependencies across layers. In [39], Su et al. proposed a
unified transformer framework for co-saliency detection and
video SOD, which is equipped with two transformer blocks
to capture the long-range dependencies among a group of fea-
tures from different images/frames. Fang et al. [38] proposed a
multiple transformer module to learn the common information
of cross-modality and cross-scale features. The last type of
method utilized the pure transformer architecture to achieve
SOD. Liu et al. [35] adopted T2T-ViT [30] as the backbone,
and proposed a multi-task transformer decoder to jointly detect
salient objects and boundaries.

The above transformer-based SOD methods achieve impres-
sive results on specific SOD tasks. Therefore, we introduce
the transformer into the ORSI-SOD task, and propose the
first transformer-driven ORSI-SOD method, i.e., GeleNet. Our
method belongs to the first type of method, and adopts
PVT [32], [33] as the backbone to extract long-range depen-
dency features from input ORSIs.

C. Attention Mechanism

Attention mechanism is widely used in computer vision and
image analysis. In general, it includes channel attention [40],
spatial attention [41], and self-attention [28], [42]. SENet [40]

was a classic channel attention model, which explicitly repre-
sents dependencies between channels to adaptively recalibrate
features. ECANet [43] developed an extremely lightweight
channel attention module through a fast 1D convolution.
Moreover, CBAM [41] additionally introduced spatial atten-
tion, and inferred attention maps along channel and spatial
domain in turn for adaptive feature enhancement. Li et al. [44]
proposed the Spatial Group-wise Enhance (SGE), which first
splits features into several sub-features, then extracts specific
semantics from each sub-feature, and finally adjusts the im-
portance of semantics of each sub-feature by an attention
factor. Zhang et al. [45] proposed a lightweight shuffle atten-
tion, which also first splits features into several groups, then
performs channel attention and spatial attention in parallel,
and finally introduces channel shuffle to allow information
communication along channels.

Both SGE [44] and shuffle attention [45] consider only the
attention of each sub-feature, but ignore the consistency of
attention between different sub-features, which is not friendly
to SOD. In addition, since the global features extracted by
the transformer lack channel interaction, it is unreasonable for
shuffle attention to put the shuffle operation at the end. There-
fore, we propose an improved spatial attention module, namely
SWSAM, which focuses on enhancing the channel interactions
of global features and improving the effectiveness of spatial
attention to highlight salient regions more accurately. Notably,
we further integrate SWSAM and directional convolutions, and
propose D-SWSAM to adapt to various orientations of salient
objects in ORSIs. Moreover, we also propose a self-attention-
based KTM to model and transfer the contextual knowledge
to generate more discriminative features.

III. PROPOSED METHOD

In this section, we elaborate on the proposed transformer-
driven GeleNet. In Sec. III-A, we depict the network overview.
In Sec. III-B and Sec. III-C, we introduce D-SWSAM and
KTM, respectively. In Sec. III-D, we present the saliency
predictor and loss function.

A. Network Overview

As illustrated in Fig. 2, the proposed GeleNet follows the
popular three-stage structure [46], [47] in SOD, including a
feature extractor for basic feature generation, three modules
(i.e., D-SWSAM, KTM, and SWSAM) for feature interac-
tion/enhancement, and a saliency predictor for saliency map
generation.

Concretely, we use the Pyramid Vision Transformer
(PVT) [33] as the backbone, whose input size is set to
3 × 352 × 352. PVT consists of four transformer encoder
blocks denoted as Ti (i ∈ {1, 2, 3, 4}), and can generate four-
level basic global features denoted as f̂ i

t ∈ Rci×hi×wi , where
ci ∈ {64, 128, 320, 512}, and hi/wi =

352
2i+1 . To improve the

computational efficiency, we unify the channel number of f̂ i
t

(i ∈ {1, 3, 4}) to 32 by the channel normalization (i.e., a
convolution layer), generating f i

t ∈ Rc×hi×wi , where c is 32.
Notably, for f̂2

t , we not only reduce its channel number to
32, but also adjust its resolution from 44×44 to 22×22 for
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Fig. 2. Pipeline of the proposed transformer-driven GeleNet, which consists of a feature extractor, three modules, and a saliency predictor. First, we adopt a
transformer-based feature extractor PVT-v2-b2 [33] to extract four-level basic feature embeddings with global long-range dependencies. Then, we employ the
Direction-aware Shuffle Weighted Spatial Attention Module (D-SWSAM), the Knowledge Transfer Module, and the variant of D-SWSAM (i.e., SWSAM) to deal
with the corresponding features, respectively. Specifically, in D-SWSAM, we perform four directional convolutions with different directions (i.e., horizontal,
vertical, leading diagonal, and reverse diagonal) on the lowest-level features to extract specific orientation information, and then use SWSAM to outline the
details regions. We also adopt SWSAM to enhance the location of salient objects in the highest-level features. In KTM, we model the contextual correlation
knowledge of two types of combinations (i.e., product and sum) of two middle-level features, and transfer the knowledge to the raw features to generate more
discriminative features. Finally, we use a saliency predictor to generate a saliency map from the outputs of the above modules.

subsequent processing in KTM, generating f2
t ∈ R32×22×22.

For the lowest-level features f1
t and the highest-level features

f4
t , we adopt an improved spatial attention mechanism for

local enhancement. According to the characteristics of features
at different levels, we adopt D-SWSAM for f1

t to extract
orientation information and achieve local detail enhancement,
generating fdswsa. While we adopt SWSAM for f4

t to achieve
local location enhancement, generating f swsa. Moreover, we
adopt KTM to activate cross-level contextual interactions of
f2
t and f3

t , generating discriminative features fktm. Taking
advantage of PVT and these three novel modules, we infer
salient objects in the saliency predictor, which is a variant of
the effective partial decoder [48].

B. Direction-aware Shuffle Weighted Spatial Attention Module

Since the basic features extracted by PVT is with global
long-range dependencies, we want to explore their local en-
hancements to complement their global information and adapt
to complex scenes in ORSIs. To be precise, we hope to con-
sistently highlight salient regions in features across different
channels, which is important for SOD. Traditional spatial
attention [41] is known to be effective way to achieve this
goal, however, it generates the spatial attention map in a global
manner. Specifically, it performs global max pooling and
global average pooling on all channels, which may produce
an insufficient spatial attention map. Differently, SGE [44],

as a grouping attention, splits features into several subsets
and generates a specific spatial attention map from each sub-
feature for individual enhancement. While considering only
the attention of each sub-feature, SGE ignores the consistency
of attention between different sub-features, resulting in the
lack of consistency in the group-enhanced features, which
is not friendly to SOD. Inspired by [41], [44], we propose
an effective grouping spatial attention mechanism for SOD,
i.e., the Shuffle Weighted Spatial Attention Module (SWSAM),
which first generates the local spatial attention map from each
sub-feature, and then adopts the weighted fusion operation to
produce the final spatial attention map for consistent enhance-
ment.

In addition, salient objects in ORSIs usually have various
orientations, as shown in Fig. 1 and Fig. 2, which often bring
troubles to existing methods using the traditional convolutions.
To solve this issue, we specifically introduce directional con-
volutions with different directions [49] into SWSAM, and pro-
pose D-SWSAM to explicitly extract orientation information
of salient objects and achieve local enhancement. Moreover,
we arrange D-SWSAM to deal with f1

t . The detailed structure
of D-SWSAM is presented in the left part of Fig. 2. In the
following, we elaborate D-SWSAM in three parts, i.e., the
directional convolution unit, the channel shuffle and feature
split, and the weighted spatial attention, of which the latter
two parts constitute SWSAM.



IEEE TRANSACTIONS ON IMAGE PROCESSING 5

1) Directional Convolution Unit. The directional convolu-
tion unit takes into account the four basic directions, and is
composed of four directional convolution layers with horizon-
tal (h), vertical (v), leading diagonal (ld), and reverse diagonal
(rd) directions [49]. We parallelize these four directional
convolution layers to simultaneously mine different orientation
information of f1

t , and concatenate the results for information
integration. We formulate the above process as follows:

fori = convh(f
1
t )⊚ convv(f

1
t )⊚ convld(f

1
t )⊚ convrd(f

1
t ),
(1)

where fori ∈ R32×88×88 denotes the output orientation features,
⊚ is the concatenation, convx(·) is the directional convolution
layer with the direction x ∈ {h, v, ld, rd}. Considering the
input feature size and computational efficiency, here we set
the kernel size and the output channel of four directional con-
volutions to 5 and 8, respectively. To show the extracted ori-
entation information intuitively, we expand fori across chan-
nel as [f1

h , ...,f
8
h ,f

1
v , ...,f

8
v ,f

1
ld, ...,f

8
ld,f

1
rd, ...,f

8
rd], where

fx ∈ R1×88×88 is a single-channel feature and we omit its
superscript, and each directional convolution layer generates
an eight-channel feature.

2) Channel Shuffle and Feature Split. Inspired by Shuf-
fleNet [50] and shuffle attention [45], which shuffle features to
achieve information communication along channels, we shuffle
fori with four groups to evenly disperse the orientation infor-
mation, achieving fshuf ∈ R32×88×88, which can be expanded
as [f1

h ,f
1
v ,f

1
ld,f

1
rd, ...,f

4
h ,f

4
v ,f

4
ld,f

4
rd, ...,f

8
h ,f

8
v ,f

8
ld,f

8
rd].

Then, we split fshuf into four feature subsets along
channel, generating {f1

s−shuf ,f
2
s−shuf ,f

3
s−shuf ,f

4
s−shuf} ∈

R8×88×88, where fn
s−shuf (n ∈ {1, 2, 3, 4}) can be ex-

panded as [f2n−1
h ,f2n−1

v ,f2n−1
ld ,f2n−1

rd ,f2n
h ,f2n

v ,f2n
ld ,f2n

rd ].
The above operations activate the interaction between fea-
tures of different orientations, so that each sub-feature evenly
contains orientation information in four directions, which is
conducive to generating an accurate spatial attention map for
each sub-feature.

3) Weighted Spatial Attention. We then apply the traditional
spatial attention [41] to the above sub-features fn

s−shuf , gener-
ating corresponding spatial attention maps an ∈ (0, 1)1×88×88

as follows:
an = SA(fn

s−shuf), (2)

where SA(·) is the spatial attention operation. These four
spatial attention maps can extract salient regions in local sub-
features comprehensively without neglecting salient regions in
the original complete fori.

Next, we design a learnable attention fusion approach, that
is, set a learnable parameter wn ∈ [0, 1] for each spatial
attention map an and aggregate them as follows:

aori = sigmoid(conv(

4∑
n=1

wn · an)), (3)

where aori ∈ (0, 1)1×88×88 is the aggregated spatial attention
map, wn is initialized as 0.25 and gradually converges to
appropriate weights,

∑4
n=1 w

n = 1, conv(·) is the normal
convolution layer, and sigmoid(·) is the sigmoid activation
function. In this way, we can obtain a comprehensive and

orientation-sensitive spatial attention map aori. We adopt aori

to achieve consistent detail enhancement, generating the output
feature of D-SWSAM fdswsa ∈ R32×88×88 as follows:

fdswsa = (aori ⊗ fshuf)⊕ fshuf , (4)

where ⊗ is the element-wise multiplication and ⊕ is the
element-wise summation. Notably, here we perform detail
enhancement on fshuf rather than fori, which continues to
maintain valid channel interactions.

4) Applying SWSAM for Location Enhancement. As shown
in Fig. 2, instead of D-SWSAM, we apply SWSAM on the
highest-level features f4

t for location enhancement. This is
because f4

t mainly contains location information, rather than
detail information such as orientation information and texture
information, which means that the directional convolution unit
in D-SWSAM is superfluous. Therefore, we abandon this unit.
In addition, f4

t is extracted using PVT which focuses on mod-
eling the long-range dependencies between feature patches
and inevitably ignores feature interactions between channels.
So we maintain the channel shuffle operation in SWSAM to
explicitly increase the channel interaction. In this way, we can
obtain the output feature of SWSAM fswsa ∈ R32×11×11.

In summary, our D-SWSAM and SWSAM are designed ac-
cording to specific characteristics of extracted global features
of ORSIs to better enhance local interactions. We believe our
D-SWSAM can effectively assist GeleNet to adapt to salient
objects with various orientations in ORSIs, and our SWSAM
can assist GeleNet to accurately locate all salient objects in
ORSIs.

C. Knowledge Transfer Module

For the lowest-level and highest-level features, we design
special modules to process them to achieve local interactions
according to their respective characteristics. However, it is
insufficient to consider only local enhancement, we enhance
cross-level contextual interactions on two middle-level features
(i.e., f2

t and f3
t ) to explore the discriminative information of

salient objects. Inspired by the self-attention mechanism [28],
[42], we propose a knowledge transfer module to achieve
the goal. The detailed structure of KTM is presented in the
middle part of Fig. 2. In the following, we introduce the two
KTM components, i.e., the contextual correlation knowledge
modeling and the knowledge transfer.

1) Contextual Correlation Knowledge Modeling. In SOD,
the product of two features can reveal the significant infor-
mation co-existing in both features, which is conducive to
collaboratively identifying objects. The sum of two features
can comprehensively capture the information contained in both
features without omission, which is conducive to elaborating
objects. In particular for our framework, the product and sum
of f2

t and f3
t are complementary to a certain extent. Therefore,

we adopt self-attention [28], [42] to model the contextual
correlation knowledge between the product and sum of f2

t

and f3
t .

As stated in Sec. III-A, we have unified the size of f2
t and

f3
t to 32×22×22. For convenience, we denote the size of f2

t

and f3
t to c ×h ×w, as shown in Fig. 2. Here, we denote
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the product and sum of f2
t and f3

t as fpro ∈ Rc×h×w and
fsum ∈ Rc×h×w, respectively. As the KTM illustrated in Fig. 2,
to reduce the computational cost, we perform a convolution
layer with the channel number of c/2 on fpro and fsum to
generate two new features {f̃pro, f̃sum} ∈ R(c/2)×h×w. Then,
we reshape and transpose f̃sum to obtain fQ ∈ R(hw)×(c/2),
and reshape f̃pro to obtain fK ∈ R(c/2)×(hw). After that we
model the contextual correlation knowledge C ∈ R(hw)×(hw)

between fQ and fK as follows:

C = softmax(fQ ⊛ fK), (5)

where softmax(·) is the softmax activation function and ⊛ is
the matrix multiplication. In this way, we model the pixel-to-
pixel dependencies between the co-existing significant infor-
mation of fpro and the comprehensive information of fsum,
which are effective to avoid missing salient regions/objects in
ORSIs.

2) Knowledge Transfer. Meanwhile, we use a convolution
layer on f2

t and f3
t to generate two new features {f̃2

t , f̃
3
t } ∈

Rc×h×w, and then reshape them to obtain {fV1 ,fV2} ∈
Rc×(hw). After that we transfer the modeled knowledge C to
fV1 and fV2 to generate the informative transferred features
{f1

tsf ,f
2
tsf} ∈ Rc×h×w as follows:

f1
tsf = R(fV1 ⊛ T(C)),

f2
tsf = R(fV2 ⊛ T(C)),

(6)

where R(·) and T(·) mean reshape and transpose, respectively.
Following [42], we introduce a trainable weight to adaptively
fuse f1

tsf and raw f2
t through residual connection, and do the

same for f2
tsf and raw f3

t , generating {f̃1
tsf , f̃

2
tsf} ∈ Rc×h×w.

Finally, we adopt an element-wise summation and a convolu-
tion layer to integrate the cross-level f̃1

tsf and f̃2
tsf , generating

the discriminative output feature of KTM fktm ∈ Rc×h×w.
In summary, fktm inherits the properties of two combi-

nations of f2
t and f3

t , so it has the ability to simultaneously
identify and elaborate salient objects. In addition, compared to
fdswsa and f swsa, fktm is more contextual, which is beneficial
for our GeleNet to combine with local enhanced features
(i.e., fdswsa and f swsa) for better salient object inference.

D. Saliency Predictor

To make better use of the informative output features of D-
SWSAM, KTM and SWSAM, i.e., fdswsa, fktm and f swsa,
we adopt the effective partial decoder [48] as our saliency pre-
dictor to generate the saliency map. Normally, the resolutions
of input features in the original partial decoder are 1×, 2×, and
4×. However, the resolutions of input features of our saliency
predictor are 32× 11× 11 (f swsa), 32× 22× 22 (fktm), and
32×88×88 (fdswsa). Therefore, we make a small modification
to the original partial encoder, i.e., modify the upsampling
rate, to adapt to the resolutions of our input features. In this
way, our saliency predictor can generate an initial saliency
map s ∈ [0, 1]1×88×88. We restore its resolution to the same
resolution as the input ORSI by a 4× upsampling operation,
and obtain the final saliency map S ∈ [0, 1]1×352×352.

During the training phase, we train the proposed Ge-
leNet with a hybrid loss function [67], [68], including the

intersection-over-union (IoU) loss and the binary cross-entropy
(BCE) loss. We formulate the total loss function Ltotal as
follows:

Ltotal = ℓiou(S,G) + ℓbce(S,G), (7)

where ℓiou(·) and ℓbce(·) are IoU loss and BCE loss, respec-
tively, and G ∈ {0, 1}1×352×352 is the ground truth (GT).

IV. EXPERIMENTS

A. Experimental Setup
1) Datasets. We conduct experiments on the ORSSD [15],

EORSSD [14], and ORSI-4199 [22] datasets. The ORSSD
dataset is the first public dataset for ORSI-SOD, and contains
800 images and corresponding pixel-level GTs, of which 600
images are used for training and 200 images for testing. The
EORSSD dataset contains 2,000 images and corresponding
GTs, of which 1,400 images are used for training and 600 im-
ages for testing. The ORSI-4199 dataset is the biggest dataset
for ORSI-SOD, and contains 4,199 images and corresponding
GTs, of which 2,000 images are used for training and 2,199
images for testing. Following [14], [17], [23], we train our
GeleNet on the training set of each dataset and test it on the
test set of each dataset.

2) Network Implementation. All experiments are conducted
on PyTorch [69] with an NVIDIA Titan X GPU (12GB
memory). To balance the effectiveness and efficiency, we adopt
PVT-v2-b2 [33] as the backbone, and initialize it with the
pre-trained parameters. Newly added layers are all initialized
with the “Kaiming” method [70]. We adopt rotation and a
combination of flipping and rotation for data augmentation,
and resize the input image and GT to 352×352. Our GeleNet
is trained using Adam optimizer [71] for 45 epochs with a
batch size of 8 and a base learning rate of 1e−4 which will
decay to 1/10 every 30 epochs.

3) Evaluation Metrics. We adopt some widely used eval-
uation metrics to quantitatively evaluate the performance of
our method and all compared methods on three datasets,
including S-measure (Sα, α = 0.5) [72], F-measure (Fβ , β2

= 0.3) [73], E-measure (Eξ) [74], mean absolute error (MAE,
M), precision-recall (PR) curve, and F-measure curve. Here
we adopt the evaluation tool (Matlab version)2 for convenient
evaluation.

B. Comparison with State-of-the-arts
We compare our GeleNet with state-of-the-art NSI-SOD and

ORSI-SOD methods on the EORSSD and ORSSD datasets,
including R3Net [51], PoolNet [52], EGNet [53], GCPA [54],
MINet [55], ITSD [56], GateNet [57], CSNet [58], SAM-
Net [59], HVPNet [60], SUCA [61], PA-KRN [62], VST [35],
DPORTNet [63], DNTD [64], ICON [65] with PVT back-
bone, LVNet [15], DAFNet [14], SARNet [21], MJRBM [22],
EMFINet [23], ERPNet [18], ACCoNet [16], CorrNet [17],
MCCNet [20], and HFANet [66]. The saliency maps for the
above methods are obtained from authors and public bench-
marks3,4 [14], [15], or by running public source codes. For the

2https://github.com/MathLee/MatlabEvaluationTools
3https://li-chongyi.github.io/proj optical saliency.html
4https://github.com/rmcong/DAFNet TIP20
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TABLE I
QUANTITATIVE COMPARISONS WITH STATE-OF-THE-ART NSI-SOD AND ORSI-SOD METHODS ON EORSSD AND ORSSD DATASETS. ↓ INDICATES

THAT THE LOWER THE BETTER, WHILE ↑ THE OPPOSITE. WE MARK THE TOP TWO RESULTS IN RED AND BLUE, RESPECTIVELY.

Methods Type
EORSSD [14] ORSSD [15]

Sα ↑ Fmax
β ↑ Fmean

β ↑ F adp
β ↑ Emax

ξ ↑ Emean
ξ ↑ Eadp

ξ ↑ M ↓ Sα ↑ Fmax
β ↑ Fmean

β ↑ F adp
β ↑ Emax

ξ ↑ Emean
ξ ↑ Eadp

ξ ↑ M ↓

R3Net18 [51] CN .8184 .7498 .6302 .4165 .9483 .8294 .6462 .0171 .8141 .7456 .7383 .7379 .8913 .8681 .8887 .0399
PoolNet19 [52] CN .8207 .7545 .6406 .4611 .9292 .8193 .6836 .0210 .8403 .7706 .6999 .6166 .9343 .8650 .8124 .0358

EGNet19 [53] CN .8601 .7880 .6967 .5379 .9570 .8775 .7566 .0110 .8721 .8332 .7500 .6452 .9731 .9013 .8226 .0216
GCPA20 [54] CN .8869 .8347 .7905 .6723 .9524 .9167 .8647 .0102 .9026 .8687 .8433 .7861 .9509 .9341 .9205 .0168
MINet20 [55] CN .9040 .8344 .8174 .7705 .9442 .9346 .9243 .0093 .9040 .8761 .8574 .8251 .9545 .9454 .9423 .0144
ITSD20 [56] CN .9050 .8523 .8221 .7421 .9556 .9407 .9103 .0106 .9050 .8735 .8502 .8068 .9601 .9482 .9335 .0165

GateNet20 [57] CN .9114 .8566 .8228 .7109 .9610 .9385 .8909 .0095 .9186 .8871 .8679 .8229 .9664 .9538 .9428 .0137
CSNet20 [58] CN .8364 .8341 .7656 .6319 .9535 .8929 .8339 .0169 .8910 .8790 .8285 .7615 .9628 .9171 .9068 .0186

SAMNet21 [59] CN .8622 .7813 .7214 .6114 .9421 .8700 .8284 .0132 .8761 .8137 .7531 .6843 .9478 .8818 .8656 .0217
HVPNet21 [60] CN .8734 .8036 .7377 .6202 .9482 .8721 .8270 .0110 .8610 .7938 .7396 .6726 .9320 .8717 .8471 .0225

SUCA21 [61] CN .8988 .8229 .7949 .7260 .9520 .9277 .9082 .0097 .8989 .8484 .8237 .7748 .9584 .9400 .9194 .0145
PA-KRN21 [62] CN .9192 .8639 .8358 .7993 .9616 .9536 .9416 .0104 .9239 .8890 .8727 .8548 .9680 .9620 .9579 .0139

VST21 [35] TN .9208 .8716 .8263 .7089 .9743 .9442 .8941 .0067 .9365 .9095 .8817 .8262 .9810 .9621 .9466 .0094
DPORTNet22 [63] CN .8960 .8363 .7937 .7545 .9423 .9116 .9150 .0150 .8827 .8309 .8184 .7970 .9214 .9139 .9083 .0220

DNTD22 [64] CN .8957 .8189 .7962 .7288 .9378 .9225 .9047 .0113 .8698 .8231 .8020 .7645 .9286 .9086 .9081 .0217
ICON23 [65] TN .9185 .8622 .8371 .8065 .9687 .9619 .9497 .0073 .9256 .8939 .8671 .8444 .9704 .9637 .9554 .0116
LVNet19 [15] CO .8630 .7794 .7328 .6284 .9254 .8801 .8445 .0146 .8815 .8263 .7995 .7506 .9456 .9259 .9195 .0207

DAFNet21 [14] CO .9166 .8614 .7845 .6427 .9861 .9291 .8446 .0060 .9191 .8928 .8511 .7876 .9771 .9539 .9360 .0113
SARNet21 [21] CO .9240 .8719 .8541 .8304 .9620 .9555 .9536 .0099 .9134 .8850 .8619 .8512 .9557 .9477 .9464 .0187
MJRBM22 [22] CO .9197 .8656 .8239 .7066 .9646 .9350 .8897 .0099 .9204 .8842 .8566 .8022 .9623 .9415 .9328 .0163

EMFINet22 [23] CO .9290 .8720 .8486 .7984 .9711 .9604 .9501 .0084 .9366 .9002 .8856 .8617 .9737 .9671 .9663 .0109
ERPNet22 [18] CO .9210 .8632 .8304 .7554 .9603 .9401 .9228 .0089 .9254 .8974 .8745 .8356 .9710 .9566 .9520 .0135

ACCoNet22 [16] CO .9290 .8837 .8552 .7969 .9727 .9653 .9450 .0074 .9437 .9149 .8971 .8806 .9796 .9754 .9721 .0088
CorrNet22 [17] CO .9289 .8778 .8620 .8311 .9696 .9646 .9593 .0083 .9380 .9129 .9002 .8875 .9790 .9746 .9721 .0098

MCCNet22 [20] CO .9327 .8904 .8604 .8137 .9755 .9685 .9538 .0066 .9437 .9155 .9054 .8957 .9800 .9758 .9735 .0087
HFANet22 [66] TO .9380 .8876 .8681 .8365 .9740 .9679 .9644 .0070 .9399 .9112 .8981 .8819 .9770 .9712 .9722 .0092

Ours-VGG CO .9241 .8721 .8616 .8382 .9723 .9636 .9622 .0080 .9252 .9023 .8932 .8806 .9744 .9651 .9655 .0130
Ours-Res CO .9271 .8723 .8621 .8481 .9692 .9651 .9644 .0071 .9307 .9042 .8934 .8826 .9774 .9714 .9709 .0098

Ours-SwinT TO .9259 .8774 .8649 .8528 .9794 .9752 .9713 .0055 .9410 .9203 .9093 .9038 .9829 .9779 .9805 .0080
Ours-PVT TO .9376 .8923 .8781 .8641 .9828 .9766 .9750 .0064 .9469 .9254 .9128 .9035 .9860 .9815 .9786 .0079

CN: CNN-based NSI-SOD method, TN: Transformer-based NSI-SOD method, CO: CNN-based ORSI-SOD method, TO: Transformer-based ORSI-SOD method.

ORSI-4199 dataset, we compare our GeleNet with 19 of the
above 26 methods, whose saliency maps on the ORSI-4199
dataset are available, and additional five NSI-SOD methods
(i.e., PiCANet [75], BASNet [68], CPD [48], RAS [76],
ENFNet [77]) provided by the public benchmark5 [22]. Here,
for a comprehensive comparison, in addition to GeleNet with
the backbone of PVT-v2-b2 (i.e., Ours-PVT), we also provide
three variants of our GeleNet with backbones of VGG, ResNet,
and Swin Transformer, named Ours-VGG, Ours-Res, and
Ours-SwinT, respectively.

1) Quantitative Comparison on the EORSSD and ORSSD
Datasets. We report the quantitative comparison results of
our method and other 26 compared methods on the EORSSD
and ORSSD datasets in Tab. I. We observe that Ours-PVT
outperforms all compared methods on both datasets, except
for Sα, Emax

ξ and M on the EORSSD dataset. Concretely, on
the EORSSD dataset, Ours-PVT greatly surpasses the second-
best method by 1.00%, 2.76%, and 1.06% in terms of Fmean

β ,
F adp
β , and Eadp

ξ , respectively. In Emax
ξ and M, Ours-PVT is

marginally lower than the best method by 0.33% and 0.0004,

5https://github.com/wchao1213/ORSI-SOD

respectively. On the ORSSD dataset, Ours-PVT is better than
the second-best method in terms of Sα (0.9469 v.s. 0.9437),
Fmax
β (0.9254 v.s. 0.9155), Emax

ξ (0.9860 v.s. 0.9810), and
M (0.0079 v.s. 0.0087). Notably, Ours-PVT is the only one
whose F adp

β exceeds 0.9, i.e., 0.9035. In addition, we plot the
PR curve and F-measure curve of Ours-PVT and the compared
methods on the EORSSD and ORSSD datasets in Fig. 3 (a-
b). We can find that under different thresholds, Ours-PVT
maintains its superiority and consistently achieves excellent
performance.

Moreover, Ours-SwinT achieves competitive performance
on the EORSSD dataset, and outperforms 26 compared meth-
ods in F adp

β , Emean
ξ , Eadp

ξ , and M. Ours-SwinT ranks first out
of seven metrics and second out of one metric compared to 26
compared methods on the ORSSD dataset. Since our modules
are designed specifically for the global features of transformer,
the performance of our two CNN-based variants, i.e., Ours-
VGG and Ours-Res, is inferior to that of Ours-SwinT and
Ours-PVT, and is comparable to that of ERPNet, EMFINet,
and CorrNet.

2) Quantitative Comparison on the ORSI-4199 Dataset. Due
to slight differences in the comparison methods, we report



IEEE TRANSACTIONS ON IMAGE PROCESSING 8

0 0.2 0.4 0.6 0.8 1
Recall

0.6

0.7

0.8

0.9

1
Pr
ec
isi
on

CorrNet
ACCoNet
MCCNet
HFANet
Ours-PVT

0 0.2 0.4 0.6 0.8 1
Recall

0.6

0.7

0.8

0.9

1

Pr
ec
isi
on

VST
CorrNet
ACCoNet
MCCNet
Ours-PVT

0 50 100 150 200 250
Threshold

0.6

0.65

0.7

0.75

0.8

0.85

0.9

F-
m
ea
su
re

ACCoNet
MCCNet
CorrNet
HFANet
Ours-PVT

0 50 100 150 200 250
Threshold

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

F-
m
ea
su
re

ACCoNet
HFANet
CorrNet
MCCNet
Ours-PVT

0 0.2 0.4 0.6 0.8 1
Recall

0.6

0.7

0.8

0.9

1

Pr
ec
isi
on

MCCNet
SUCA
VST
ICON
Ours-PVT

0 50 100 150 200 250
Threshold

0.6

0.65

0.7

0.75

0.8

0.85

0.9

F-
m
ea
su
re

ACCoNet
MCCNet
HFANet
ICON
Ours-PVT

(a) EORSSD [14] (b) ORSSD [15] (c) ORSI-4199 [22]

Fig. 3. Quantitative comparison on PR curve (the first row) and F-measure curve (the second row) in three datasets. We show the top five methods in different
colors and the other compared methods in gray.

ORSI GT Ours-PVT MCCNet CorrNet ERPNet MJRBM VST PA-KRN SUCA HVPNet
Fig. 4. Visual comparisons with eight representative state-of-the-art methods on three datasets.

the quantitative comparison results of Ours-PVT and other
24 compared methods on the ORSI-4199 dataset separately
in Tab. II. The ORSI-4199 dataset is the biggest and the most
challenging dataset for ORSI-SOD. The performance of Ours-
PVT on this dataset is impressive, outperforming the second-
best method by 0.23%∼1.63% in terms of S-measure, F-
measure, and E-measure. And the MAE score of Ours-PVT is

only 0.0264, which is one of only three methods with the MAE
score below 0.03. The advantage of Ours-PVT is easier to spot
on the PR curve and F-measure curve, especially the latter one,
as plotted in Fig. 3 (c). The above excellent performance on
the challenging ORSI-4199 dataset strongly demonstrates the
effectiveness of Ours-PVT. But to be honest, there is still a
lot of room for improvement on the ORSI-4199 dataset.
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TABLE II
QUANTITATIVE COMPARISONS WITH STATE-OF-THE-ART NSI-SOD AND
ORSI-SOD METHODS ON THE ORSI-4199 DATASET. WE MARK THE TOP

TWO RESULTS IN RED AND BLUE, RESPECTIVELY.

Methods Type
ORSI-4199 [22]

Sα ↑ Fmax
β ↑ Fmean

β ↑ F adp
β ↑ Emax

ξ ↑ Emean
ξ ↑ Eadp

ξ ↑ M ↓

R3Net18 [51] CN .8142 .7847 .7790 .7776 .8880 .8722 .8645 .0401
PiCANet18 [75] CN .7114 .6461 .5684 .5933 .7946 .6927 .7511 .0974
PoolNet19 [52] CN .8271 .8010 .7779 .7382 .8964 .8676 .8531 .0541

EGNet19 [53] CN .8464 .8267 .8041 .7650 .9161 .8947 .8620 .0440
BASNet19 [68] CN .8341 .8157 .8042 .7810 .9069 .8881 .8882 .0454

CPD19 [48] CN .8476 .8305 .8169 .7960 .9168 .9025 .8883 .0409
RAS20 [76] CN .7753 .7343 .7141 .7017 .8481 .8133 .8308 .0671

CSNet20 [58] CN .8241 .8124 .7674 .7162 .9096 .8586 .8447 .0524
SAMNet21 [59] CN .8409 .8249 .8029 .7744 .9186 .8938 .8781 .0432
HVPNet21 [60] CN .8471 .8295 .8041 .7652 .9201 .8956 .8687 .0419
ENFNet21 [77] CN .7766 .7285 .7177 .7271 .8370 .8107 .8235 .0608

SUCA21 [61] CN .8794 .8692 .8590 .8415 .9438 .9356 .9186 .0304
PA-KRN21 [62] CN .8491 .8415 .8324 .8200 .9280 .9168 .9063 .0382

VST21 [35] TN .8790 .8717 .8524 .7947 .9481 .9348 .8997 .0281
DPORTNet22 [63] CN .8094 .7789 .7701 .7554 .8759 .8687 .8628 .0569

DNTD22 [64] CN .8444 .8310 .8208 .8065 .9158 .9050 .8963 .0425
ICON23 [65] TN .8752 .8763 .8664 .8531 .9521 .9438 .9239 .0282

MJRBM22 [22] CO .8593 .8493 .8309 .7995 .9311 .9102 .8891 .0374
EMFINet22 [23] CO .8675 .8584 .8479 .8186 .9340 .9257 .9136 .0330

ERPNet22 [18] CO .8670 .8553 .8374 .8024 .9290 .9149 .9024 .0357
ACCoNet22 [16] CO .8775 .8686 .8620 .8581 .9412 .9342 .9167 .0314

CorrNet22 [17] CO .8623 .8560 .8513 .8534 .9330 .9206 .9142 .0366
MCCNet22 [20] CO .8746 .8690 .8630 .8592 .9413 .9348 .9182 .0316
HFANet22 [66] TO .8767 .8700 .8624 .8323 .9431 .9336 .9191 .0314

Ours-VGG CO .8540 .8444 .8374 .8345 .9283 .9098 .9086 .0391
Ours-Res CO .8670 .8601 .8549 .8516 .9383 .9284 .9178 .0329

Ours-SwinT TO .8828 .8806 .8734 .8681 .9537 .9482 .9261 .0264
Ours-PVT TO .8862 .8842 .8785 .8755 .9544 .9478 .9265 .0264

Ours-SwinT consistently outperforms all compared methods
in all eight metrics on the ORSI-4199 dataset, and achieves
the best performance in Emean

ξ and M, even compared to
Ours-PVT. Similar to the performance on the EORSSD and
ORSSD datasets, the performance of Ours-VGG and Ours-
Res is relatively average on the ORSI-4199 dataset, which
further confirms that our modules is specifically designed for
the global features of transformer.

In addition, Ours-PVT and two other transformer-based
method (i.e., VST and ICON) perform almost the best among
their respective types of methods, i.e., ORSI-SOD method
and NSI-SOD method, on three datasets. This means that
transformer-based methods can continue to drive the devel-
opment of ORSI-SOD. The performance of the specialized
ORSI-SOD method is generally better than that of NSI-SOD
method on three datasets, which motivates us to develop better
specialized ORSI-SOD solutions.

3) Visual Comparison. We show the visual comparison of
Ours-PVT and eight representative state-of-the-art methods in
Fig. 4. There are eight cases in Fig. 4 belonging to four
typical and challenging ORSI scenes from three datasets.
The first scene is objects with various orientations, which
is unique to ORSIs, as in the first two cases of Fig. 4. We
observe that only our method accurately highlights salient
objects without including background. In contrast, another
transformer-based method, i.e., VST, incorrectly highlights
some background regions, and all CNN-based methods fail
to fully highlight objects. This is attributed to the directional

TABLE III
ABLATION RESULTS OF EVALUATING THE INDIVIDUAL CONTRIBUTION OF
EACH MODULE IN GELENET. THE BEST ONE IN EACH COLUMN IS BOLD.

No. Baseline D-SWSAM KTM SWSAM
EORSSD [14]

Sα ↑ Fmax
β ↑ Emax

ξ ↑

1 ! 0.9249 0.8717 0.9712
2 ! ! 0.9305 0.8827 0.9764
3 ! ! 0.9301 0.8812 0.9778
4 ! ! 0.9309 0.8836 0.9775
5 ! ! ! 0.9350 0.8872 0.9796
6 ! ! ! 0.9328 0.8871 0.9786
7 ! ! ! 0.9339 0.8863 0.9791
8 ! !∗ ! 0.9355 0.8879 0.9798
9 ! ! !∗ 0.9366 0.8911 0.9802
10 ! ! ! ! 0.9376 0.8923 0.9828

!∗: using this module to enhance the lowest- and highest-level features.

convolution unit of D-SWSAM. The second scene contains
multiple salient objects, as in the third and fourth cases of
Fig. 4. Most methods only locate some of these objects and
their saliency maps are relatively rough, but our method finely
segments all salient objects. This is due to the precise location
capability of SWSAM. The third scene contains objects with
fine structure, as in the fifth and sixth cases of Fig. 4. Our
method successfully delineates the same fine structure of
salient objects as GTs, such as the islands in the river and the
shape of the playground. The last scene is low contrast, where
the color of foreground and background is similar, as in the
last two cases of Fig. 4. Due to the global modeling capability
of PVT and the local enhancement of proposed modules, our
method accurately distinguishes white vehicles in both cases
without the interference of white zebra crossings. While other
methods are confused by the white zebra crossing and wrongly
highlight them.

C. Ablation Studies

We conduct comprehensive ablation studies on the EORSSD
dataset to evaluate the effectiveness of each module of our Ge-
leNet and each component of our three modules. Accordingly,
we analyze 1) the individual contribution of three modules,
2) the effectiveness of each component in D-SWSAM, 3) the
rationality of the way of modeling knowledge in KTM, and 4)
the effectiveness of each component in SWSAM. We conduct
these ablation studies on the GeleNet with the backbone of
PVT-v2-b2, and adopt the same parameter settings and dataset
partitioning as in Sec. IV-A for all variants.

1) Individual Contribution of Three Modules. To investigate
the individual contribution of the proposed three modules,
i.e., D-SWSAM, KTM, and SWSAM, we design various
combinations of the above three modules for a total of
seven variants: 1) Baseline, in which we remove all proposed
modules and adopt element-wise summation to fuse f2

t and
f3
t , 2) Baseline+D-SWSAM, 3) Baseline+KTM, 4) Base-

line+SWSAM, 5) Baseline+KTM+SWSAM, 6) Baseline+D-
SWSAM+SWSAM, and 7) Baseline+D-SWSAM+KTM. We
report the quantitative results in Tab. III.
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Fig. 5. Visual comparisons of different variants. B, D, and S are Baseline,
D-SWSAM, and SWSAM, respectively. The numbers in parentheses are the
ordinal numbers of these variants in Tab. III.

TABLE IV
ABLATION RESULTS OF EVALUATING THE EFFECTIVENESS OF EACH

COMPONENT OF THE PROPOSED THREE MODULES. THE BEST ONE IN EACH
COLUMN IS BOLD. D-SW. MEANS D-SWSAM, AND SWSA. MEANS

SWSAM.

Models
EORSSD [14]

Sα ↑ Fmax
β ↑ Emax

ξ ↑

GeleNet (Ours) 0.9376 0.8923 0.9828

D
-S

W
.

w/o DirConv 0.9366 0.8911 0.9802

w/o SWSAM 0.9346 0.8886 0.9800

K
T

M w/ sum 0.9353 0.8886 0.9808

w/ product 0.9334 0.8876 0.9813

SW
SA

.

w/o shuffle 0.9320 0.8895 0.9798

w/o weights 0.9319 0.8872 0.9788

From the first four rows in Tab. III, we can find that each
module can individually improve “Baseline” by around 0.5%
in Sα, around 1.0% in Fmax

β , and around 0.6% in Emax
ξ , which

directly proves that the proposed three modules are effective.
The fifth to seventh rows of Tab. III present the performance
of pairwise cooperation of modules. We can conclude that
the cooperation of different modules can further improve the
robustness of our method, resulting in better performance.
Therefore, with all three modules working together, our full
model significantly outperforms “Baseline” by 1.27% in Sα,
2.06% in Fmax

β , and 1.16% in Emax
ξ .

We provide two variants to prove the necessity of enhancing
the lowest-level and highest-level features with different mod-
ules: 8) using D-SWSAM to enhance both lowest-level and
highest-level features, and 9) using SWSAM to enhance both
lowest-level and highest-level features. As shown in Tab. III,
we observe that the performance of the above two variants
is not as good as our method with different enhancements.
This means that enhancing the lowest-level and highest-level
features with the same module is suboptimal, and our different
enhancements to the lowest-level and highest-level features are
necessary.

Furthermore, we show the saliency maps for the first,
second, fourth, sixth variants, and our full model in Fig. 5
to visually illustrate the role of modules. Without the help
of any modules, “Baseline” performs badly, and its saliency
maps have the problems of wrongly highlighting, introducing
background, and incomplete highlighting. With the addition
of D-SWSAM which can perceive the orientation information
and perform local enhancement, the saliency maps generated

TABLE V
COMPARING THE PROPOSED SWSA WITH TWO CLASSIC ATTENTION
OPERATIONS, i.e., THE TRADITIONAL SPATIAL ATTENTION [41] AND

SGE [44]. THE BEST ONE IN EACH COLUMN IS BOLD.

Models
EORSSD [14]

Sα ↑ Fmax
β ↑ Emax

ξ ↑

w/ SWSAM (Ours) 0.9376 0.8923 0.9828
w/ SA 0.9293 0.8850 0.9784

w/ SGE 0.9324 0.8843 0.9791

by “B+D” successfully highlight the salient objects with the
correct direction (i.e., the first and last cases) and suppress
the background (i.e., the second case). Since SWSAM is
responsible for location enhancement in the highest-level
features, the salient objects in the saliency maps generated
by “B+S” are highlighted correctly and completely. Naturally,
the combination of D-SWSAM and SWSAM, i.e., “B+D+S”,
inherits all the advantages of the two modules. With the
additional help of KTM, the saliency maps generated by our
full model are visually indistinguishable from GTs. The above
analysis proves that the proposed three modules are effective
and play their respective functions.

2) Effectiveness of Each Component in D-SWSAM. D-
SWSAM consists of a directional convolution unit and
SWSAM. Here, we provide two variants of D-SWSAM to
investigate the effectiveness of the above components: 1)
removing directional convolution unit (i.e., w/o DirConv which
is the same as No.9 in Tab. III), and 2) removing SWSAM
(i.e., w/o SWSAM). As shown in the second and third rows
of Tab. IV, removing either component reduces detection
accuracy, which demonstrates both components are necessary
for D-SWSAM. Notably, the performance of w/o SWSAM
degrades more than that of w/o DirConv, indicating that
SWSAM is more important in D-SWSAM.

3) Rationality of the Way of Modeling Knowledge in KTM.
Due to the product and sum of f2

t and f3
t are complementary,

we model the contextual correlation knowledge between the
product and sum of f2

t and f3
t in KTM. To investigate the

rationality of this way of modeling knowledge, we design
two alternative modeling strategies: 1) removing product then
modeling knowledge only from sum (i.e., w/ sum), and 2)
removing sum then modeling knowledge only from product
(i.e., w/ product). As shown in the fourth and fifth rows
of Tab. IV, w/ sum and w/ product perform worse. As
detailed in Sec. III-C, due to the complementarity between
the product and sum of f2

t and f3
t , the contextual correlation

knowledge modeled from both is more conducive to inferring
salient objects. Modeling knowledge from only one of them
is suboptimal.

4) Effectiveness of Each Component in SWSAM. SWSAM
plays an important role in our GeleNet. We use it twice in
our GeleNet on the lowest-level and highest-level features.
Here, we provide two variants of SWSAM to investigate the
effectiveness of its components: 1) removing channel shuffle
(i.e., w/o shuffle), and 2) removing learnable parameter wn

in Eq. 3 (i.e., w/o weights). Notably, these two variants are
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ORSI GT w/ SWSAM (Ours) w/ SA w/ SGE

Fig. 6. Visual comparisons of different attention mechanisms.

applied in SWSAM of D-SWSAM and SWSAM of the highest
level. As shown in the last two rows of Tab. IV, w/o shuffle
and w/o weights are almost the worst of all variants in Tab. IV,
which illustrates the importance of both operations. Actually,
channel shuffle in SWSAM serves two different purposes. w/o
shuffle lets SWSAM in D-SWSAM to generate four spatial
attention maps directly from four sub-features with single
direction instead of sub-features with uniform four directions,
and weakens the channel communication of the global highest-
level features. w/o weights does not take into account the
differences between different spatial attention maps and simply
fuses spatial attention maps. Therefore, the performance of
both variants is degraded.

In addition, we compare the proposed SWSAM with two
classic attention mechanisms, i.e., the traditional spatial atten-
tion [41] and SGE, to further investigate the effectiveness of
our SWSAM. We provide two variants: 1) replacing SWSAM
with the traditional spatial attention (i.e., w/ SA), and 2)
replacing SWSAM with SGE (i.e., w/ SGE). As reported in
Tab. V, the effectiveness of these two attention mechanisms
is lower than that of our SWSAM, i.e., w/ SWSAM, for
ORSI-SOD. Moreover, in Fig. 6, we show the saliency maps
generated by w/ SWSAM, w/ SA, and w/ SGE for the visual
comparison. The first case is that some background regions are
similar to salient objects. Traditional spatial attention generates
the attention map in a global manner (i.e., from all channels),
which leads to the omission of valid information and is not
conducive to generating an accurate attention map. Therefore,
w/ SA incorrectly highlights background regions similar to
salient objects. The second case is the scene with the irrelevant
object. Since SGE extracts specific semantics from each sub-
feature and does not adopt the same consistent attention map
for enhancement, w/ SGE mistakenly highlights the irrelevant
object in the scene. The last case is the elevated highway with
cars. Since the comprehensive valid information in traditional
spatial attention is omitted, w/ SA only highlights cars on the
elevated highway instead of the elevated highway. w/ SGE
takes into account the semantics of different sub-features, so it
highlights more regions than w/ SA, but meanwhile introduces
other background regions. Differently, our SWSAM aggregates
multiple attention maps generated from different sub-features
in an adaptive way, resulting in a comprehensive attention map
for consistent enhancement. Therefore, our w/ SWSAM can
effectively handle the above cases.

V. CONCLUSION

In this paper, we propose the first transformer-driven ORSI-
SOD solution, namely GeleNet. GeleNet mainly follows the
global-to-local paradigm, while also considering cross-level
contextual interactions. GeleNet employs PVT to extract
global features, SWSAM and D-SWSAM to achieve local en-
hancement, and KTM to activate cross-level contextual inter-
actions. Specifically, SWSAM is an improved spatial attention
module, which is responsible for location enhancement in the
highest-level features. To adapt to various object orientations
in ORSIs, directional convolutions are used in D-SWSAM to
explicitly perceive orientation information of the lowest-level
features, followed by SWSAM to achieve detail enhancement.
KTM is built on the self-attention mechanism, and models
the complementary information between the product and the
sum of two middle-level features to generate discriminative
features. The cooperation of components makes GeleNet a
successful salient object detector for ORSIs. Extensive com-
parisons and ablation studies demonstrate the superiority of
GeleNet and the effectiveness of the three proposed modules.
Moreover, the proposed D-SWSAM and SWSAM can be used
as plug-and-play modules for related tasks [1], [2], [77]–[79].
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