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Efficient Halftoning via Deep Reinforcement
Learning

Haitian Jiang, Dongliang Xiong, Xiaowen Jiang, Li Ding, Liang Chen, and Kai Huang

Abstract—Halftoning aims to reproduce a continuous-tone
image with pixels whose intensities are constrained to two discrete
levels. This technique has been deployed on every printer, and
the majority of them adopt fast methods (e.g., ordered dithering,
error diffusion) that fail to render structural details, which
determine halftone’s quality. Other prior methods of pursuing
visual pleasure by searching for the optimal halftone solution,
on the contrary, suffer from their high computational cost. In
this paper, we propose a fast and structure-aware halftoning
method via a data-driven approach. Specifically, we formulate
halftoning as a reinforcement learning problem, in which each
binary pixel’s value is regarded as an action chosen by a virtual
agent with a shared fully convolutional neural network (CNN)
policy. In the offline phase, an effective gradient estimator is
utilized to train the agents in producing high-quality halftones
in one action step. Then, halftones can be generated online by
one fast CNN inference. Besides, we propose a novel anisotropy
suppressing loss function, which brings the desirable blue-noise
property. Finally, we find that optimizing SSIM could result in
holes in flat areas, which can be avoided by weighting the metric
with the contone’s contrast map. Experiments show that our
framework can effectively train a light-weight CNN, which is 15x
faster than previous structure-aware methods, to generate blue-
noise halftones with satisfactory visual quality. We also present
a prototype of deep multitoning to demonstrate the extensibility
of our method.

Index Terms—Halftoning, dithering, deep learning, reinforce-
ment learning, blue noise.

I. INTRODUCTION

D IGITAL halftoning is the technique that converts
continuous-tone images into images whose pixel values

are limited to two discrete levels (black and white), which
is the limitation of some rendering devices like printers.
Thanks to the low-pass filtering property of our human visual
system (HVS), a halftone image can be perceived as its
contone counterpart from a sufficient distance. According to
the dot clustering style, halftone images can be classified into
clustered-dot and dispersed-dot. Besides, there are two types of
halftone textures: periodic and aperiodic [1]. In this paper, we
focus on halftones with dispersed-dot and aperiodic textures,
which has been termed the blue-noise property [2], since this
kind of pattern gives the best visual pleasure.
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In halftoning research, image quality and processing ef-
ficiency are of paramount concern. With that in mind, we
first briefly review three kinds of “traditional” halftoning
techniques: (1) Ordered dithering (screening) methods [3]–[6]
periodically split the contone image into tiles and compare
them with a dither array, which was designed or generated in
advance. These methods are the fastest due to the high par-
allelism and less computation, but the quality of the resultant
halftone is usually unsatisfactory. (2) Error diffusion methods
[2], [7]–[14] quantize pixels in sequence. At each step, the
quantization error is diffused to adjacent unprocessed pixels
with the predefined or input-dependent weights. In general,
error diffusion yields better halftones than ordered dithering,
although the sequential processing style makes it difficult to
compute in parallel and may introduce unpleasant artifacts. (3)
Search-based methods [15]–[17] regard halftoning as an opti-
mization problem. They first design a halftone quality metric,
which usually explicitly considers the HVS model [18], then
optimize it with heuristic algorithms like greedy search [15] or
simulated annealing [16]. Search-based methods produce the
best halftone quality out of the three types because they can
directly optimize an elaborate halftone assessing metric (e.g.,
structural similarity [19]). However, the computational cost of
the searching is usually very expensive.

In the wave of deep learning, inverse halftoning has greatly
benefitted from the data-driven methodology [20], [21]. How-
ever, there are much fewer discussions [20], [22]–[24] with
respect to the deep “forward halftoning”. In this work, we
propose a new data-driven halftoning method that can generate
stochastic halftone images with structural details while remain-
ing efficient. Instead of searching just-in-time for an optimal
solution of this high-dimensional combinatorial optimization
problem, we train a light-weight fully convolutional neural
network (CNN, with parameters θ) in advance by optimizing
the expectation of the halftone metric. At runtime, a halftone
image can be generated quickly by one CNN inference.

In training such a halftoning CNN, we find that the key dif-
ficulty of the learning lies in the final thresholding operation,
whose derivative is zero almost everywhere that hinders the
back-propagation of gradients. In addition, there is no naturally
existing ground-truth halftones available for learning. Rather
than learning from a prepared halftone dataset [22], [24]
or using the empirical straight-through estimator (STE) [25]
and the binarization loss as in [23], we formulate halftoning
as a one-step multi-agent reinforcement learning (MARL)
problem. Specifically, each binary pixel in the output halftone
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TABLE I
COMPARISON OF HALFTONING FORMULATIONS. h AND c DENOTE HALFTONE AND CONTONE IMAGES, RESPECTIVELY.

Formulation Offline Phase Online Phase Parallelism Metric Optimizing

Ordered Dithering Design/generate dither array Pixel-wise thresholding with the array full ✗

Error Diffusion Design/generate diffusion weights Diffuse binarizing error pixel-by-pixel limited ✗

Search-based - h = h∗ = argmin
h

Metric(h, c) limited ✓

DRL-based (ours) θ∗ = argmin
θ

Eh∼Bernoulli(CNN(c;θ)) [Metric(h, c)] h = Thresholding (CNN (c; θ∗) , 0.5) full ✓

is regarded as a stochastic action chosen by a virtual agent
at the corresponding position with the shared CNN. To make
it possible to render aperiodic halftone patterns, we input the
continuous-tone image with a Gaussian noise map [23] to the
fully CNN followed by a pixel-wise sigmoid layer. A tailored
effective policy gradient estimator is proposed according to
the computational characteristics of halftone metrics. The
differences between our deep reinforcement learning (DRL)
based formulation and previous methods are summarized in
Table I. Moreover, in order to achieve the desirable blue-
noise property, we design a novel loss function that suppresses
the anisotropy of constant grayscale images’ halftones in
the frequency domain. Last but not least, we find that the
structural similarity index measure (SSIM) [19] used in [16]
is actually deficient in optimizing halftone, resulting holes
in flat areas with tones near 0/1. To address this problem,
we suggest optimizing the contrast-weighted SSIM (CSSIM),
which weights the SSIM map with the contrast map of the
continuous-tone image.

Extensive experimental results show the significance of our
method. We demonstrate that the proposed framework can
enable a standard and light-weight CNN model, which is fully
parallelizable and can be easily accelerated by modern deep
learning HW/SW stacks (15x faster than prior structure-aware
halftoning methods), to generate halftones with high quality.
The trained model achieves the best SSIM/CSSIM scores
compared to existing methods, and the generated halftones
can well preserve structural details and possess the blue-noise
property. Besides, the training converges quickly (about half a
day on one consumer GPU). The extensibility of our method
is demonstrated by an example of extending to multitoning,
in which the quantization level number is more than two.

Our contributions are summarized as follows:

• We propose an efficient halftoning method via deep rein-
forcement learning. A fully convolutional neural network
is trained to generate halftone images with structural
details. The training converges fast thanks to the gra-
dient estimator tailored according to the computational
property of halftone assessing metrics.

• We propose the anisotropy suppressing loss function,
which leads to the desirable blue-noise property.

• We point out that the SSIM metric has drawbacks in
assessing halftones. We suggest optimizing CSSIM that
weights the SSIM reward map with local contrast values
of the continuous-tone image.

• Our method may facilitate more situations similar to the

basic binary halftoning. A demonstration of extending to
multitoning is shown in this paper.

The foundation of this work was reported in our preliminary
study [26], named HALFTONERS. On that basis, in the
present paper, we provide three significant improvements:
First, we discuss the necessity of our DRL-based halftoning
solution, establish connections to existing works [15], [27]–
[29], and elaborate on how we design the framework in a
step-by-step manner. Second, we point out a fatal flaw in an
existing halftone metric and solve it with a new weighting
scheme. Finally, we add more extensive experimental results,
including component analyses, hyperparameter analyses, more
comparisons [10], [12], [13], [16], [24], and a multitoning
prototype demonstrating our framework’s extensibility.

II. PRELIMINARIES: DRL FOR IMAGE PROCESSING

In this section, we first discuss why we choose DRL for
halftoning. Then, a brief introduction of existing pixel-level
DRL works for image processing is given.

A. Why DRL?

Supervised learning (SL), unsupervised learning (UL), and
reinforcement learning (RL) are three common paradigms
in deep learning. Most image processing tasks that benefit
from the data-driven methodology have adopted the former
two, learning from a paired or unpaired image dataset. In
this work, we investigate how to train an efficient halftoning
NN, which can dither an image by one forward computation.
However, we find that the common SL and UL are undesirable
here: (1) Preparing the “ground truth” halftones can be costly
or even infeasible. It’s extremely expensive to obtain the
optimal halftone image due to its NP-hard nature. Existing
search-based methods can only optimize certain metrics [15]
or utilize meta-heuristic search methods [16] that needs to
be tuned per-instance [23]. (2) It is non-trivial to transfer
the (sub-)optimality from the halftone dataset to the neural
network. Halftoning is an one-to-many mapping problem in
essence [23]. Directly using a pixel-wise distance loss like
the cross-entropy to optimize this ill-posed problem will
actually learn an average image [30], [31], which violates
halftone’s discreteness constraint1. The generative adversarial
network (GAN), which is a prevalent framework of UL, learns

1Theoretically, autoregressive models [30] can tackle this problem by
modeling the dependency between discrete pixels. However, such models
require a large amount of runtime [24] due to their iterative processing nature.
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Fig. 1. An illustration of adapting three common learning paradigms to
halftoning. Here we dither a continuous-tone “image”: [0.5;0.5], whose
optimal halftones are [0;1] and [1;0]. (a) Supervised learning. Simply adopting
pixel-wise distance loss like the cross-entropy LCE fails to converge to the two
discrete ends. (b) Unsupervised learning. GANs minimize another distance
between the generated distribution and a pre-prepared target dataset. (c)
Reinforcement learning. The policy network is directly trained to maximize
the expectation of the target halftone metric.

from a pre-prepared target halftone dataset [20], [22], [24].
The discriminators in GANs are trained to measure another
distance (e.g., the Pearson χ2 divergence used in LSGAN [24],
[32]), which indirectly points to the ultimate halftone metric.
Elaborate designs are also needed to stabilize the training [24].
Fig. 1(a) and (b) illustrate these two situations.

Another approach to learn a dither network is to relax the
discrete constraint [33] and add a binarizing penalty loss which
pushes the output values to their nearest discrete ends, as [23]
did. However, such a greedy binarizing rule could damage the
optimization from a global perspective.

By contrast, we find that RL is a more appropriate paradigm
for halftoning, especially the DRL combined with the powerful
deep policy network. In DRL, parameterized agent(s) learns
to maximize the accumulated reward by interacting with the
environment [34]. The actions that agents perform can be dis-
crete, and the expected target metric (reward) can be directly
and explicitly optimized by the policy gradient (see Fig. 1(c)).
Besides, no additional ground-truth dataset is needed here.

B. Pixel-level DRL

There have recently been works that use DRL to solve image
processing problems [27], [35], [36]. While some methods
learn to execute global actions on the entire image [35],
[37], we are chiefly interested in the one whose actions are
formulated at the pixel level: pixelRL, which was proposed by
Furata et al. [27]. Herein, we make a brief introduction.

In pixelRL, agents iteratively improve an image by perform-
ing actions. Specifically, each pixel has a virtual agent, whose
stochastic policy is denoted as Pr(h(t)

a |s(t)a ) = πa(h
(t)
a |s(t)a ),

where s
(t)
a and h

(t)
a are the state and action of the a-th

agent at the time step t, respectively. There are N agents
(π = {π1, . . . , πN}) in total, which is also the number of
pixels. All agents share one fully convolutional network (FCN)
instead of N individual networks, so the learning can be
computationally practical. In the beginning t = 0, the state s(0)

is set to an initial solution with poor quality (e.g., the original
noisy image in the image denoising task). At each time step t,

agents learn to take actions h(t) = {h(t)
1 , . . . , h

(t)
N } from a pre-

defined toolbox H consisting of local operators, such as low-
pass filtering and pixel value plus one, to improve the current
s(t). Then, the agents obtain the next state s(t+1) and rewards
r(t) = {r(t)1 , . . . , r

(t)
N } from the environment. The ultimate

goal of the training is to maximize the expected cumulative
rewards R(t) =

∑∞
t γtr(t) that agents receive in the long run:

J(θ) = Eπθ

[
1

N

N∑
a=1

R(0)
a

]
= Eπθ

[
1

N

N∑
a=1

∞∑
t=0

γtr(t)a

]
, (1)

where γ is the discount rate, and θ denotes FCN’s parameters.
Policy gradient methods are utilized to maximize J(θ) by

taking steps θ ← θ + α∇θJ(θ) iteratively (α is the learning
rate). According to the policy gradient theorem [34], the
gradient of J(θ) with respect to θ equals:

∇θJ(θ) = Eπθ

[
1

N

N∑
a=1

∞∑
t=0

∇θ log πa

(
h(t)
a |s(t)a ; θ

)
R(t)

a

]
.

(2)
The one-sample Monte Carlo estimation of Eq. (2) is the
well-known REINFORCE algorithm [38]. Although it is un-
biased, this estimator has a large variance, leading to unstable
training. To stabilize the learning, [27] extended the asyn-
chronous advantage actor-critic (A3C) [39] for the pixelRL
problem. Specifically, a critic network (a FCN with parameters
ϕ) is introduced to predict the value function V (s(t)) =
Eπθ

[
R(t)|s(t)

]
, which serves as a baseline b(s(t)) = V (s(t))

to reduce the variance in the sample estimate for the policy
gradient:

R(t)
a = r(t)a + γV

(
s(t+1)
a ;ϕ

)
, (3)

A
(
h(t)
a , s(t)a

)
= R(t)

a − V
(
s(t)a ;ϕ

)
, (4)

∇θJ(θ) = Eπθ

[
1

N

N∑
a=1

∞∑
t=0

∇θ log πa(h
(t)
a |s(t)a ; θ)A(h(t)

a , s(t)a )

]
.

(5)
The critic network is dynamically updated to track the current
policy network πθ:

ϕ← ϕ− α
1

N

N∑
a=1

∇ϕ

(
R(t)

a − V
(
s(t)a ;ϕ

))2
. (6)

The pixelRL setting is interpretable because the agents’
choices in each time step can be observed and analyzed.
For more details of pixelRL, please see [27]. Next, we shall
formally confront the halftoning problem and analyze our
DRL-based method’s benefits.

III. HALFTONING VIA DRL

Given a continuous-tone image c ∈ C, a search-based
halftoning algorithm [15], [16] generates a halftone image
h ∈ {0, 1}N by minimizing the designed quantitative visual
error E(h, c), where C is the contone image dataset, N is the
number of pixels, and E(·, ·) is a predefined error metric. Bi-
nary pixels ha ∈ {0, 1} compose h, in which a ∈ {1, . . . , N}
identifies the pixel index. Instead of performing individual
computationally expensive searching for one image at runtime,
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Fig. 2. An overview of our proposed deep halftoning framework. The computation of the halftone metric and the analysis of anisotropy only exist in the
training phase. The halftone image can be generated by one CNN inference with the trained model.

we amortize the cost by training a deep neural network to
perform halftoning. Similar to the pixelRL [27], we formulate
the halftoning problem as a fully cooperative multi-agent
reinforcement learning problem. But here’s the key difference:
in our formulation, all agents act in just one step, so the
halftoning can be done by one NN forward computation. In
other words, the first set of actions made by the agents is
the final halftone image, and there is no need for iterative
improvements. This single-step setting also enables a simple
yet effective training scheme, which we shall show later in
this section. In the training phase (offline), agents are trained
to generate high quality halftones by the RL algorithm. Then,
in the testing phase, the halftone image is generated by one
inference, which can be fast if a light-weight model is adopted
(see Fig. 2). Now we cast halftoning into the RL terminology.

State. The environment state s is defined as:

s = Concatenate(c, z), (7)

where z is a dynamically sampled white Gaussian noise map
enabling a CNN to dither constant grayness images [23].

Agents. A virtual agent with a shared policy π is constructed
at each pixel’s position, and there are N agents in total.
Specifically, we utilize a FCN as the policy network like the
pixelRL [27]. After observing the state sa (the receptive field
of an output pixel a) and communicating with other agents
during the CNN forward pass, agent at position a gives its
probabilities of actions:

Pr(ha|c, z) = πa(ha|c, z; θ), (8)

where θ denotes CNN’s parameters. The joint policy is denoted
as π = {π1, . . . , πN}. We think that the noise map z, which
is proposed by [20] and [23], plays as a disentangled latent
variable or an image-agnostic “plan”. It indicates the specific
halftone image that should be predicted in this multimodal
problem, which means the halftone pixels are independent of
each other conditioning on c and z:

π(h|c, z; θ) =
∏
a

πa(ha|c, z; θ). (9)
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Fig. 3. Illustration of halftone assessing steps and the reward map. An agent’s
action (marked by “⋆”) can only affect the rewards in the window around it,
whose size is the same as the HVS filter.

In other words, actions (pixels) can be chosen simulta-
neously by agents in both training and testing. On the
contrary, error diffusion and search-based methods process
pixels in an autoregressive-like manner [30]: Pr(h|c) =∏N

i=1 Pr(hi|h<i, c), whose parallelism is extremely limited.
Rewards. In halftone assessment, existing metrics (MSE

and SSIM) consist of three steps (shown in Fig. 3): (1) Filter
h and c using the HVS model. (2) Calculate the pixel-wise
error map e. (3) Calculate the scalar metric by averaging the
error map. Following RL terminology, we define the reward,
which we would like to maximize, as the negative of the error.
So there is a reward map r, and the global reward R equals:

R(h, c) =
1

N

N∑
a=1

ra = −E(h, c) =
1

N

N∑
a=1

−ea. (10)

Strictly speaking, an agent’s action will affect all the reward
values in the local window around it (see the red dashed box
in Fig. 3), whose size is decided by the HVS filter. However,
since HVS model is usually a low-pass filter, one agent should
bear more of the responsibility for those reward values that are
closer to it. This is called the multi-agent credit assignment
problem in the RL literature [40]. The scalar performance
measure that we want to maximize is:

J(θ) = Ec,z

[
Eh∼π(h|c,z;θ) [R(h, c)]

]
. (11)

Since there is only one decision step in our formulation,
Eq. (11) does not involve the integration over time steps, which
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is different to Eq. (1). The specific form of the reward function
R(·, ·) will be discussed in Section V.

Learning. In order to maximize J(θ) (Eq. (11)), we adopt
policy gradient-based methods. The gradient equals:

∇θJ(θ) = ∇θEc,z

[
Eh∼π(h|c,z;θ) [R(h, c)]

]
= Ec,z

[∑
h

∇θπ(h|c, z; θ)R(h, c)

]
. (12)

We estimate this expectation by taking B samples (mini-
batch) from the dataset C and the multi-variate Gaussian prior
distribution:

∇θJ(θ) ≈
1

B

B∑
i=1

g(c(i), z(i)), (13)

g(c, z) =
∑
h

∇θπ(h|c, z; θ)R(h, c), (14)

where c(i) ∼ C and z(i) ∼ N (0, I). However, the exact
integration of g(c, z) (Eq. (14)) is still intractable (with O(2N )
complexity of reward computation). Therefore, we use a
gradient estimator ĝ ≈ g via Monte Carlo estimation [41].

Next, we will discuss how we design ĝ. To keep the notation
simple, we leave it implicit that π is a function of c, z, θ; R,
g are functions of c, z; and the gradient is with respect to θ.

A. REINFORCE with Counterfactual Baseline

The REINFORCE [38] algorithm used in Eq. (2) is still
feasible. However, here we do not need the policy gradient
theorem [34] due to the single step setting, and the gradient
estimator can be directly derived by the log derivative trick:

g =
∑
h

∇π(h)R(h)

=
∑
h

π(h)∇ logπ(h)R(h)

= Eh∼π

[
∇

(
log
∏
a

πa(ha)

)
R(h)

]

= Eh∼π

[∑
a

∇ log πa(ha) (R(h)− ba)

]
. (15)

In pixelRL [27], a critic network [39] is adopted to predict the
expected accumulated reward (value function) as the baseline
ba, and this additional model is simultaneously updated within
the training procedure (see Eq. (4) and (6)). But here we
find that it is possible to directly calculate a more precise
baseline. Specifically, we introduce the counterfactual multi-
agent (COMA) baseline [28]:

ba = ba(h−a) =
∑
h′
a

πa(h
′
a)R({h′

a,h−a}), (16)

where h−a = {h1, . . . , ha−1, ha+1, . . . , hN}. Intuitively, this
baseline ba(h−a) indicates agent a’s average performance by
marginalizing its action h′

a, while keeping other agents’ ac-
tions h−a fixed. It is computationally feasible in the halftoning
problem, as the dimension of a single agent’s action space is
only 2 (black and white) and the reward function has locality
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Fig. 4. Illustration of ĝLE (Eq. (19)).

(see the window in Fig. 3). More importantly, it elegantly
tackles the credit assignment problem aforementioned by
counterfactual thinking: “what if an agent had chosen the other
action”. Combining Eq. (15) and (16), the one-sample (h ∼ π)
COMA gradient estimator is:

ĝCOMA =
∑
a

∇ log πa(ha) (R(h)− ba(h−a)) . (17)

B. Local Expectation Gradient Estimator

The gradient estimator ĝCOMA (Eq. (17)) is a feasible
solution with one sample. However, we notice that the COMA
baseline (Eq. (16)) actually has explored N extra non-duplicate
data points. It may reduce more variance, if we directly utilize
these data points to estimate Eq. (14), rather than regard them
as a part of the baseline. Following this idea, we derive a new
estimator with N + 1 evaluation budgets of R(·):

g =
∑
h

∇π(h)R(h)

=
∑
h

∑
a

∇πa(ha)π−a(h−a)R({ha,h−a})

=
∑
a

∑
ha

∑
h−a

∇πa(ha)π−a(h−a)R({ha,h−a})
∑
h′
a

πa(h
′
a)

=
∑
a

∑
h′
a

∑
h−a

πa(h
′
a)π−a(h−a)

∑
ha

∇πa(ha)R({ha,h−a})

=
∑
h′

π(h′)
∑
a

∑
ha

∇πa(ha)R({ha,h
′
−a})

= Eh∼π

∑
a

∑
h′
a

∇πa(h
′
a)R({h′

a,h−a})

 . (18)

This is similar to [29], which was proposed to estimate the
gradient of the evidence lower bound in variational inference
problems. Despite there being some differences (e.g., our
agents are independent conditioning on the shared θ, while
the h was represented as a directed graph in their work), we
adopt their name: local expectation gradient, since the spirit
under the hood is similar: calculating a local exact expectation
while using a single sample from the other variables. The
corresponding one-sample estimator is:

ĝLE =
∑
a

∑
h′
a

∇πa(h
′
a)R({h′

a,h−a}), (19)
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Fig. 5. Spectral analyses on our halftone results generated without LAS and with LAS . The corresponding MSE scores measured on the test set are 5.01e-4
and 5.51e-4, respectively. Results from the DBS algorithm [15] are also included here for reference. Halftone samples in each column: (left) ours w/o LAS ,
(middle) ours w/ LAS , (right) DBS.

where h ∼ π. While the computational complexity is the
same: O(N + 1), we empirically find that ĝLE gets better
optimization results than ĝCOMA (see Section VI(D)).

Besides, Eq. (19) has an intuitive explanation. It is similar
to performing N concurrent “toggle” operations from the DBS
algorithm [15] on the sampled halftone image. But instead of
updating the halftone in place, we turn the reward differences
into gradients to reinforce the NN (illustrated in Fig. 4). The
complete formula is given here, as our final proposal:

∇θLMARL = −Ec,z,h∼π

∑
a

∑
h′
a

∇πa(h
′
a)R({h′

a,h−a}, c)

 .

(20)
We emphasize that no additional NNs, reference halftone
datasets, hyper-parameters, or heuristic binarization rules are
needed in ∇θLMARL.

C. Efficient Calculation of The Policy Gradient

One may argue that the N + 1 times of R(·) in Eq. (20)
are too expensive. Here we point out that it can be efficient
when considering the characteristics of halftone’s metrics (see
Fig. 3). First, all agents can reuse the same HVS filtered
map. Second, an agent only needs to be responsible for the
local window around it on the reward map. Third, instead
of calculating R(·) from scratch, the opposite action’s reward
window equals the current action’s reward window plus/minus
the HVS filter, from each agent’s perspective. In a word, the
computation of Eq. (20) is doable and parallelizable, and all
the training cost only appears in the offline phase.

IV. ANISOTROPY SUPPRESSING LOSS FUNCTION

Although our proposed DRL-based model enables train-
ing CNNs to output discrete halftone images, the desirable
blue-noise property [2] has not been explicitly guaranteed.
Following classic search-based methods [15], we tested the
MSE metric (between the HVS-filtered halftone and HVS-
filtered contone) as the reward function in the proposed DRL
framework. However, we find that a lower MSE score does
not necessarily mean the better blue-noise quality (see Fig. 5).
Even worse, the parallelism of CNN makes it easy to create
globally consistent stripe and checkerboard-like artifacts.

These phenomena were also reported by Xia et al. [23].
In response, they proposed to penalize the low frequency
components, separated by the discrete cosine transform, on
the dithered constant grayness images. However, we observed
that the low-frequency components have been minimized well
by the proposed policy gradient. The more urgent defect here
is the excessive anisotropy, which was neither explicitly con-
sidered by MSE nor SSIM. According to [1], the anisotropy
of a constant grayness image’s blue-noise halftone should be
minimized to −10dB at all frequencies. Thus we intend to
explicitly suppress the anisotropy.

Given the definition of the power spectral estimate P̂ (f)
with one periodogram and the radially averaged power spec-
trum density (RAPSD) P (fρ) [2]:

P̂ (f) ≈ 1

N
|DFT(h)|2 (21)

P (fρ) =
1

n(r(fρ))

∑
f∈r(fρ)

P̂ (f), (22)

where n(r(fρ)) is the number of discrete frequency samples
in an annular ring with width ∆ρ = 1 around radial frequency
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Fig. 6. The histograms of CNN’s outputs (analyzed on the Lenna test image)
during the training (a) w/o LAS and (b) w/ LAS . (c) Curves of LAS .

fρ, the anisotropy is defined as:

A(fρ) =
1

n(r(fρ))− 1

∑
f∈r(fρ)

(
P̂ (f)− P (fρ)

)2
P 2(fρ)

. (23)

To achieve the blue-noise property, we propose the anisotropy
suppressing loss function:

LAS = Ec,z

∑
fρ

∑
f∈r(fρ)

(
P̂θ(f)− Pθ(fρ)

)2 , (24)

which minimizes the numerator of Eq. (23). Note that the
calculation of P̂θ(f) involves the Thresholding(·) operation,
which also leads to the gradient vanishing problem. Naturally,
one may want to treat Eq. (24) as part of the reward function
(Eq. (10)) in the RL framework. But the fatal drawback here
is: a single pixel’s action switching will lead to changes on
the whole spectrum. So the naı̈ve implementation of ĝLE op-
timizing LAS will bring N+1 times of anisotropy calculation
in every training iteration, which is unacceptable in practice.

To address this problem, we make the following key ob-
servation: most of the output values of our network are
clustered around the two endpoints in the whole training
process (shown in Fig. 6(a)). Therefore the probability map
of action “white” should be similar to the real halftone image
(after thresholding). According to this observation, we take
the differentiable probabilities π(h = 1) as a proxy for h
to estimate the power spectrum in Eq. (21). As the spectral
analysis only makes sense for constant grayscale images’
halftones, we optimize this loss function on an extra mini-
batch of uniformly sampled cg ∼ U(0,1) following [23]. Our
experimental results show the artifacts vanish as a result of
LAS . The clustered distribution still holds after adding the
new loss function (see Fig. 5(b)).

Now we are able to train a deep blue-noise halftoning model
via gradient descending (see Algorithm 1 and Fig. 2):

∇Ltotal = ∇LMARL + wa∇LAS , (25)

where wa is a hyper-parameter. The symbols defined in
Section III and IV are summarized in Table II. In the next
section, we are going to discuss some drawbacks of existing
halftone metrics.

Algorithm 1 Halftoning via Deep Reinforcement Learning.
procedure TRAIN(C)

Init θ
repeat

▷ Optimize halftone metrics ◁
Sample c ∼ C, z ∼ N (0, I)
h ∼ π(h|c, z; θ)
LMARL = −∑

a

∑
h′
a
R({h′

a,h−a}, c)πa(h
′
a|c, z; θ)

▷ Suppress anisotropy ◁
Sample cg ∼ U(0,1), zg ∼ N (0, I)
P̂θ(f) =

1
N |DFT(π(h = 1|cg, zg; θ))|2

Pθ(fρ) =
1

n(r(fρ))

∑
f∈r(fρ)

P̂θ(f)

LAS =
∑

fρ

∑
f∈r(fρ)

(
P̂θ(f)− Pθ(fρ)

)2

▷ Update weights ◁
θ ← θ − α(∇θLMARL + wa∇θLAS)

until Convergence
return θ

procedure TEST(c, θ)
Sample z ∼ N (0, I)
h = Thresholding(CNNθ(c, z), 0.5)
return h

TABLE II
TABLE OF NOTATIONS

Symbol Meaning

Pr(·) Probability
h Halftone image/actions
c Continuous-tone image
C Continuous-tone dataset
N Gaussian distribution
U Uniform distribution
z Noise map
s State
a Index of the ath agent/pixel
N Number of agents/pixels
θ CNN parameters
π Policy

π(h|c, z; θ) Probability of h given c, z and θ
E(·, ·) Error function
R(·, ·) Reward function
J(θ) Performance measure for the policy with θ
ba Agent a’s baseline function
L Loss function
f Frequency

P̂ (f) Power spectral estimate
fρ Radial frequency

r(fρ) Annular rings with center radius fρ
n(r(fρ)) Number of frequency samples in r(fρ)
P (fρ) Radially averaged power spectrum density of fρ
A(fρ) Anisotropy of fρ

V. CONTRAST-WEIGHTED SSIM FOR HALFTONING

To preserve the characteristic look of textured regions in
halftone images, Pang et al. [16] proposed structure-aware
halftoning that takes the structural similarity index measure
(SSIM) [19] into consideration. However, we find that the
optimizing of the original SSIM metric will cause holes in
the smooth area whose values are near 0 or 1 (show in
Fig. 7 (a)(b)). On the SSIM index map (Fig. 7(c)), the hole
area is assigned with higher scores. By contrast, the area to the
left of the hole is given a lower score, which is problematic.
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Fig. 7. (a) Continuous-tone image. (b) Halftone image optimizing MSE & SSIM. (c) SSIM index map. (d) Luminance comparison map. (e) Contrast
comparison map. (f) Structure comparison map. (g) CSSIM index map. (h) Halftone image optimizing MSE & CSSIM.

To diagnose this problem, we break SSIM into components:

SSIM(h, c) = l(h, c) · c(h, c) · s(h, c), (26)

where l, c and s denote luminance, contrast and structure
comparison maps (see Fig. 7(d)(e)(f)), respectively. It shows
that in the flat area, the contrast and structure components of
SSIM actually prevent agents from generating minority dots.

As suggested in [19], it is possible to compute a weighted
average of the SSIM index map according to the specific appli-
cation. Recall that the goal of optimizing SSIM in halftoning is
to preserve structural details, which should only be performed
in the area with abundant textural variation. Motivated by it,
we propose to revise the metric by weighting the original
SSIM with the continuous-tone image’s contrast map σc,
whose value at position a is:

σa = k

 ∑
i∈window(a)

wi(ci − µa)
2

 1
2

, (27)

where k = 2 is a normalizing factor, wi is the ith weight of
11 × 11 Gaussian kernel with standard deviation of 1.5, and
µa is the local luminance [19]. So the contrast-weighted SSIM
(CSSIM) metric is:

CSSIM(h, c) = σc · SSIM(h, c) + (1− σc) · 1. (28)

We test this new metric on Fig. 7(b), and it successfully assigns
reasonable structural scores to halftones (see Fig. 7(g)).

Finally, we define the reward function R(h, c) used in
LMARL, which considers both the tone similarity and the
structure similarity:

R(h, c) = −MSE(HVS(h),HVS(c)) + wsCSSIM(h, c),
(29)

where HVS(·) denotes the low-pass filtering by a HVS model
and ws is a hyper-parameter. Note that our method is not tied
to a specific HVS model. One can adopt any HVS model

according to practical requirements, so long as it has a limited
filter size. In this paper, without loss of generality, we use
Näsänen’s HVS model [18] for demonstration since it was
recommended in [42]. We use the definition and parameters
listed in [42]’s Table I. Besides, the filter size is set to 11x11.
With regard to the scale parameter, which serves as a free
parameter [42], we choose S = 2000, as it is similar to the
situation when looking at a 24-inch 1080p monitor. Fig. 7(h)
shows the result generated by our model optimizing the
expectation of Eq. (29). One can see that the hole phenomenon
has disappeared, and the image presents clear structural details.

VI. EXPERIMENTS

In this section, we are going to show details of our method,
compare our work with prior halftoning approaches, analyze
the components, and discuss the extensibility.

A. Experiment Settings

Prior Methods. We have selected nine typical halftoning
methods from different categories for comparison:

• Ordered dithering. Void-and-cluster (VAC) [5], dither
array size = 64x64.

• Error diffusion. Ostromoukhov’s method (OVED) [8];
Structure-aware error diffusion (SAED) [10]; Tone-
dependent error diffusion based on an updated blue-
noise model (TDEDBS) [12]; Simple gradient-based error
diffusion (SGED) [13].

• Search-based methods. Direct binary search (DBS) [15];
Structure-aware halftoning (SAH) [16]. For a fair com-
parison, we use the same optimization objective as in
our method (Eq. (29). 11x11 Näsänen HVS filter with
S = 2000) when implementing their methods (DBS:
MSE; SAH: MSE and CSSIM, ws = 0.06).

• Deep halftoning. To our knowledge, Choi and Allebach’s
work [24] is the only published paper currently focusing
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Fig. 8. Halftone samples of image “Snail Shaped Organ”.

on generating aperiodic dispersed-dot halftones with deep
models. We implement the conditional GAN (cGAN) for
comparison since the autoregressive model is, according
to their report, very slow. Except for the dataset, all
training details strictly follow the settings in [24].

• In addition, we take the reversible halftoning method
(RVH) [23] for comparison, as it can generate blue-noise
halftones. Specifically, we reimplement it by removing
the extra reconstruction task that may damage halftones’
quality (only the warm-up stage in their paper). The ex-
perimental results of the full version (with reconstruction)
are also presented for reference. Except for the warm-up-
only version (trained for 45 epochs for convergence), all
training details exactly follow their released code.

Dataset. We evaluate all halftoning methods on the
VOC2012 dataset [43] following [23]. The test set contains
1,684 images, which are randomly selected from 17,125

images. For learning-based methods (RVH, cGAN and ours),
the remaining 13,758 and 1,683 images are reserved as the
training set and the validation set, respectively. All images are
converted to grayscale in advance. Note that our formulation
can be considered as self-supervised, so it should be easy to
collect more label-free continuous-tone images.

HW/SW Environment. To take full advantage of the paral-
lelism in some halftoning methods (VAC, SAED, RVH, cGAN,
and ours), we implement them on an NVIDIA GeForce RTX
2080Ti GPU with PyTorch 1.11.0, CUDA 11.3 and cuDNN
8.2.0. For those serial methods (OVED, TDEDBS, SGED, DBS
and SAH), we implement them in C++ with GCC 6.3.0 and
OpenCV 4.6.0 on an Intel Xeon Gold 5215 CPU (2.5GHz).

Details of Our Method. We choose ResNet [44] as the
backbone policy network. The CNN has 16 residual blocks
and 33 convolutional layers in total. Each convolution kernel
has 32 channels, and the strides of all convolution layers
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Fig. 9. Halftone samples of image “Plane” (from VOC2012 dataset [43]).

are 1. A pixel-wise sigmoid layer has been appended to the
CNN to output the probabilities of white dots π(h = 1).
All convolution kernels’ weights are initialized by sampling
from the normal distribution N (0, 0.012), and the biases are
initialized to zero. This is to set the initial action probabilities
around 0.5, so agents can do sufficient exploration rather than
be stuck in one random action preference. The batch size is set
to 64, training samples are randomly cropped to 64x64, hyper-
parameters ws = 0.06, wa = 0.002, and the learning rate α is
adjusted from 3e-4 to 1e-5 with the cosine annealing schedule.
The model is trained for 200,000 iterations (∼12 hours on a
2080Ti GPU) with the Adam optimizer [45]. In the testing
phase, we process and evaluate images with their original size.
We do not pad the images when calculating metrics.

B. Halftone Quality

To compare various methods’ visual quality, we test them
on different kinds of images and show three samples here.

Fig. 8 shows the benefit of effectively optimizing halftone
metric by our method. Our halftone results keep identi-

fiable structures from the source image. On the contrary,
VAC, OVED, TDEDBS and DBS totally destroy the vein
pattern because they do not take the structural similarity
into consideration. With regard to RVH, we find the halftone
with reversibility has better structural details than the one
without considering reconstruction. We think this is because
the structures have to be maintained in the halftone for the
need of reconstruction. The results obtained from cGAN lack
structural details, as the dataset used and the loss function
employed do not take into account this information. SAED
successfully generates halftones with rich structural features.
However, there are isolated minority dots near the edges in
SAED’s result. This is due to the fact that the accumulated
errors are improperly released here by lack of homogeneous
receivers. The SAH method, which needs per-instance tuning
[23], shows unsatisfactory results in our experiment with the
default parameters in [16].

Fig. 9 shows a realistic image and its halftone results.
Among all the existing methods, SAED achieves the relatively
good quality. However, the text on the plane is not very clear,
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Fig. 10. Halftone samples of grayscale intensity ramp.

which can be blamed on the assumption of only one dominant
frequency at each position [10]. In contrast, our method is
more adaptive and can render legible structures by learning to
optimize the proposed CSSIM metric. Note that all methods
except TDEDBS have shown a certain degree of checkerboard
artifacts in the mid-tone area. In TDEDBS, a better noise model
has been explicitly considered. For more details of the updated
noise model, we refer to [12], [46], [47].

For reference, Fig. 10 shows the results of all methods on
the grayscale ramp image. The quality of our halftone result
is comparable to the DBS method.

Quantitative quality results of all methods on the test dataset
are listed in Table III (mean and standard deviation). The tone
consistency is measured by PSNR between the HVS-filtered
halftone and the HVS-filtered input contone. In addition to
the Näsänen HVS model used in our work, we also report the
PSNR scores calculated with the Gaussian filter (sigma=2) for
reference. The structural similarity is measured by the SSIM2

and the proposed CSSIM (Eq. (28)). Thanks to the effective
DRL framework, our model achieves the best SSIM and
CSSIM scores among all candidates. Surprisingly, it performs
even better than the search-based SAH. With limited searching

2Note that it is not appropriate to assess halftones directly using SSIM [48].
We list SSIM scores here for reference.

budgets, it seems hard for SAH to effectively optimize the
target with a generic heuristic searching strategy. With regard
to PSNR, DBS achieves the best score by effectively searching
[49] for an optimal halftone solution of one contone image on-
the-fly. Although halftones with an extremely high PSNR are
not necessarily more visually pleasing, it is possible to narrow
the gap between DBS and our method by decreasing ws or
increasing the network capacity.

C. Processing Efficiency

The parameter number (predefined dither array, look up
tables or trained weights) and the runtime (evaluated on
the 512x512 “Lenna” testcase) of all methods are listed in
Table III. While the ordered dithering method (VAC) is the
fastest, its halftone results are of inferior quality. However, this
strategy is still useful in situations where the quality require-
ments are not strict. Search-based methods (DBS and SAH)
are quite time-consuming which impedes its practical appli-
cation. Compared to them, SAED achieves a better balance
between speed and quality. The SGED method is competitive,
although it shows limited quality in some complex scenarios
(such Fig. 8). RVH’s, cGAN’s and our results prove that it
is possible to learn a halftoning network and leave the time-
consuming optimization in the offline phase. Furthermore, our
method can enable a light-weight CNN to perform halftoning
with better image quality.

D. Discussions

Comparison of Gradient Estimators. To make the quan-
tized image differentiable with respect to the θ, Yoo et al.
[33] introduced the soft projection operation that relaxes the
quantization with a small temperature. Later, Xia et al. [23]
found that a simple relaxation alone was not sufficient for
halftones, which has only two discrete levels. They proposed
the binarization loss that greedily pushes the predictions to
their nearest discrete levels. Besides, rather than stochastic
policies, both [33] and [23] utilized deterministic models
h = Thresholding(CNNθ(c)). Since the gradient of the
Thresholding(·) operation vanishes almost everywhere, which
impedes the training, the STE [25] that assumes ∇θh ≈
∇θCNNθ(c, z) was also tested by [23]. Nevertheless, this
approximated gradient is generally not the gradient of any
function [50]. On the contrary, the unbiased ĝCOMA (Eq. (17))
and ĝLE (Eq. (19)) are directly derived from the target
(Eq. (12)), which inherently do optimization and discretization
at the same time.

To test the effectiveness of these gradient estimators, we
conduct training experiments using the same CNN model
and optimization objective as in our method. The MSE loss
curves are plotted in Fig. 11. We find that, firstly, simply
adopting the STE or relaxation neither decreases MSE nor
renders blue-noise halftones. Second, while the binarization
loss proposed in [23] does help cluster the outputs, this greedy
rule could harm the optimization (PSNR (Näsänen/Gaussian),
SSIM and CSSIM scores: 30.749/35.974/0.1529/0.9229). By
contrast, our estimators ĝLE and ĝCOMA result in stable and
quick optimization processes. Last but not least, we find that
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TABLE III
QUANTITATIVE COMPARISON OF HALFTONING METHODS. METRICS ARE MEASURED ON THE VOC2012 TEST SET. RUNTIMES ARE MEASURED ON THE

512X512 “LENNA” TEST IMAGE. “*” INDICATES THIS METHOD IS GPU-ACCELERATED.

Method PSNR (Näsänen) PSNR (Gaussian) SSIM [19] CSSIM (Eq. (28)) Param. # Runtime

VAC [5] (64x64) 29.191±0.836 34.472±1.758 0.0808±0.0584 0.9075±0.0370 4K 0.03ms*
VAC [5] (512x512) 29.283±0.839 34.490±1.764 0.0808±0.0584 0.9075±0.0370 262K 0.03ms*

OVED [8] 33.052±0.481 42.795±1.259 0.0998±0.0733 0.9117±0.0339 384 2.36ms
SAED [10] 30.942±0.831 37.786±1.683 0.1220±0.0774 0.9175±0.0302 341K 435.25ms*

TDEDBS [12] 31.798±0.519 42.419±0.521 0.0887±0.0679 0.9085±0.0363 818 3.07ms
SGED [13] 31.441±0.675 38.360±1.163 0.1391±0.0849 0.9195±0.0289 - 9.87ms

DBS [15] 33.987±0.414 44.365±0.534 0.0816±0.0675 0.9055±0.0389 - 932.49ms
SAH [16] 31.214±1.095 38.018±2.160 0.1380±0.0934 0.9210±0.0275 - 162s

RVH [23] (w/ recons.) 29.447±0.737 34.956±1.074 0.1500±0.0912 0.9220±0.0272 37.8M 49.61ms*RVH [23] (w/o recons.) 30.573±0.562 34.658±0.700 0.1360±0.0907 0.9172±0.0298
cGAN [24] 30.540±0.553 36.167±0.500 0.1133±0.0770 0.9159±0.0316 3.1M 166.67ms*

Ours 31.642±0.670 37.547±0.813 0.1610±0.0959 0.9236±0.0264 299K 28.38ms*
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Fig. 11. MSE training loss curves of gradient estimators.

(a)

(b)
Fig. 12. Halftone samples of image “Butterfly” with Fourier amplitude
spectrum: (a) w/o LAS (wa = 0). (b) w/ LAS (wa = 0.002).

ĝLE performs better than ĝCOMA on PSNR (see Fig. 14) while
their computational costs are the same.

Effect of ws. The hyperparameter ws determines the con-
tribution of structural similarity in the reward function. To
evaluate its effect, we plot the optimizing results of ĝLE and
ĝCOMA with different values (see Fig. 14). In this work, we
pick ws = 0.06 since the structure of its resulting halftone
is clear enough without being overly sharp. According to the
quality preference, one can trade CSSIM for better PSNR by
decreasing ws, and vice versa.

Effect of LAS on Real Image. In the halftoning litera-

Noise Type PSNR CSSIM
N (0, 1) 31.642 0.9236
U(0, 1) 31.663 0.9236
Γ(1, 10) 31.636 0.9236
B(0.5) 31.573 0.9237

Position Encoding [20] 31.685 0.9237
Dither Array [5] 31.644 0.9236

Screened Halftone [24] 31.616 0.9237

Fig. 13. Left: optimizing results with different input noise type. Right: the
“Plane” halftone sample generated with position encoding noise [20].

31.0

31.5

32.0

32.5

P
S
N
R

0.00 0.02 0.04 0.06 0.08 0.10 0.12
ws

0

1

2

R
L
E
−

R
C
O
M

A

×10−5

0.910

0.915

0.920

0.925

C
S
S
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1Fig. 14. Optimizing results (PSNR and CSSIM) by ĝLE and ĝCOMA with
different ws, as well as their performance comparison RLE −RCOMA.

ture, the blue-noise property merits particular focus [1]. For
realistic images, we show two samples generated without LAS

(Fig. 12(a)) and with LAS (Fig. 12(b)), as well as their Fourier
amplitude spectra. In Fig. 12(a), one can easily tell the regular
distribution of dots with orientation preference, which brings
peaks at certain phases on the spectrum.

CNN Architecture. The proposed training framework can
be applied to any CNN, so long as it keeps the image resolu-
tion. We also train a UNet [52] whose architecture strictly fol-
lows [23]’s practice. The resultant PSNR (Näsänen/Gaussian),
SSIM and CSSIM scores are 31.008/36.104/0.1580/0.9233,
respectively. First, we find that the UNet model is inferior
to the ResNet in the halftoning task. Second, the RL-based
framework successfully activates the model to achieve higher
metrics than RVH, while no additional halftone dataset or
auxiliary NN is needed here.

Comparison of Input Noise Type. In addition to the white
Gaussian noise map N (0, 1) suggested by [23], we have
tested more common distributions including: uniform U(0, 1),
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CT

CT SAED cGAN Ours
Fig. 15. Halftone samples of image “Girl” (from DIV2K dataset [51]). SAED and our method are capable of preserving fine structures such as the hairs in
this example. The resolution of the full image is 2040x2040. SAED’s runtime: 6,915 ms. cGAN’s runtime: 2,703 ms. Our runtime: 483 ms.

gamma Γ(1, 10) and Bernoulli B(0.5). We also tested three
special “noise” maps with spatial correlations: the position
encoding proposed by [20], the blue-noise dither array gen-
erated by [5], and the DBS-screened halftones [6] used in
[24]. Experiment results (see Fig. 13) show that they achieve
comparable quantitative quality. For visual quality, the position
encoding “noise” used in [20] can only generate periodic
textures in the flat areas. It would be an interesting topic to
discuss how to render other halftone patterns [53] or other
noise models [47].

Evaluation on DIV2K Dataset. In order to demonstrate
the generalization ability of the proposed method, we also
evaluated it on the DIV2K dataset [51], which is split into
800 images for training and 100 images for testing. The PSNR
and CSSIM scores are 31.668 and 0.9334, respectively. Fig. 15
shows a sample from this dataset [51]. We select SAED [10]
and cGAN [24] (also retrained on DIV2K) for comparison
here as the former shows ability to produce structural details,
and the latter is currently the only published deep learning
approach that focuses on generating aperiodic halftones. One
can see that our method can effectively capture details and
demonstrate a significant increase in speed. In addition, we
tested the new model trained here on the VOC2012 [43] test
set, and the PSNR/CSSIM scores are 31.535/0.9235, which is
comparable to the original results (31.642/0.9236).

E. An Example of Extending to Multitoning

The framework presented above is exemplified by solving
the basic binary halftoning problem, but it can be extended
to more complex situations, such as color halftoning [54] and
multitoning [55]. To show the extensibility of our method,
here we present a prototype of deep multitoning, which
reproduces a continuous-tone image with dots of more than
two discrete ink intensities. A straightforward solution is
to let CNN generate multi-channel images by replacing the
sigmoid layer with the softmax operation. However, it not
only brings a larger action space that we need to traverse
(now the complexity is O(N(L − 1) + 1), where N is the

Predicted Value

Fig. 16. Illustration of casting CNN’s outputs to the probabilities of multitone
pixel’s actions (levels=4).
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Fig. 17. Left: a multitone example generated by our deep multitoning model.
Right: the histogram of the predicted values (note the logarithmic scale).

pixel number and L is the number of available ink levels), but
also disables the directly applying of the proposed anisotropy
estimation solution. Motivated by some schemes from gradient
quantization works [56], [57], we continue using the binary
output model, but define the probabilities of actions as:

P (ha) =


(ceil(va)− va)/∆ ha = floor(va)
(va − floor(va))/∆ ha = ceil(va)
0 otherwise,

(30)

where ceil(va) and floor(va) denotes the nearest two discrete
levels around va predicted by the CNN, and ∆ = 1/(L − 1)
is the distance between levels. A 4-level case is illustrated
in Fig. 16. The dimension of each agent’s action space is
still two, regardless of L, and we can directly extend the



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. X, XXX XXXX 14

proposed algorithm to here with the same optimization target
and training procedure. A multitone sample and the predicted
values’ histogram (see Fig. 17) show that the majority of
output values gather around the discrete levels. As the number
of available levels L increases, finally the CNN learns an
identical mapping.

Note that there are extra considerations in the multitoning
problem, such as the different blue noise model [55] and the
banding artifact [58]. While the extended solution presented
here is computationally feasible, it can be further improved
by taking these aspects into account. It would not be trivial
to conduct a systematical study of the multi-level situation.
Consequently, we leave them for future work.

VII. CONCLUSION

An efficient halftoning method with a data-driven method-
ology is proposed in this paper. First, we propose to formulate
halftoning as a reinforcement learning problem, in which an
effective gradient estimator is tailored to train a light-weight
CNN as the policy network. Second, to achieve the blue-
noise property, the anisotropy of constant grayscale images’
halftone is suppressed by a new loss function in the training
phase. Finally, we suggest weighting the original SSIM metric
by the contrast map of the input continuous-tone image to
avoid the hole problem. While existing halftoning methods use
heuristics or conduct expensive search strategies, our trained
model not only generates halftones with structural details
but also stays efficient (15x faster than prior structure-aware
method), as shown in the experiments. Our framework can also
be extended to address related problems such as multitoning.

We hope this work will motivate more colleagues to con-
sider the potential benefits of deep learning for halftoning.
Future work could include:

• A more domain-specific neural model to narrow the run-
time gap between the present work and classic methods,
such as error diffusion [13].

• Extending to related problems, including, but not limited
to, multitoning [58], color halftoning [59], video halfton-
ing [60], and other noise models [47], [61].

• Merging the deep halftoning model into real-time printer
image processing pipelines.
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