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Sampling Equivariant Self-attention Networks
for Object Detection in Aerial Images

Guo-Ye Yang, Xiang-Li Li, Ralph R. Martin, Shi-Min Hu, Senior Member, IEEE

Abstract—Objects in aerial images have greater variations in scale and orientation than in typical images, so detection is more
difficult. Convolutional neural networks use a variety of frequency- and orientation-specific kernels to identify objects subject to different
transformations; these require many parameters. Sampling equivariant networks can adjust sampling from input feature maps according
to the transformation of the object, allowing a kernel to extract features of an object under different transformations. Doing so requires
fewer parameters, and makes the network more suitable for representing deformable objects, like those in aerial images. However,
methods like deformable convolutional networks can only provide sampling equivariance under certain circumstances, because of
the locations used for sampling. We propose sampling equivariant self-attention networks which consider self-attention restricted to a
local image patch as convolution sampling with masks instead of locations, and design a transformation embedding module to further
improve the equivariant sampling ability. We also use a novel randomized normalization module to tackle overfitting due to limited aerial
image data. We show that our model (i) provides significantly better sampling equivariance than existing methods, without additional
supervision, (ii) provides improved classification on ImageNet, and (iii) achieves state-of-the-art results on the DOTA dataset, without
increased computation.

Index Terms—Sampling equivariance, self-attention, object detection, aerial image.
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1 INTRODUCTION

O BJECT detection in aerial images is a special case of
the object detection task, playing an important role in

fields such as environmental sciences, geosciences and ecol-
ogy. Compared to natural images, objects in aerial images
have greater rotational and scale variations because of the
overhead image capture, which requires the detection model
to more flexibly handle geometric transformations.

Convolutional neural networks (CNNs) have provided
significant improvements for the object detection task. They
use a variety of frequency- and orientation-specific kernels
to identify objects under different transformations [1], which
requires many parameters. They also must be trained with
images of similar objects under various shooting conditions,
leading to high training data acquisition costs.

To alleviate the above problems, networks with sampling
equivariance adjust sampling of the input feature map
in accordance with the object transformation, and extract
features of objects with different transformations using the
same set of convolutional parameters. Thus, convolutional
networks with sampling equivariance have greater feature
extraction capabilities for the same number of parameters,
and achieve better accuracy.

Dai et al. [2] proposed deformable convolutional net-
works (DCNs) which obtain sampling equivariance by
adding a regressive offset to each regular grid sampling
location of a convolution. However, DCN can only achieve
sampling equivariance for scaling transformations, by cor-
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Fig. 1. Illustration of equivariant sampling using masks. We use four
7 × 7 sampling masks here, colored blue, red, yellow and green. (a):
original image. (d): sampling masks over the original image. (b, c, e, f):
equivariant sampling masks for different transformations of the original
image.

relating the receptive field of the deformable filters with
object size, but does not provide sampling equivariance
under rotation, reflection, and skew. This results from the
two drawbacks of sampling by location:

1) As Figs. 2(a) and 2(b) show, sampling by location
may cause confusion when multiple image areas
have similar appearances, and ambiguity may occur
under transformations such as reflection.

2) As Fig. 2(e) shows, sampling represented by loca-
tions cannot represent irregular areas well.
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Self-attention based models are widely used in natural
language processing and have recently been adopted for
vision tasks. They can perform position-independent feature
aggregation based on the relationships between features,
which is required for sampling equivariance. To achieve
general sampling equivariance, we propose a novel sam-
pling equivariant self-attention layer (SES-Layer). It con-
siders self-attention restricted to a local image patch and
extracts features using a sliding window as a convolution
sampled by masks instead of locations. As shown in Fig.
2(c–f), using masks for sampling can overcome the ambi-
guity of similar-looking regions, and can represent irregular
areas better. Equivariant sampling by masks is illustrated in
Fig. 1.

SES-Layer is implemented on top of self-attention net-
works (SANs) [3], which do not have the property of
sampling equivariance. We improve SANs to meet the two
requirements of sampling equivariance. First, we use a
new positional encoding method to avoid the generation of
sampling masks being affected by sampling position, which
would lead to a prior bias. Second, finding features after
sampling may lose information of where and how the sam-
pling is performed, e.g. how many wheels there are, where
the wheels are, and what the shape of an irregular area is,
etc. We propose to embed the sampling mask into the output
features using a transformation embedding module to pro-
vide features with information related to the transformation
of the sampling. Quantitative experiments show that our
model achieves much better sampling equivariance without
additional supervision, thus outperforming baseline models
on the ImageNet dataset, without increasing the number of
parameters or computation required.

Furthermore, acquisition of aerial images is costly and
difficult, resulting in limited availability of training data;
models based on self-attention are prone to overfitting on
a small training set. To solve this problem, we propose a
randomized normalization module (RNM) to enhance the
generalization ability of the SES-Layer. Experiments show
that this can significantly benefit network training when
using a relatively small amount of data. Combining this
with sampling equivariance, our model outperforms state-
of-the-art methods on the DOTA dataset (dataset for object
detection in aerial images) without increased computation.

In summary, our contributions are as follows:

• a sampling equivariance layer (SES-Layer), which
significantly improves sampling equivariance in the
network,

• a randomized normalization module (RNM) to en-
hance the generalization ability of the network when
using a small training dataset, and

• experimental verification that our proposed method
outperforms baseline models on the ImageNet
dataset and achieves state-of-the-art results on the
DOTA dataset without additional computation.

2 RELATED WORK

2.1 Transformation-Invariant Features
Extracting transformation-invariant features from 2D im-
ages is an important problem in computer vision. Earlier

Fig. 2. Sampling by location versus sampling by mask. Given similar-
looking areas in the image, equivariant sampling by location may cause
ambiguity under a reflection transformation (a,b), while equivariant sam-
pling by mask does not cause the problem (c,d). (e,f) show the advan-
tage of masks over locations in expressing irregular areas.

work mostly used manually designed feature extractors [4],
[5], [6], [7], [8], [9]. Lowe et al. [10] proposed the scale-
invariant feature transform (SIFT). Svetlana et al. [11] pro-
posed dividing an image into patches, and used histograms
of local features in all patches as the features of the image.

In recent years, researchers began to use CNNs to ex-
tract transformation-invariant features. One class of meth-
ods achieves invariance for specific transformations like
translation, rotation, scaling and reflection by adding man-
ually designed layers to the neural network [12], [13], [14],
[15], [16], [17], [18]. Other methods use learnable deforma-
tion modules in the network, and extract transformation-
invariant features through indirect supervision of visual
tasks such as classification and detection [19], [20]. Jaderberg
et al. [21] proposed spatial transformer networks (STN)
which can perform a global affine transformation on the
feature map according to the input, to get invariant features.
Dai et al. [2] proposed deformable convolutional networks
(DCNs) to provide the ability to transform local features, by
adding an offset to each regular grid sampling location of
the convolution. The offsets are regressed according to the
input feature map. Some recent works improve DCNs by re-
gressing the weights of the sampling locations according to
importance [22] and sampling on the convolutional weights
instead of feature maps [23].

Such methods [2], [22], [23] obtain transformation invari-
ance of local features by changing the sampling locations
or weights of the convolution, which requires the sampling
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locations to have transformation equivariance. However,
experiments show that they only have sampling equiv-
ariance for scaling transformations, and not for rotation,
reflection, and skewing. We believe this is due to sampling
by locations. We propose to use masks for sampling instead
of locations, which can overcome ambiguities, and better
represent irregular areas to get better sampling equivari-
ance.

2.2 Self-Attention in Computer Vision

With the wide success of the attention mechanism in natural
language processing, similar techniques have been applied
to computer vision, such as residual attention networks [24],
squeeze-and-excitation networks [25] and non-local neural
networks [26]. Transformer [27] is ever more popular in
natural language processing, and it has also been applied
to computer vision. Transformer has been demonstrated to
have extraordinary performance due to its powerful rep-
resentational capabilities, even surpassing CNNs on some
tasks [28], [29], [30], [31]. Many transformer-based methods
have been proposed for object detection [32], [33], [34], im-
age segmentation [35], [36], [37], [38], image processing [39],
[40] and pose estimation [41], [42], [43]. Other works have
been proposed to improve the efficiency of transformers,
such as ASH [44], TinyBert [45], FullyQT [46], ConvBert [47]
and ExternalAttention [48].

Some recent methods apply self-attention to a local
patch of the image [3], [49], [50]. Hu et al. [50] proposed
a local relation layer for image recognition, which can
adjust aggregation weights according to the relationships
between local pixels. Zhao et al. [3] explored variations of
self-attention and proposed self-attention networks (SAN)
with two forms of self-attention, pairwise and patchwise.
In this paper, we regard self-attention restricted to a local
image patch as a convolution sampled by mask instead of
location. SAN-patchwise uses different weights to regress
the masks in different sampling locations, which leads to
inequality of different sampling locations, making it hard to
obtain sampling equivariance. Thus, our proposed model is
implemented on top of SAN-pairwise, which we also use as
one of our baseline models.

Our proposed model has significantly better sampling
equivariance compared to the baselines, and we further pro-
vide a randomized normalization module (RNM) to solve
the problem of overfitting of self-attention models trained
on small datasets.

2.3 Object detection in aerial images

Although object detection has been investigated for decades,
there are still unique challenges for aerial images. Object
detection in aerial images faces problems of varying scale
and orientation, as well as densely packed objects. General
purpose object detection models cope poorly with these
aspects of objects in aerial images, and datasets based on
unspecialised images are poorly suited for use in training
aerial image detection models. Thus many aerial datasets
and aerial object detection methods have been proposed.

Typical aerial image object detection datasets are an-
notated with different objects, such as ships [51] [52],

planes [53], buildings [54], vehicles [55], [56], [57], or mul-
tiple categories [58], [59]. DOTA [58] is one of the most
popular aerial image datasets, with 2806 aerial images from
different sensors and platforms; it contains 188,282 object
instances labeled in 15 common categories. We use DOTA
for evaluation and comparison in our experiments.

To detect objects of uncertain orientation in aerial im-
ages, many works have suggested how to learn in a rotation-
invariant way [60], [61], [62], [63], while [64], [65], [66] pro-
posed many oriented detectors for ship detection in aerial
images. In order to make better use of deep features for
detecting objects with uncertain orientation, Zhou et al. [67]
proposed oriented response networks to produce within-
class rotation-invariant deep features, and Wang et al. [68]
hoped to learn center probability to improve performance.
By considering multiple scales of objects in aerial images,
Azimi et al. [69] improved detection of such objects by using
FPN and deformable convolutions. Ding et al. [70] proposed
a region of interest transformer that can turn an axis aligned
bounding box into an oriented bounding box. Li et al. [71]
proposed an object-wise semantic representation to improve
object detection, while Zhang et al. [72] exploited scene-
level global contextual features and an attention module to
improve detection. SCRDet [73] and SCRDet++ [74] improve
detection by use of an attention mechanism, instance-level
feature denoising and rotation loss smoothing. For faster
and more accurate oriented object detection, Yang et al. [75]
proposed a refined single-stage rotation detector. Since focal
loss [76] was proposed for dense object detection, many
different oriented bounding box representations and regres-
sion losses have been proposed, such as circular smooth
labels [77], modulated loss [78], dense label encoding [79],
and Gaussian Wasserstein distance loss [80]. Pan et al. [81]
proposed a feature selection module and a dynamic refine-
ment head to adjust the receptive field adaptively and dy-
namically refine object prediction. Han et al. [82] proposed
a single-shot alignment network and achieved state-of-the-
art performance by aligning deep features adaptively and
reducing inconsistency between localization and classifica-
tion.

Xu et al. [83] proposed a novel representation for an
oriented bounding box by four vertices ‘gliding’ on the
four sides of an axis-aligned bounding box (AABB); they
regressed the AABB and the length ratios which represent
the offset along each corresponding side of the oriented
bounding box. The resulting gliding model achieves state-
of-the-art performance on DOTA. Because this network is
concise and achieves good results, it is a suitable baseline
for measuring the effect of our proposed SES-Layer in aerial
image object detection.

3 METHODOLOGY

3.1 Architecture
Our proposed network is shown in Fig. 3. It has two main
components, a randomized normalization module (RNM)
and a sampling equivariant self-attention layer (SES-Layer).
The SES-layer considers self-attention restricted to a local
patch of the image and extracts features with a sliding
window as a convolution sampled by masks, instead of
sampling by location as in previous work [2], [22]. The RNM
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Fig. 3. Proposed network. (a): Overall network comprising RNM, ReLUs, and SES-Layer. (b) Sampling equivariant self-attention layer (SES-
Layer);

⊙
denotes Hadamard product, and

⊕
denotes concatenation. Yellow box, right: removed positional encoding of SAN. (c) Randomized

normalization module (RNM).

is designed to enhance the generalization ability of the SES-
Layer when trained on small datasets.

3.2 Sampling Equivariant Self-attention Layer
Our analysis of why previous methods [2], [3], [22], [49], [50]
failed to achieve sampling equivariance led us to propose a
sampling equivariant self-attention layer (SES-Layer) based
on pairwise self-attention networks (SAN) [3]; the pipeline
is shown in Fig. 3(b).

X ′′ and X ′ are feature maps with and without random
perturbations. They have shape [C,H,W ], where the C , H
and W represent the number of channels, height and width
of the feature map. X ′ and X ′′ are fed into three linear
layers to get the three output tensors value, query and key,
denoted V , Q and K , where r1, r2 are bottleneck dimension
reduction factors, and r3 is the mask sharing factor. The
sampling mask w is obtained using:

w = softmax(γ(δ(Q)− δ(K))) (1)

where δ is an unfolding operator with kernel size k, and
γ is a mask regression module composed of [BN, ReLU,
Linear, BN, ReLU, Linear] (BN being batch normalisation).
The linear layer operates on the first dimension of the
feature, and the softmax layer operates on the second and
third dimensions of the feature. In SAN, features need to
be position encoded before entering the mask regression
module γ, but we remove this step.

After obtaining the sampling mask w, the output feature
map Y is obtained as:

Y = ζ(V � w,w) (2)

where � denotes the Hadamard product, and ζ is a trans-
formation embedding module with two inputs: the features
after equivariant sampling V ′ = V � w and the sampling
masks w. In the transformation embedding module, we take
the feature for each sample in V ′ and the sampling mask
corresponding to this feature with a shape of k × k as the
sampling transformation information. Then, a linear layer

with shared weights is used to embed the transformation
information into the feature. Shared weights are used as we
believe different features can embed transformation infor-
mation in the same way, and doing so makes training the
model easier. In addition, the use of shared weights reduces
the number of parameters, resulting in reduced computa-
tion. Compared to positional encoding, the transformation
embedding module does not result in a greater number of
parameters or computational workload.

Positional encoding can be used to provide spatial con-
text for the model, but it causes prior bias in the generated
sampling masks. We thus remove the positional encoding
and embed the sampling mask w into the features after
equivariant sampling. This operation retains the function
of providing spatial context for positional encoding while
removing the prior error, and ensures that the features after
equivariant sampling have the sampling transformation in-
formation, which simultaneously overcomes both reasons
that SAN cannot achieve sampling equivariance. In our
experiments, we find that the sampling equivariance of
our proposed model is significantly improved, as has the
performance of the model on different tasks.

The SES-Layer can simply replace any convolution layer
with kernel size greater than 1 in a CNN, to give it sam-
pling equivariance and allowing more efficient extraction of
features.

3.3 Randomized Normalization Module
A network based on self-attention requires a large amount
of training data to generalize well [28]. However, due to the
cost and difficulty of aerial image acquisition, the amount
of available training data is relatively small [58]. We thus
instead hope to enhance the generalization ability of our
proposed model by adding random noise to the input of
the SES-Layer. However, adding noise directly to the input
feature map will cause the data distribution to be inconsis-
tent between training and testing, reducing performance. To
solve this problem, we propose a randomized normalization
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module (RNM) based on batch normalization (BN), and
explore how to combine it with the SES-Layer. The pipeline
of the RNM is shown in Fig. 3(c).

During training, for an input feature map X of shape
[C,H,W ], the RNM produces two outputs, the first being
the output X ′ of typical BN:

X ′ = γ(X − µX)/(σ2
X + ε) + β (3)

where µX denotes the mean of X across channels, σ2
X

denotes the variance of X across channels, γ and β are
learnable weights for BN with shape [C], and ε is set to
0.00001. The second output of RNM is a randomized output
X ′′ computed using:

X̂ = X +N(0, r)

X ′′ = γ(X̂ − µX̂)/(σ2
X̂
+ ε) + β

(4)

where N(0, r) represents a normal distribution generator
with output shape [C,H,W ], mean 0 and variance r.

After applying ReLU to the feature maps X ′ without
random perturbation and X ′′ with random perturbation,
we take X ′ as the input V , and X ′′ as inputs Q and K , in
the SES-Layer: we believe that overfitting the query and key
in the self-attention structure makes it difficult to generate
more generalized sampling masks during inferencing, so a
random disturbance should be added to the query and key
inputs. However, random disturbance of the value input will
increase noise in the features, which is not conducive to
training. Our experiments demonstrate that this random-
ization approach is the one most conducive to improving
the generalization ability of the model. RNM behaves like
BN during inferencing, so does not result in additional
computation, nor additional parameters.

3.4 Sampling Equvariance

3.4.1 Analysis of Sampling Methods
We now analyze convolution, deformable convolutional
networks (DCNs) [2], local self-attention models, and our
proposed SES-Net in terms of sampling approach, and
discuss their effects on sampling equivariance and model
performance.

Convolution uses fixed regular grid locations to sample
the input feature map. This structure is relatively inflexible
and requires more parameters to accommodate different
deformations.

DCNs [2], [22], [23] use locations determined by regres-
sion for sampling, which gives the model a certain degree
of flexibility. Experimentally, we find that this structure
can achieve good sampling equivariance under a scaling
transformation, correlating the receptive field of the DCNs
with object size; this property is also visualized in [2]. Thus,
a DCN convolution kernel can extract features of objects of
different sizes, reducing the number of parameters needed.
However, as noted in Sec. 1 and shown in Fig. 2, because
the use of locations for sampling causes confusion, it cannot
achieve complete sampling equivariance.

Local self-attention models [3], [49], [50] apply self-
attention to local patches of the image, and use sliding
windows to extract features. These works do not consider
local self-attention in terms of sampling with masks, and

thus their models have drawbacks that make it difficult to
achieve sampling equivariance.

SES-Net regards aggregation of mask w and V in the
self-attention structure as a sampling process in V with
mask w. From this perspective, existing methods can be con-
sidered to have problems of sampling prior error and lack of
sampling transformation information. SES-Net overcomes
them with a transformation embedding module. Sampling
using masks has greater flexibility than using locations and
does not cause confusion. After solving these two problems,
significantly better sampling equivariance can be achieved
under more diverse transformations. A model with sam-
pling equivariance can use a single kernel to extract features
from objects subject to different transformations, which can
give the model much stronger feature extraction capabilities.
Our proposed model can thus achieve better accuracy with
the same number of parameters.

3.4.2 Sampling Equivariance Strategy Evaluation
In order to objectively compare the sampling equivariance
of models with different sampling methods, we have de-
signed a unified quantitative evaluation metric.

SES-Net and SAN use masks to sample feature maps,
while DCNs use locations to sample through bilinear inter-
polation. Since the feature of each sampling can be calcu-
lated as the weighted average of each cell in a feature map,
we can construct a sampling graph of sampling locations
and sampling masks using the weights. The earth mover’s
distance (EMD) [84] is a measure of the distance between
two probability distributions, and is a good metric to mea-
sure the distance between two sampling graphs. Thus, we
use EMD to quantitatively evaluate the equivariance of sam-
pling locations and masks before and after transformation.

To evaluate sampling equivariance on transformation T ,
we take N images. For the i-th image Ii, we first randomly
select transformation parameters for T to obtain the trans-
formation Ti, and compute the transformed image Îi by
applying Ti to Ii. During feature extraction, there are Md

feature maps with stride d. We first randomly select a stride
di, then feed Ii and Îi into the network to get the j-th feature
map for stride di, and take the k-th sampling graph in this
feature map gi,j,k and ĝi,j,k. Finally, we use Ti to transform
gi,j,k to obtain an ideally equivariant sampling graph g̃i,j,k,
and use average EMD (AEMD) to evaluate the sampling
equivariance:

AEMD = α
1

N

N∑
i=1

1

Mdi

Mdi∑
j=1

1

Odi,j

Odi,j∑
k=1

EMD(g̃i,j,k, ĝi,j,k)

(5)
where α = 1/112 is a scalar to normalize the theoretical
maximum value of AEMD to 1. A smaller value indicates
better sampling equivariance, and Odi,j indicates the num-
ber of samplings at a sampling center on the j-th feature
map of stride di.

4 EXPERIMENTS

4.1 Approach

We first conducted a series of experiments on the Ima-
geNet [85] dataset to evaluate the sampling equivariance
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TABLE 1
Average earth mover’s distance (AEMD) in sampling equivariance

experiments.

Method Rotation ↓ Reflection ↓ Skew ↓ Scale ↓

SAN10 0.0122 0.0068 0.0067 0.0072
SES-Net10 (Ours) 0.0065 0.0032 0.0063 0.0058

SAN15 0.0110 0.0057 0.0067 0.0071
SES-Net15 (Ours) 0.0061 0.0029 0.0061 0.0057

DCNv2 0.0293 0.0243 0.0225 0.0068
DCNv2-C 0.0267 0.0215 0.0199 0.0063
SAN19 0.0099 0.0050 0.0062 0.0065
SES-Net19 (Ours) 0.0059 0.0028 0.0059 0.0055

and performance of SES-Net and baseline models. Then
we conducted experiments on DOTA [58] to show the
importance of sampling equivariance in object detection in
aerial images. The results demonstrate that, by taking ad-
vantage of sampling equivariance, our network can provide
improved accuracy over the state-of-the-art model while re-
ducing the number of parameters and computation needed.
Finally, we verified the effectiveness of our proposed mod-
ules through ablation studies. Our method is built on top of
SAN-pairwise, which we thus regard as one of the baseline
models; we denote it SAN in the following experiments.

4.2 Datasets and Evaluation Metrics
4.2.1 ImageNet [85]
ImageNet is a large-scale hierarchical image dataset span-
ning 1,000 object classes and containing 1,281,167 training
images, 50,000 validation images and 100,000 testing im-
ages. We use the training set for training and the validation
set for testing. In the testing stage, we use top-1 and top-5
classification accuracy as the evaluation metric.

4.2.2 DOTA [58]
DOTA is a popular aerial image dataset for oriented object
detection. It has 2806 aerial images of sizes from 800 × 800
to 4000 × 4000 from different sensors and platforms. It
contains 188,282 instances labeled in 15 common categories:
Plane (PL), Ship (SH), Storage Tank (ST), Baseball Diamond
(BD), Tennis Court (TC), Basketball Court (BC), Ground
Track Field (GTF), Harbor (HA), Bridge (BR), Large Vehicle
(LV), Small Vehicle (SV), Helicopter (HC), Roundabout (RA),
Soccer-Ball Field (SBF) and Swimming Pool (SP). Following
the standard protocol, we use the training set and validation
set for training and the testing set for testing, and use mean
average precision (mAP) as the evaluation metric.

4.3 Backbone Performance
We next describe experiments on sampling equivariance
and the ImageNet classification task to validate the effec-
tiveness of our proposed model as a backbone network
structure.

4.3.1 Implementation details
Experiments in this section were conducted on the Ima-
geNet [85] dataset. Our SES-Net10, SES-Net15 and SES-
Net19 are based on SAN10, SAN15, and SAN19 respectively,

replacing SA layers with SES layers. We conducted experi-
ments on ImageNet without the RNM module, as there is
sufficient training data.

In our experiments, the bottleneck dimension reduction
factors and mask sharing factor were set to r1 = 4, r2 = 16
and r3 = 8, as for SAN. To ensure a fair comparison, we
used the same data augmentation strategy as SAN, includ-
ing random cropping to 224 × 224 patches and random
horizontal flipping. Our models were trained for 100 epochs
using a stochastic gradient descent (SGD) optimizer with
batch size 256, momentum 0.9 and weight decay 0.0001. The
learning rate was initially set to 0.1, with cosine annealing
schedule. Our models were implemented using Jittor [86].

We used SAN [3], ResNet [87] and DCNv2 [22] with
ResNet-50 as backbone as our baseline models, and train
SES-Net, SAN, ResNet and DCNv2 from scratch on Ima-
geNet with the above hyper-parameters for classification,
where DCNv2 used for classification is denoted DCNv2-C.
In addition, we also compared with DCNv2 with weights
provided by mmdetection [88] trained on MSCOCO [89].

4.3.2 Sampling Equivariance

In order to evaluate the sampling equivariance of different
methods, we designed quantitative and qualitative exper-
iments on sampling equivariance, and performed compar-
isons with SES-Net, SAN [3] and DCNv2 [22].

We considered four typical transformations: rotation,
reflection, skewing and scaling. For each transformation, we
randomly selected N = 5000 images from the ImageNet
validation set for the experiment. We used AEMD from Equ.
5 to evaluate the sampling equivariance of DCNv2, DCNv-
C, SAN10, SAN15, SAN19, SES-Net10, SES-Net15 and SES-
Net19; results are shown in Tab. 1. Compared to DCNv2,
our results are significantly better under rotation, reflection
and skewing transformations, while DCNv2 has a sampling
equivariance closer to that of our model under scaling; it
is hard for DCNv2 to achieve complete sampling equiv-
ariance by using locations for sampling. Our model also
outperforms SAN for each task, as our proposed structure
can eliminate SAN’s prior sampling errors by retaining the
spatial context and incorporating sampling transformation
information into the output features.

In Fig. 4, we show sampling examples on the ImageNet
validation set using different methods. Due to space lim-
itations, we only show results for DCNv2-C, SAN10 and
SES-Net10 under rotation and reflection. Fig. 4(b) shows
results for DCNv2-C, numbered circles representing differ-
ent sampling locations for DCNv2. Comparing locations 2,
4, and 7 in images in the first column shows that these
locations have not rotated as the image rotates: these lo-
cations do not achieve sampling equivariance. Rows (a1,
a2) show sampling masks for SAN10. Due to prior errors
and lack of transformation information, they do not always
provide good sampling equivariance: see row a2, columns
3–4. Rows (a3, a4) show sampling masks for our method,
which provides good sampling equivariance under different
image transformations. Both quantitative and qualitative ex-
periments show our proposed model provides significantly
better sampling equivariance without special supervision.
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Fig. 4. Samples for different methods for images before and after transformation. Columns: before and after different transformations: (a1–a4, b1):
rotation, (a5, a6, b2): reflection. Rows: different methods: (a1, a2): SAN10, (a3, a4): SES-Net10, where for each image, two example samplings are
shown with each sampling mask in the original image, (b1–b2): DCNv2-C, where numbered circles represent different sampling locations.

TABLE 2
Results using the ImageNet test set.

Method Top-1(%) Top-5(%) Params FLOPs

ResNet26 73.6 91.7 13.7M 2.4G
SAN10 75.1 92.3 10.5M 2.1G
SES-Net10 (Ours) 76.4 93.0 10.6M 2.1G

ResNet38 76.0 93.0 19.6M 3.2G
SAN15 76.6 93.1 14.1M 2.9G
SES-Net15 (Ours) 77.5 93.7 14.2M 3.0G

ResNet50 76.9 93.5 25.6M 4.1G
DCNv2-C 75.5 92.6 26.4M 4.3G
SAN19 76.9 93.4 17.6M 3.7G
SES-Net19 (Ours) 77.8 93.8 17.8M 3.8G

4.3.3 Classification

In order to quantitatively evaluate the capability of our
proposed model, we conducted experiments also using
ResNet26, ResNet38, ResNet50, DCNv2-C, SAN10, SAN15,
SAN19, SES-Net10, SES-Net15 and SES-Net19 for classifi-
cation on ImageNet. As shown in Tab. 2, our method has
better top-1 and top-5 accuracy than ResNet, using fewer
parameters and FLOPs. Compared to SAN, top-1 and top-
5 accuracy are also improved, using a similar number of
parameters and FLOPs. It shows that the sampling equivari-
ance of our proposed method enables the sampling to adjust
to object transformations, allowing the model to extract
features of objects under different transformations with the
same parameters. Therefore, the model has stronger feature
extraction capabilities, and achieves better performance.

4.4 Experiments on DOTA

Object detection in aerial images differs from that in natural
images because it needs to identify objects from a bird’s-eye

view. Furthermore, objects in aerial images can have large
variations in scale and orientation, which must be handled
by the model. Our proposed SES-Layer can give the model
better sampling equivariance, enhancing its ability to deal
with different transformations. To demonstrate this, we ap-
plied our proposed architecture to existing approaches, and
conducted comparative experiments on the object oriented
bounding box (OBB) detection task in DOTA.

4.4.1 Implementation details
We applied our SES-Layer and RNM to the gliding ap-
proach [83] with ResNet101 as backbone and to S2ANet [82]
with ResNet50 as backbone, by simply replacing [BN, ReLU,
Conv3 × 3] with [RNM, ReLU, SES-Layer] in the bot-
tleneck of the backbone; these are denoted Gliding+SES
and S2ANet+SES respectively. We set the random size to
r = 0.005 for Gliding+SES and r = 0.01 for S2ANet+SES,
and set the kernel size k = 7 for all SES-Layers. We set
the dimension reduction factor r1 = 1 in order to adapt
to the structure of ResNet. Due to the limited amount of
training data in DOTA, we only replaced bottlenecks in the
last stage of ResNet to ease training. In the training process,
we used parameters pre-trained on ImageNet as the initial
weights. For Gliding+SES, the learning rate was initially set
to 0.1 decayed by a cosine annealing schedule, and the other
hyper-parameters were set as for Gliding. For S2ANet+SES,
we used the same hyper-parameters as S2ANet.

4.4.2 Experiments
We conducted experiments for the OBB task using DOTA.
Since most previous works [60], [63], [64], [65], [66], [67],
[70], [73], [75], [82] designed special modules to handle
rotation and scaling, it is hard to measure the effectiveness
of sampling equivariance of SES-Net using these works.
Thus, we used Gliding [83] as our baseline model, which has
a relatively simple design and excellent performance. We
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TABLE 3
Detection accuracy on different objects (AP) and overall performance (mAP) evaluation on the DOTA test set.

Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

FR-O R-101 79.42 77.13 17.70 64.05 35.30 38.02 37.16 89.41 69.64 59.28 50.30 52.91 47.89 47.40 46.30 54.13
Azimi et al. R-101-FPN 81.36 74.30 47.70 70.32 64.89 67.82 69.98 90.76 79.06 78.20 53.64 62.90 67.02 64.17 50.23 68.16
CADNet R-101-FPN 87.80 82.40 49.40 73.50 71.10 63.50 76.60 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90
DRN H-104 88.91 80.22 43.52 63.35 73.48 70.69 84.94 90.14 83.85 84.11 50.12 58.41 67.62 68.60 52.50 70.70
R3Det R-101-FPN 89.54 81.99 48.46 62.52 70.48 74.29 77.54 90.80 81.39 83.54 61.97 59.82 65.44 67.46 60.05 71.69
SCRDet R-101-FPN 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
CenterMap R-101-FPN 89.83 84.41 54.60 70.25 77.66 78.32 87.19 90.66 84.89 85.27 56.46 69.23 74.13 71.56 66.06 76.03
Li et al. R-101-FPN 90.41 85.21 55.00 78.27 76.19 72.19 82.14 90.70 87.22 86.87 66.62 68.43 75.43 72.70 57.99 76.36
Gliding R-101-FPN 89.47 84.63 51.00 74.91 71.56 74.28 86.73 90.86 79.55 86.78 58.68 70.65 72.96 70.76 59.42 74.82
Gliding+SES (Ours) R-101-FPN 89.41 86.83 51.56 73.22 72.59 75.46 87.32 90.59 87.04 86.83 64.54 70.68 74.91 74.21 67.32 76.84
S2ANet R-50-FPN 88.89 83.60 57.74 81.95 79.94 83.19 89.11 90.78 84.87 87.81 70.30 68.25 78.30 77.01 69.58 79.42
S2ANet+SES (Ours) R-50-FPN 88.96 82.99 56.99 82.84 80.75 85.89 89.35 90.58 86.67 87.88 67.96 69.23 78.75 73.04 75.19 79.80

Fig. 5. Detection results for different methods on DOTA images. Boxes in different colors show detected objects in different categories. Above: using
gliding as the baseline method. Below: using our proposed Gliding+SES.

TABLE 4
Number of backbone parameters and FLOPs for different methods.

Method B-Params B-FLOPs

Gliding 44.5M 7.8G
Gliding+SES(Ours) 38.5M 7.6G
S2ANet 25.6M 4.1G
S2ANet+SES(Ours) 19.5M 3.9G

also conducted experiments on the state-of-the-art model
S2ANet combined with our SES-Layer to verify the versatil-
ity of our method.

We compared the performance of our proposed Glid-
ing+SES and S2ANet+SES with FR-O [58], Azimi et al. [69],
CADNet [72], DRN [81], R3Det [75], SCRDet [73], Cen-
terMap [68], Li et al. [71], Gliding [83] and S2ANet [82];
results are shown in Tab. 3. In Tab. 4, we also compare the
number of backbone parameters and backbone FLOPs with
the baseline models. Compared to Gliding, Gliding+SES
has significantly better mAP, using fewer parameters and
FLOPs: the better sampling equivariance provided by our
proposed model has clear advantages for tasks involving

a wide range of transformations like aerial image object
detection.

We also conducted experiments using the state-of-the-art
model S2ANet with our proposed SES-Layer. S2ANet uses
an alignment convolution layer (ACL) in the detection head
to handle rotation and scaling of the object, which partially
overlaps and conflicts with the function of the proposed
SES-Layer. Even so, our experiments show that S2ANet+SES
improves mAP over existing SOTA models using fewer
parameters and FLOPs, indicating the robustness and effec-
tiveness of our proposed method. Various detection results
using Gliding and our proposed Gliding+SES are shown in
Fig. 5: our method both has a higher detection rate, and
provides more accurate bounding boxes.

4.5 Ablation Studies
In order to verify the effectiveness of our proposed mod-
ules and explore other possible network configurations, we
conducted a series of ablation studies.

4.5.1 Validation of SES-Layer
We replaced the sampling equivariance module with other
modules in Gliding to verify its effectiveness. We replaced
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TABLE 5
Ablation experiments using the DOTA test set.

Method mAP B-Params B-FLOPs

Gliding 74.82 44.5M 7.8G
Gliding+DCNv2 75.26 44.9M 7.8G
Gliding+SA 75.81 38.4M 7.6G
Gliding+SA+RNM 75.84 38.4M 7.6G

Gliding+SES w/o RBN 76.10 38.5M 7.6G

Gliding+SES(Ours) 76.84 38.5M 7.6G

TABLE 6
Ablation experiments using the ImageNet test set.

Method Top-1(%) Top-5(%)

SES-Net10+RNM 76.24 92.98
SES-Net10 76.40 93.04

[RNM, ReLU, SES-Layer] in Gliding+SES with [RNM, ReLU,
SA-Layer] (denoted Gliding+SA+RNM), [BN, ReLU, SA-
Layer] (denoted Gliding+SA), [BN, ReLU, Conv3x3] (de-
noted Gliding), and [BN, ReLU, DCNv2] (denoted Glid-
ing+DCNv2), where SA-Layer is the self-attention layer of
SAN. These models were all initialized with pretrained
weights on ImageNet. We tested all models on DOTA, with
results shown in Tab. 5. Gliding+SES achieves the best
performance, while the number of parameters and FLOPs
remains similar or even smaller, showing that the sampling
equivariance of the SES-Layer can extract more powerful
features from objects undergoing various transformations,
using the same number of network parameters.

4.5.2 Validation of Randomized Normalization Module
To verify the effectiveness of our proposed RNM module,
we conducted ablation studies by replacing the RNM of
Gliding+SES with BN (denoted Gliding+SES w/o RBN)
using DOTA. Results are shown in Tab. 5, and show that our
proposed RNM module enables the model to generate more
generalized sampling masks and enhance the generalization
ability of the model, providing significantly improved re-
sults on a relatively small-scale dataset. We also considered
replacing [BN, ReLU, SES-Layer] in SES-Net10 with [RNM,
ReLU, SES-Layer] (denoted SES-Net10+RNM), and tested
the classification accuracy on ImageNet. As Tab. 6 shows,
due to the relatively large amount data in ImageNet, RNM
has no significant impact on the results.

We further conducted experiments with different con-
figurations of RNM. We tried various combinations of in-
put features with or without random disturbance in Q, K
and V in the SES-Layer. For example, we tried random
disturbance X ′′ for Q and without random disturbance
X ′ for K and V . This model is denoted Gliding+SES-
Random-Q. Likewise, other combinations are respectively
denoted Gliding+SES-Random-K, Gliding+SES-Random-
V, Gliding+SES-Random-QK, Gliding+SES-Random-QV,
Gliding+SES-Random-KV and Gliding+SES-Random-QKV.
Results are shown in Tab. 7. We can see that Gliding+SES-
Random-QK provides the best performance on DOTA, ver-
ifying our hypothesis that the query and key of the self-

TABLE 7
Further experiments using the DOTA test set.

Method mAP

Gliding+SES-r = 0.001 75.86
Gliding+SES-r = 0.005 76.84
Gliding+SES-r = 0.02 76.45
Gliding+SES-r = 0.08 75.72
Gliding+SES-r = 0.32 75.80

Gliding+SES-Random-QKV 75.23
Gliding+SES-Random-QK 76.84
Gliding+SES-Random-QV 74.02
Gliding+SES-Random-KV 75.21
Gliding+SES-Random-Q 75.78
Gliding+SES-Random-K 75.87
Gliding+SES-Random-V 75.74

attention structure can easily overfit the training data, mak-
ing it hard to generate more generalized sampling masks
during inferencing. Therefore, random disturbance should
be added to the query and key input features. Adding
random disturbance to the value will increase noise in those
features, which is not conducive for training.

We also conducted a series of experiments to ex-
plore the effects of different random size r =
0.001, 0.005, 0.02, 0.08, 0.32 for Gliding+SES. Results are
shown in Tab. 7, leading us to conclude the optimal value in
our experiments is r = 0.005.

5 CONCLUSIONS

Sampling equivariance is an important property, which can
enhance the expressive ability of a model without increasing
model parameters. In this paper, we analyze why existing
methods do not have complete sampling equivariance, and
propose a new solution, SES-Net. Through quantitative
comparisons, we demonstrate that our proposed method
has significantly better sampling equivariance than existing
methods, and performs better than alternatives without
increasing the number of model parameters or computa-
tional effort. We also propose an RNM module to enhance
the generalization ability of the model by adding random
disturbances to part of the data without changing the data
distribution.

Object detection in aerial images has greater require-
ments for sampling equivariance due to the characteristics
of overhead shooting. We have applied our proposed SES-
Layer to existing aerial image object detection methods [82],
[83] to provide better sampling equivariance. Experiments
show that RNM can enhance the generalization ability of
our proposed network, and that it works well with the SES-
Layer to achieve state-of-the-art performance on the DOTA
benchmark without computational overhead.

In principle, our approach can be used in many popular
network architectures, benefiting various computer vision
tasks, which we will further consider in future.
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