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OBMO: One Bounding Box Multiple Objects
for Monocular 3D Object Detection

Chenxi Huang, Tong He, Haidong Ren, Wenxiao Wang, Binbin Lin∗, Deng Cai, Member, IEEE

Abstract—Compared to typical multi-sensor systems, monoc-
ular 3D object detection has attracted much attention due to
its simple configuration. However, there is still a significant gap
between LiDAR-based and monocular-based methods. In this
paper, we find that the ill-posed nature of monocular imagery can
lead to depth ambiguity. Specifically, objects with different depths
can appear with the same bounding boxes and similar visual
features in the 2D image. Unfortunately, the network cannot accu-
rately distinguish different depths from such non-discriminative
visual features, resulting in unstable depth training. To facilitate
depth learning, we propose a simple yet effective plug-and-
play module, One Bounding Box Multiple Objects (OBMO).
Concretely, we add a set of suitable pseudo labels by shifting the
3D bounding box along the viewing frustum. To constrain the
pseudo-3D labels to be reasonable, we carefully design two label
scoring strategies to represent their quality. In contrast to the
original hard depth labels, such soft pseudo labels with quality
scores allow the network to learn a reasonable depth range,
boosting training stability and thus improving final performance.
Extensive experiments on KITTI and Waymo benchmarks show
that our method significantly improves state-of-the-art monocular
3D detectors by a significant margin (The improvements under
the moderate setting on KITTI validation set are 1.82 ∼ 10.91%
mAP in BEV and 1.18 ∼ 9.36% mAP in 3D). Codes have been
released at https://github.com/mrsempress/OBMO.

Index Terms—3D object detection, Monocular images, Depth
ambiguity, Camera project principles.

I. INTRODUCTION

DUE to widely deployed applications in robot navigation
and autonomous driving [1]–[5], 3D object detection has

become an active research area in computer vision. Although
LiDAR-based 3D object detectors [6]–[8] have achieved excel-
lent performance because of accurate depth measurements, the
application of these methods is still constrained by the high
cost of 3D sensors, limited working range, and sparse data
representation. Monocular-based 3D detectors [9]–[14], on the
other hand, have received increasing attention in autonomous
driving due to their easy accessibility and rich semantic clues.

Though tremendous efforts have recently been devoted
to improving the accuracy, monocular-based 3D object
detection is still highly challenging, as substantiated by
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Fig. 1. Objects with different depths and dimensions in 3D space. Objects
P and Q have the same bounding box and similar visual features in the 2D
image, leading to depth ambiguity.

[14]–[17]. Earlier works are based on mature 2D object
detection, using 2D Region of interests (ROIs) to regress
3D information. [18]–[22] follow the pipeline by either
introducing geometrical priors or laying 2D-3D constraints.
Promising results have been achieved; however, the gap in
the accuracy between LiDAR-based and monocular-based
approaches is still significant. One of the critical reasons
for the less competitiveness in monocular-based methods is
lacking precise knowledge of depth.

To this end, many prior works [23]–[35] focus on im-
proving the accuracy of instance depth estimation. These
methods mainly involve two strategies to encode depth prior
by either building dependencies on the intermediate task of
depth prediction or adding geometric constraints on the final
results. For the former, the expression content of the data is
enriched by initial depth prediction values from monocular
depth estimation or extra-designed modules. Some methods
transform the front view into other views using the predicted
depth values, such as the bird’s eye view (BEV) [23], [26].
Other methods combine the predicted depth values with the
corresponding RGB values into new data representations, for
example, concatenating them on channels [27] or converting
them into LiDAR format [28], [29]. For the latter, they add
extra modules or change the objective function to assist in
estimating depth. [30], [35] use the projection relationship to
constrain the predictions by well-designed Volume Displace-
ment loss and ground-aware convolution module, respectively.
[32]–[34] split the depth value into a coarse value and a
bias-corrected value. [32] considers the relationship between
objects and regards the distance of the 3D pair as bias. [33],
[34] predict the variance of depth and height, respectively, and
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use them to fine-tune the rough values.
Previous works adopt the one-to-one learning strategy,

which uses a 3D object label to supervise learning from
the visual features of one 2D object. However, due to the
asymmetrical projection between 2D and 3D, this one-to-one
learning strategy often causes depth ambiguity. For example, if
moving a car along the viewing frustum from a depth of 50 m
to 55 m and enlarging the size by 1.1, the visual representation
remains unchanged when projected to the 2D plane. As shown
in Figure 1, different objects in 3D space may have very
similar bounding boxes and visual features when projected to
the 2D image. Considering that the average length, width, and
height of the Car are 3.88 m, 1.63 m, and 1.53 m, respectively,
in KITTI, it is still maintained in a reasonable scope when the
size expanded by 1.1 times. Consequently, such ambiguity of-
ten causes inferior performance the network has to distinguish
different depths based on the non-discriminative visual clues.

We propose a simple yet effective plug-and-play module
named One Bounding Box Multiple Objects (OBMO) to
address the above problems. The core idea of OBMO is adding
reasonable pseudo labels by shifting the depth of an object
along the viewing frustum. Considering the lack of depth
in 2D images, the soft pseudo labels of 3D objects play a
significant role in encoding depth prior. Compared with the
hard labels, such soft labels encourage the network to learn
the depth distribution and stabilize the learning process, due to
the less variance in the gradient between training cases [36].

Designing such soft labels is non-trivial, as the significant
variation of depth often generates invalid sizes of 3D objects,
making the network overwhelmed by negative samples. To
this end, we design two label scoring strategies that use
dimensional priors and geometric constraints to represent the
quality of pseudo labels.

By introducing the OBMO module and the label scoring
strategy, the one-to-many problem is addressed to some extent:
the network is encouraged to learn a soft distribution of
object locations rather than deterministic ones. To show the
superiority of OBMO, we perform extensive experiments on
KITTI and Waymo datasets. Multiple monocular 3D detec-
tors are used, including direct regression-based detectors like
RTM3D [37], Ground-aware [35], GUPNet [33] and depth-
aware detectors like PatchNet [27], Pseudo-LiDAR [28]. Ex-
perimental results show that our method stabilizes the training
process and improves the overall BEV and 3D detection
performance, as shown in Figure 5. Concretely, on the
widely used KITTI dataset, our approach significantly im-
proves the state-of-the-art (SOTA) monocular 3D detectors by
1.82 ∼ 10.91% mAP in BEV and 1.18 ∼ 9.36% mAP in
3D. On the larger Waymo open dataset, we boost GUPNet with
3.34% mAP gains under the LEVEL 1 (IoU = 0.5) setting.

The contributions can be summarized as follows:
• We point out that the depth ambiguity problem in monoc-

ular 3D detection has been ignored in previous methods
and argue that this problem can result in unstable depth
training, which undermines performance.

• To alleviate the problem of unstable depth training in
monocular 3D object detection, we propose a plug-and-
play module OBMO. It explicitly adds a set of suitable

pseudo labels by shifting bounding boxes along the
viewing frustum for each original object.

• We design two label scoring strategies to represent the
qualities of pseudo labels: IoU Label Scores and Linear
Label Scores, which are inspired by the fixed dimension
range of objects in the same category.

• We conduct extensive experiments on various datasets:
KITTI and Waymo. The consistent improvement of the
accuracy demonstrates the effectiveness of our proposed
OBMO. For example, we achieved 21.41% in APBEV

and 15.70% in AP3D under the moderate KITTI valida-
tion set based on GUPNet, improving the state-of-the-art
results substantially.

II. RELATED WORK

A. LiDAR 3D Object Detection

Due to the accurate depth measurement, most state-of-the-
art 3D object detection methods are based on LiDAR [8], [38]–
[41]. These methods can be roughly divided into two parts:
voxel-based methods and point-based methods.

1) voxel-based methods: In order to tackle the irregular
data format of point clouds, voxel-based methods [3], [42],
[43] convert the irregular point clouds into regular voxel
grids. Then, use mature convolution neural architectures to
extract high-level features. However, the receptive fields are
constrained by the kernel size of 2D/3D convolutions [44],
[45]. Moreover, the computation and memory grow cubically
with the input resolution. To this end, SECOND [46] leverages
the 3D submanifold sparse convolution. In spatially sparse
convolution, output points are not computed if there is no
related input point, which significantly increases the speed
of both training and inference. Further, PointPillars [39] is
proposed to simplify the voxels to pillars. Overall, voxel-
based methods can achieve good detection performance with
promising efficiency. However, it is difficult to determine
the optimal voxel resolution in practice since the complex
geometry and various dimension objects.

2) point-based methods: Point-based methods [47], [48]
directly extract raw unstructured point cloud features via dif-
ferent set abstraction operations. Further, it generates specific
proposals for objects of interest. These point-based methods,
such as the PointNet [49] series, enable flexible receptive
fields for point cloud feature learning. For example, PointR-
CNN [47], a two-stage 3D region proposal framework for 3D
object detection, generates object proposals from segmented
foreground points and exploits semantic features to regress
high-quality 3D bounding boxes. PointGNN [48] generalizes
graph neural networks to do 3D object detection. In conclu-
sion, point-based methods don’t need extra preprocessing steps
such as voxelization. However, the main bottleneck of point-
based methods is insufficient representation and inefficiency.

B. Monocular 3D Object Detection

Although LiDAR 3D object detectors present promising
results, they have disadvantages of the limited working range
and sparse data representation. Monocular 3D object detec-
tors, on the other hand, enjoy the low cost and high frame
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rate. Current monocular 3D object detection methods can be
roughly divided into two categories: direct regression-based
methods and depth-aware methods.

1) Direct Regression-based Methods: Direct regression-
based methods [9]–[11] obtain the 3D detection results directly
from RGB images without extra knowledge like depth maps,
stereo images, etc.

Mono3D [20] first proposes an energy minimization ap-
proach and assumes that all vehicles are placed on the ground
plane. Moreover, it scores each candidate box projected to the
image plane via several intuitive potentials encoding semantic
segmentation, contextual information, size and location priors,
and typical object shape. Deep3DBox [19] simplifies the whole
pipeline by removing extra 3D shape models and complex pre-
processing operators. It is based on 2D object detection and
uses geometric constraints that the 3D bounding box should fit
tightly into the 2D detection bounding box. Considering geo-
metric reasoning, MonoGRNet [22] simultaneously estimates
2D bounding boxes, instance depth, 3D location of objects, and
local corners. M3D-RPN [18] proposed depth-aware convolu-
tional layers for learning spatially-aware features to produce
3D proposals directly.

SMOKE [50] removes the 2D detection part and directly
estimates 3D position by predicting projected 3D centers.
RTM3D [37] adds eight corner points as keypoints so that
more geometric constraints can be applied to remove false
alarms. It also designs a keypoint feature pyramid, which uses
soft weight by a softmax operation to denote the importance
of each scale. Center3D [51] uses Linear Increasing Dis-
cretization and a combination of classification and regression
branches to predict depth. MonoFlex [24] explicitly decou-
ples the truncated objects and adaptively combines multiple
approaches for object depth estimation. Specifically, it divides
objects according to whether their projected centers are “in-
side” or “outside” the image. Furthermore, it formulates the
object depth estimation as an uncertainty-guided ensemble of
directly regressed object depth and solved depths from differ-
ent groups of keypoints. GUPNet [33] proposes a GUP module
to obtain the geometry-guided uncertainty of the inferred depth
and designs a Hierarchical Task Learning strategy to reduce
the instability caused by error amplification. MonoDTR [13]
combines the transformer architecture and proposes a Depth-
Aware Transformer module, which is used to integrate context-
and depth-aware features globally.

Direct regression-based methods predict depth through a
branch and employ one depth value to supervise a Region
of Interest (ROI). However, we argue that this one-to-one
learning strategy often suffers from depth ambiguity problems
in monocular 3D object detection.

2) Depth-aware Methods: Depth-aware methods usually
need extra depth map, which is used for 3D detection.

Pseudo-LiDAR [28] combines monocular 3D object detec-
tion task with monocular depth estimation task. It transforms
RGB images to point clouds via an off-the-shelf depth esti-
mator. Finally, effective point cloud-based 3D object detectors
are employed for achieving the detection results. PatchNet [27]
discovers that the data representation is not the most important
one, but the coordinate transformation is. Thus it directly inte-

grates the 3D coordinates as additional channels of RGB image
patches. D4LCN [52] points out that methods like Pseudo-
LiDAR highly rely on the quality of depth map, and traditional
2D convolution cannot distinguish foreground pixels and back-
ground pixels. So it generates dynamic convolution kernels
to extract features in different 3D locations. CaDDN [23]
discretizes the range of depth and utilizes estimated categorical
pixel-wise depth distribution. It changes the representation into
BEV and then uses the BEV backbone to predict the 3D
detection results. MonoJSG [12] reformulates the Monocular
Object Depth Estimation as a progressive refinement problem
and proposes a joint semantic and geometric cost volume to
model the depth error.

Depth-aware methods only obtain a single depth value of
the center point pixel through the Monocular Depth Estimation
task. Similarly, they ignore the possibility of multiple reason-
able depth values.

III. APPROACH

In this section, we first provide a detailed analysis of the
widespread existence of “one bounding box with multiple
objects.” Such ambiguity severely affects the training stability
and accuracy of the model. Previous works ignore this prob-
lem, while we propose a simple but efficient module OBMO
to lessen the impact. Since the dimension of each category has
its reasonable range, we design two label scoring strategies to
represent the quality of pseudo labels, making unreasonable
pseudo labels ineffective.

A. Depth Ambiguity Problem

Obviously, 3D space is much larger than the projected 2D
space. Using a 2D image to recover 3D space is an ill-posed
task. Considering two objects with different 3D locations in
3D space, they may have similar bounding boxes and visual
features in the 2D image, as shown in Figure 1. It indicates
that predicting precise 3D locations from the 2D image may
be impossible. We theoretically prove it in this subsection.

Without loss of generality, we assume that the camera
system has been calibrated, which follows a typical pinhole
imaging principle, as shown in Equation 1.

s

uv
1


3×1

=

fx 0 cx 0
0 fy cy 0
0 0 1 0


3×4


x
y
d
1


4×1

(1)

In this equation, s is the scale factor, u, v represent the
position of an object in image coordinates, x, y refer to its
position in camera coordinates, d is the depth of the object.
fx, fy , cx, cy come from intrinsic parameters of the calibrated
camera. We set the scale factor s = 1 for notation convenience.
Then, we can rewrite Equation 1 as follows:

u− cx
fx

=
x

d
,

v − cy
fy

=
y

d
(2)

Regarding a point A(u, v) on the image, u−cx
fx

and v−cy
fy

are
fixed, as fx, fy , cx, cy are intrinsic parameters of the camera.
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(d) BEV with yaw ̸= 0.

Fig. 2. Different views of object P and Q with the same 2D bounding box.

According to Equation 2, u−cx
fx

denotes the ratio between
x and d, while v−cy

fy
denotes the ratio between y and d.

Therefore, we call them X-Z ratio and Y-Z ratio, respectively.
According to the projection relationship, we know that infinite
3D points can lead to A, as long as they have the same X-Z
ratio and Y-Z ratio (along the same ray from the camera optical
center to the 3D point (x, y, d)). As a result, one point on the
image can correspond to multiple 3D locations, and one 2D
bounding box on the image can correspond to various objects
in 3D space.

Moreover, in Figure 2, we give an intuitive explanation in
three different views: 3D view, bird’s eye view (BEV), and
lateral view. From Figure 2b, we can see that the ratio of the
widths (lengths) equals the ratio of depths. From Figure 2c,
we know that the ratio of heights (lengths) equals the ratio of
depths. More generally, when yaw ̸= 0, we can get the same
conclusion using bounding boxes, illustrated in Figure 2d.

In order to obtain the accurate value of depth, an intuitive
solution is to estimate object dimensions both in 2D image
and 3D space, then recover the depth according to geometry
projection. However, the error caused by dimension estimation
will amplify the depth estimation error, and it is non-trivial to
predict object dimensions precisely.

Assume the error in dimension estimation is at the cen-
timeter level, then the depth error is ±0.01 × depth. Taking
car P and car Q in Figure 1 as an example, assume the
dimension scale factor between object Q and object P is 1.02.
For objects in 100-meter away, as the typical height of cars is
1.53-meter (averaged value in KITTI), 0.03-meter dimension
errors (1.53 × (1.02 − 1) ≈ 0.03) can cause 2-meter depth
errors (100×(1.02−1) = 2). It will significantly decrease IoU
values between predictions and ground truths, which increases
training difficulty and instability. It indicates that only using
the dimension to resolve the depth is also infeasible.

Fig. 3. The loss based on PatchNet [27]. We can see that both predictions of
dimension and orientation are stable.

B. OBMO Module

The depth ambiguity causes that objects with different
depths can appear very similar visual clues on the RGB
image. For monocular-based methods, they have to distinguish
depth from such non-discriminative features. This character-
istic significantly affects the training stability. Therefore, we
propose a module named OBMO to resolve the intractable
depth ambiguity problem.

OBMO aims to let the network know that objects with dif-
ferent positions in 3D space may have similar bounding boxes
and visual features in the 2D image. After looking at multiple
reasonable pseudo labels, the network can give more general
answers. Similar to label smoothing [53], which strengthens
the network generalization ability by changing the one-hot
encoding to a soft encoding that carries more information.
Specifically, OBMO is a plug-and-play module capable of
being applied during training to any monocular 3D detector.

To mitigate the adverse impacts of the depth ambiguity
issue, we add some pseudo labels along with the viewing
frustum within a reasonable range, as shown in Figure 4. This
design improves the generalization ability of the network, as
pseudo labels in a larger space remove the strict limitation of
original hard labels. Specifically, we first calculate the X-Z
ratio and Y-Z ratio for each object as defined in Equation 2.
Then, we disturb the depth by a set of small offsets for each
ground truth (class, X, Y, Z,H,W,L, yaw). The depth offsets
∆z are determined by the dimension error tolerance and its
depth Z. Taking the “Car” as an example, we consider the
values of ∆z from the set {−8%,−4%,+4%,+8%}, resulting
in Zadjust = ∆z · Z. Then, adjust X and Y based on the X-Z
ratio and Y-Z ratio, respectively. Given that the prediction of
the dimensions (H,W,L) is relatively precise and consistent,
as depicted in Figure 3, and considering that dimensions are
inherent attributes of an object, we preserve their initial values
without any alterations, directing our efforts solely towards en-
hancing the forecast of the 3D location. To validate our design
approach, we conduct ablation studies to justify our design,
as presented in Ablation Study Table X. Therefore, we get a
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Fig. 4. The architecture of OBMO with label scoring strategies embedded on GUPNet. The differences are marked in orange. c⃝ means “compare”. The
OBMO module is used to produce a set of pseudo labels and adds an extra attribute to measure their quality. The Label Score branch is inserted into GUPNet,
parallel with 3D prediction branches. Moreover, the OBMO module only works in the training stage.

new pseudo label (class, Xadjust, Yadjust, Zadjust, H,W,L, yaw).
To facilitate learning, we provide ground truths and pseudo
labels as supervised signals to the network. It allows the model
to incorporate and benefit from the knowledge encoded in the
ground truths and the generated pseudo labels during training.

C. Two Label Scoring Strategies

However, the added pseudo labels are not unlimited. If
the pseudo label is too far from the corresponding ground
truth, then the transformation of dimensions is too heavy.
Moreover, for each category of object, its dimension is limited.
Therefore, to make pseudo labels reasonable, we should add
constraints on depth offsets or distinguish unreasonable pseudo
labels so that irrational pseudo labels will not affect training.
Consequently, we design two kinds of label scores, which are
used to represent the quality of pseudo labels. One is IoU
Label Scores, and the other is Linear Label Scores. Both
measure the similarity between pseudo labels and ground
truths so they can be obtained before training.

1) IoU Label Scores: Since Intersection over Union (IoU)
is a good measurement of how similar two bounding boxes
are, we use it as the quality score. The higher the IoU value,
the more significant the pseudo label. If two objects do not
intersect, the 3D IoU is 0, but the 2D project IoU may not. It is
common in categories with smaller lengths, such as Pedestrian.
Therefore, instead of using 3D IoU, we use the IoU value of
2D project bounding boxes, defined as follows:

IoU Label Score = IoU (Bgt, Bpseudo) , (3)

Bgt refers to the original ground-truth 2D project bounding
box, and Bpseudo is the projected project bounding 2D box of
the added pseudo 3D box label.

2) Linear Label Scores: Furthermore, we introduce another
simple yet effective scoring strategy: the Linear Label Score.
It only cares about the offset of depth, and we use a simple
linear function, as Equation 4 shows,

Linear Label Score = 1− (|∆z · Z|)
c

, (4)

where c is a hyper-parameter, and we use it to balance the
impacts of pseudo labels. The larger c is, the more enormous

impacts pseudo labels have on the training stage. Thus there is
a trade-off in the choice of c. In our experiments, we choose
c = 4 which empirically makes the score range in [0, 1]. This
scoring strategy intuitively reflects the quality of pseudo labels.
For pseudo objects too far away, Linear Label Scores are less
than 0 and filter them out.

For ground truths, the quality scores under both scoring
strategies are set to 1.0. In section IV-D of the ablation
study, we find these two label scoring strategies have similar
performance, which means that OBMO is robust to the label
scoring strategies.

The quality score estimation branch is an auxiliary network
that adopts the same structure as the other parallel regression
heads. We use L1 loss between the ground truth Label Score
and predicted Label Score, as follows:

LLabel Score = |Label Scorepred − Label Scoregt|. (5)

So, the total objective function is:

Ltotal = LBaseline + λLLabel Score, (6)

where λ is a trade-off between our Label Score Loss and
the losses designed in the original method. If the baseline
monocular detector is GUPNet, then LBaseline is the hierarchical
task loss of 2D detection (including heatmap, 2D offset and
2D size), 3D heads (containing angle, 3D offset and 3D size)
and depth inference.

The whole process of the OBMO with label scoring strate-
gies embedded on GUPNet is shown in Figure 4, which can
conclude as adding reasonable pseudo labels and adding a
parallel Label Score branch.

IV. EXPERIMENTS

A. Implementation Details

We adopt published codes from each baseline1:
PatchNet [27], Pseudo-LiDAR [28], Ground-aware [35],
RTM3D [37], and GUPNet [33]. We use the same

1The codes we referenced are: https://github.com/xinzhuma/patchnet
(PatchNet, Pseudo-LiDAR), https://github.com/Owen-Liuyuxuan/visualDet3D
(Ground-aware, RTM3D), and https://github.com/SuperMHP/GUPNet (GUP-
Net).

https://github.com/xinzhuma/patchnet
https://github.com/Owen-Liuyuxuan/visualDet3D
https://github.com/SuperMHP/GUPNet
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TABLE I
COMPARISONS ON KITTI TEST SET. FOR EASY TO COMPARE, WE SORT

THEM ACCORDING TO THEIR 3D PERFORMANCE ON THE MODERATE
LEVEL OF THE TEST SET (SAME AS THE KITTI LEADERBOARD). WE USE

RED FOR THE HIGHEST ONES AND BLUE FOR THE SECOND-HIGHEST ONES.

Methods APBEV (%) AP3D(%)
Easy Mod. Hard Easy Mod. Hard

M3D-RPN [18] 21.02 13.67 10.23 14.76 9.71 7.42
SMOKE [50] 20.83 14.49 12.75 14.03 9.76 7.84
RTM3D [37] 19.17 14.20 11.99 14.41 10.34 8.77
PatchNet [27] 22.97 16.86 14.97 15.68 11.12 10.17
KM3D [55] 23.44 16.20 14.47 16.73 11.45 9.92
D4LCN [52] 22.51 16.02 12.55 16.65 11.72 9.51
Monodle [25] 24.79 18.89 16.00 17.23 12.26 10.29
MonoRUn [56] 27.94 17.34 15.24 19.65 12.30 10.58
GrooMeD-NMS [57] 26.19 18.27 14.05 18.10 12.32 9.65
Ground-aware [35] 29.81 17.98 13.08 21.65 13.25 9.91
CaDDN [23] 27.94 18.91 17.19 19.17 13.41 11.46
MonoEF [58] 29.03 17.26 19.70 21.29 13.87 11.71
MonoFlex [24] 28.23 19.75 16.89 19.94 13.89 12.07
GUPNet [33] - - - 20.11 14.20 11.77
GUPNet (+ OBMO) 30.81 21.41 18.37 22.71 15.70 13.23
Improvements - - - +2.6 +1.50 +1.46

configuration described in their papers or projects. Take
GUPNet as an example; we use DLA-34 as the backbone,
train the model with the batch size of 32 for 140 epochs and
adopt the initial learning rate 1.25e−3 with decay in the 90-th
and the 120-th epoch. We train all models on Nvidia GTX
1080Ti GPUs with 11 GB memory.

Moreover, we set ∆Z = {−8%,−4%,+4%,+8%} for all
detectors and report the better one between IoU Label Score
and Linear Label Score. For the monocular 3D detectors like
PatchNet, which regard the scores of 2D bounding boxes as
absolute confidence of objects directly, we employ the 2D-3D
confidence mechanism from [54] to make the scores better
describe the 3D predictions.

B. Dataset and Metrics

We conduct experiments on KITTI [59] and Waymo [60]
benchmarks.

1) KITTI: KITTI is the widely employed dataset for
monocular 3D object detection. It provides 7481 images for
training and 7518 images for testing. All the scenes are
pictured around Karlsruhe, Germany in clear weather and
day time. To make fair comparisons, we follow previous
works [33], [35], [61] to split the training images into train set
(3712 images) and val set (3769 images). All experiments are
performed under this dataset split. Furthermore, the detection
results are evaluated under three levels of difficulty: easy,
moderate and hard, which are defined according to the height
of the 2D bounding box, occlusion, and truncation. We conduct
experiments under two core evaluations: the average precision
of 3D bounding boxes AP3D and the average precision of
objects in Bird’s Eye View APBEV . For the metric, we employ
the recently suggested metric APBEV |R40

and AP3D|R40
by

KITTI benchmark [59]. Following common practice [27], [33],
[37], we evaluate the results on the Car category under IoU
threshold 0.7.

Fig. 5. The depth loss with/without the proposed module (OBMO) based on
PatchNet. We can see that OBMO can stabilize depth training from the more
stable loss curve.

2) Waymo: The Waymo dataset is a recently released large
dataset for autonomous driving research. It consists of 798
training sequences and 202 validation sequences. The scenes
are pictured in Phoenix, Mountain View, and San Francisco un-
der multiple kinds of weathers and at multiple times of a day.
Different from KITTI, it provides 3D box labels in the 360-
degree field of view, while we only use the front view for the
task of monocular 3D object detection. We use the same data
processing strategy proposed in CaDDN [23]. Specifically, we
sample every third frame from the training sequences to form
our training set due to the large dataset size and high frame
rate. We adopt the officially released evaluation to calculate the
mean average precision (mAP) and the mean average precision
weighted by heading (mAPH). The evaluation is separated by
difficulty setting (LEVEL 1, LEVEL 2) and distance to the
sensor (0 − 30 m, 30 − 50 m, and 50 m −∞). We evaluate
the Car category with IoU criteria of 0.7 and 0.5.

C. Quantitative Results

In Table I, we conduct a comprehensive comparison
between our proposed method and existing state-of-the-art
methods on the test sets of KITTI benchmark for Car.
Without bells and whistles, our method outperforms all
prior methods under APBEV |R40

and AP3D|R40
including

those with extra information. For AP3D|R40
, our method

is 22.71%/15.70%/13.23%, which is much higher than
the baseline GUPNet on three levels of difficulty. The
performance improvement is even more significant at the easy
level. We suspect this is because, for foreign vehicles, the
tiny depth shift needs a significant dimension transformation
compared to near cars. Indeed, there is also less visual
information in distant objects.

We further show the efficiency of our module OBMO
embedded in other different SOTA monocular detectors in
Table II. Because of the different train-val split, PatchNet*
is retrained by its public code with a unified split [61]. As
for RTM3D and Pseudo-LiDAR, which only report results
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TABLE II
PERFORMANCE OF USING OUR OBMO METHOD, INCLUDING OBMO MODULE AND QUALITY SCORES, ON DIFFERENT SOTA MONOCULAR DETECTORS.

ALL METHODS ARE EVALUATED ON KITTI VAL SET WITH METRIC AP |R40
. WE REPORT BOTH THE RESULTS OF USING THE IOU LABEL SCORE AND

LINEAR LABEL SCORE. AND WE ONLY COMPARE THE BEST ONE OF APBEV MOD. WITH THE BASELINE.

Methods AP2D(%) APBEV (%) AP3D(%)
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PatchNet [27] 97.05 94.00 86.32 43.97 25.43 20.73 32.56 17.71 13.98
(+ 3D scores [54]) 97.17 94.07 87.00 41.82 28.13 24.23 32.96 21.27 17.87
(+ OBMO-Linear Label Scores) 97.20 94.00 86.96 42.91 29.33 24.53 34.16 22.67 18.22
(+OBMO-IoU Label Scores) 97.23 93.96 86.92 43.10 29.47 24.59 33.24 22.30 18.15
Improvements +0.15 0.00 +0.64 -1.06 +3.90 +3.80 +1.60 +4.96 +4.24
PatchNet* 97.05 94.00 86.32 26.03 15.05 12.74 18.54 10.46 8.71
(+ 3D scores) 97.63 94.34 87.17 30.03 20.68 17.60 22.01 15.37 12.83
(+ OBMO-Linear Label Scores) 97.57 94.22 87.11 32.41 22.75 19.56 24.40 16.63 14.53
(+ OBMO-IoU Label Scores) 97.41 94.12 87.03 32.72 22.58 19.24 24.95 16.60 14.20
Improvements +0.52 +0.22 +0.79 +6.38 +7.70 +6.82 +5.86 +6.17 +5.82
Pseudo-LiDAR† [28] 97.05 94.00 86.32 37.77 21.31 17.92 25.19 12.72 10.22
(+ OBMO-Linear Label Scores) 95.18 92.68 86.05 36.76 24.72 21.01 24.39 16.07 13.32
(+ OBMO-IoU Label Scores) 96.27 92.90 86.14 39.55 25.40 20.85 25.78 16.03 13.13
Improvements -0.78 -1.10 -0.18 +1.78 +4.09 +2.93 +0.59 +3.31 +2.91
RTM3D† 97.02 91.49 83.98 21.27 15.84 13.63 15.05 11.42 9.66
(+ OBMO-Linear Label Scores) 97.03 91.44 83.93 23.25 17.60 14.93 16.50 12.74 10.59
(+ OBMO-IoU Label Scores) 97.03 91.45 83.93 22.99 17.52 14.83 16.29 12.75 10.54
Improvements +0.01 -0.05 -0.05 +1.98 +1.76 +1.30 +1.45 +1.32 +0.93
Ground-aware [35] - - - 28.95 20.11 15.51 22.80 15.41 11.43
(+ OBMO-Linear Label Scores) 96.79 84.04 64.26 31.22 21.96 16.85 23.48 16.59 12.39
(+ OBMO-IoU Label Scores) 96.83 81.72 61.90 29.58 21.75 16.73 22.64 16.40 12.22
Improvements - - - +2.27 +1.85 +1.34 +0.68 +1.18 +0.96
GUPNet [33] - - - 31.07 22.94 19.75 22.76 16.46 13.72
(+ OBMO-Linear Label Scores) 96.67 88.67 78.85 33.09 23.63 20.42 24.65 17.80 15.15
(+ OBMO-IoU Label Scores) 96.58 88.64 78.92 32.20 23.88 20.67 24.48 17.94 15.26
Improvements - - - +1.13 +0.94 +0.92 +1.72 +1.48 +1.54

on AP |R11
in their paper, we evaluated them on AP |R40

by
their public models (use † to represent). The improvements
indicate that OBMO can be applied both in direct regression-
based and depth-aware methods. The results show that the
improvement in depth-aware methods is more remarkable than
in direct regression-based methods. Specifically, for PatchNet,
we improve the APBEV /AP3D from 25.43%/17.71% to
29.33%/22.67% under the moderate setting. We think that
OBMO might mitigate the influence of the worse monocular
depth estimation to a certain extent. For direct regression-
based methods such as RTM3D, the original detector is
boosted by 1.82%/2.14% in APBEV /AP3D under the mod-
erate setting. Such significant improvements demonstrate the
effectiveness and robustness of our method. We also present
the 2D mAP in Table II. The 2D performances with and
without OBMO are similar because the reasonable pseudo
labels produced by the OBMO module are along the viewing
frustum. Note the 2D detectors used in PatchNet and Pseudo-
LiDAR are both Faster-RCNN, so their 2D mAPs are the same.

We further investigate the depth loss curve and the mAP
curves after adding the OBMO module in training. As in
Figure 5, we can easily see that the method employing OBMO
has a smoother learning curve. By contrast, the curve of
the original detector is unstable and contains many strong
oscillations. It indicates that OBMO endows the network to
steadily learn depth, stabilizing the overall learning process
and thus bringing apparent improvements. As for the mAP
curves shown in Figure 6, it is not difficult to find that
without the OBMO module, the mAP of the training set is

TABLE III
ABLATION STUDY ON EACH COMPONENT IN OBMO. THE 3D SCORE [54]

COMBINES THE 2D SCORE WITH 3D INFORMATION TO REPRESENT THE
SCORE OF AN OBJECT.

3D OBMO IoU Label Linear Label APBEV (%) AP3D(%)
scores Scores Scores Easy Mod. Hard Easy Mod. Hard

26.03 15.05 12.74 18.54 10.46 8.71
✓ 30.03 20.68 17.60 22.01 15.37 12.83
✓ ✓ 31.13 22.14 19.02 23.87 16.41 14.25
✓ ✓ ✓ 32.72 22.58 19.24 24.95 16.60 14.20
✓ ✓ ✓ 32.41 22.75 19.56 24.40 16.63 14.53

TABLE IV
ABLATION STUDY ON DIFFERENT CONSTRAINTS.

under under APBEV (%) AP3D(%)
X-Z ratio Y-Z ratio Easy Mod. Hard Easy Mod. Hard

30.03 20.68 17.60 22.01 15.37 12.83
✓ 31.12 22.30 19.18 23.36 16.36 14.09

✓ 28.73 20.44 17.34 21.31 15.28 12.64
✓ ✓ 32.41 22.75 19.56 24.40 16.63 14.53

still rising, while there is almost no fluctuation in the mAP of
the validation set or even a slight decline. It can be illustrated
that OBMO overcomes overfitting to a certain extent.

D. Ablation Studies

We take PatchNet* as our baseline detector in the ablation
study to save training time. By default, we set depth offset
∆z to {−8%,−4%,+4%,+8%} and use Linear Label Score.
X-Z ratio and Y-Z ratio are both regarded as constraints.
Validity of Each Component. To study the impact brought
by each component of OBMO, we investigate them through
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Fig. 6. The mAP (3D/BEV) with/without OBMO based on PatchNet in training and validation set. We can see that OBMO can overcome overfitting to a
certain extent.

TABLE V
ABLATION STUDY ON THE DEPTH OFFSET UNDER THE SAME NUMBER OF

PSEUDO LABELS.

Offset(%) APBEV (%) AP3D(%)
Easy Mod. Hard Easy Mod. Hard

0 30.03 20.68 17.60 22.01 15.37 12.83
2 30.78 22.09 18.84 23.78 16.45 14.04
4 32.41 22.75 19.56 24.40 16.63 14.53
6 29.35 21.85 18.72 22.11 15.98 13.86
8 29.97 21.82 18.78 22.67 15.98 13.28

TABLE VI
ABLATION STUDY ON THE NUMBER OF PSEUDO LABELS IN THE SAME

DEPTH OFFSET.

the number of APBEV (%) AP3D(%)
pseudo labels Easy Mod. Hard Easy Mod. Hard

0 30.03 20.68 17.60 22.01 15.37 12.83
2 31.17 21.96 18.83 24.43 16.43 13.64
4 32.41 22.75 19.56 24.40 16.63 14.53
6 30.41 22.09 18.99 22.98 16.02 13.29
8 31.14 22.32 19.04 23.65 16.41 14.21

extra experiments, as shown in Table III. The results show that
each component of the OBMO module is effective. As com-
ponents gradually increase, the final accuracy also increases
accordingly. We can see that the initial performance (AP)
is boosted from 15.05%/10.46% to 22.75%/16.63% under
the moderate setting, which is rather impressive. Moreover,
both IoU Label Score and Linear Label Score for pseudo
labels work well, suggesting that the proposed soft pseudo
label strategy is robust since it is not sensitive for specifically
designed manners.
Different Constraints. Also, we investigate the impact
brought by different constraints, namely, the X-Z ratio and
Y-Z ratio. If we do not use the X-Z ratio or Y-Z ratio as
constraints, X or Y will not change in our pseudo labels. The
results are reported in Table IV. Ultimately, we achieve the
best performance by using them in combination.
Depth Offsets ∆z . We further show the influences of different

TABLE VII
ABLATION STUDY ON THE NUMBER OF PSEUDO LABELS IN THE SAME

DEPTH RANGE.

the number of APBEV (%) AP3D(%)
pseudo labels Easy Mod. Hard Easy Mod. Hard

0 30.03 20.68 17.60 22.01 15.37 12.83
2 29.17 21.37 18.49 21.01 15.35 12.78
4 32.41 22.75 19.56 24.40 16.63 14.53
6 30.69 22.16 18.98 23.64 16.40 13.52
8 31.82 22.66 19.23 23.68 16.47 14.03

depth offsets. In particular, we have to choose a suitable depth
offset carefully due to discrete depth values. However, there is
a dilemma in making a choice. If the depth offset is too small,
we have to add multiple pseudo labels in the reasonable depth
range, and the computational complexity will increase dramat-
ically. On the contrary, if the depth offset is too large, we will
lose some reasonable pseudo labels, resulting in suboptimal
performance. Therefore, according to statistical dimensions
information of the KITTI dataset, we try four base offset val-
ues: {2%, 4%, 6%, 8%} with 4 pseudo labels. Specially, if we
choose the base of 2%, then ∆z = {−4%,−2%,+2%,+4%}.
We report the corresponding results in Table V. It shows that
the proper depth offset is indeed desired.

Then we fix the base value of the depth offset to 4%, and
change the number of pseudo labels. Specially, if we use
four pseudo labels, then ∆z = {−8%,−4%,+4%,+8%}.
The results are in Table VI. Adding six pseudo labels reduces
performance compared to adding four pseudo labels. It means
if the depth value is outside the reasonable range, the added
pseudo labels do not help performance and can even be
detrimental to the performance.

Intuitively, if the added pseudo labels are too dense, it will
also decrease the performance. Therefore, we set the largest
value of depth offset to 8% · Z, and choose the number of
pseudo labels from {2, 4, 6, 8}. Specially, if we use 4 pseudo
labels, then ∆z = {−8%,−4%,+4%,+8%}. The results are
shown in Table VII, which verifies the viewpoint.

In conclusion, the best choice of depth offset ∆z for
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TABLE VIII
ABLATION STUDY ON IMPLYING RANGE. NONE MEANS WE DON’T USE

OBMO MODULE.

level ≥* APBEV (%) AP3D(%)
Easy Mod. Hard Easy Mod. Hard

None 30.03 20.68 17.60 22.01 15.37 12.83
3 27.06 19.42 16.46 19.75 13.78 11.79
2 31.11 22.58 19.56 22.17 15.29 13.98
1 32.41 22.75 19.56 24.40 16.63 14.53

TABLE IX
ABLATION STUDY ON THE WEIGHT OF LABEL SCORE BRANCH.

Lambda APBEV (%) AP3D(%)
Easy Mod. Hard Easy Mod. Hard

0 31.13 22.14 19.02 23.87 16.41 14.25
0.5 31.98 22.46 19.31 23.05 16.21 13.47
1 32.41 22.75 19.56 24.40 16.63 14.53
2 30.07 21.15 18.72 23.19 16.20 13.46

Car category in KITTI dataset is {−8%,−4%,+4%,+8%}.
We also use this setting in the Waymo dataset because the
dimension of the Car category is similar.

Additionally, we evaluate the performance of applying
OBMO to different difficulty levels of objects in Table VIII.
The difficulty level of the object is defined according to the
height of the 2D bounding box, occlusion, and truncation
values. We can see that OBMO works well for all levels of
objects, which means that the issue of depth ambiguity indeed
exists and is widespread.
Weights of Label Score λ. We use different loss weights in
the label score branch and report the results in Table IX. The
model performs better when the weight of loss is set to 1.
Keep Dimension. To verify that changing dimension harms
the performance, we change both the position and dimension.
The results are shown in Table X. When we change the
dimensions of the object, the performance drops drastically.
We can’t change the inherent property of objects. Otherwise,
the pseudo labels are not reasonable. As for the positions that
we modify, they are current state values and can be changed.
Generalization of OBMO. Furthermore, we verify the gener-
alization of our OBMO method. On the one hand, we test on
other categories: Pedestrian and Cyclist. On the other hand,
we test on another larger dataset: Waymo.

For the first one, we use the same default configuration as in
Car, i.e., four pseudo labels: ∆z = {−8%,−4%,+4%,+8%}
and IoU Label Score. The results are shown in Table XI.
The IoU threshold we used is 0.5 for both of them. The
improvements are apparent, proving that our method can apply
to varied categories.

For the latter one, we take GUPNet [33] as our baseline
and adopt the metrics with mAP and mAPH under the IoU
threshold of 0.7 and 0.5, respectively. “Level 1” denotes the
evaluation of the bounding boxes that contain more than 5 lidar
points. “Level 2” denotes the evaluation of all bounding boxes.
The results prove that our proposed OBMO method achieves
consistent improvements in all settings, as shown in Table XII.

TABLE X
ABLATION STUDY OF THE INFLUENCE IN CHANGING DIMENSION.

Change APBEV (%) AP3D(%)
Easy Mod. Hard Easy Mod. Hard

None 30.03 20.68 17.60 22.01 15.37 12.83
Dimension 29.06 16.90 14.15 21.95 11.85 9.58
Position 32.41 22.75 19.56 24.40 16.63 14.53
Both 7.07 6.86 5.92 3.28 3.40 3.00

TABLE XI
AP3D|40 ON PEDESTRIAN AND CYCLIST ON KITTI VALIDATION SET.

Categories Methods APBEV (%) AP3D(%)
Easy Mod. Hard Easy Mod. Hard

Pedestrian
PatchNet 10.55 8.23 6.48 8.82 6.82 5.14

(+ OBMO) 16.17 11.93 9.38 12.80 9.55 7.40
Improvements +5.62 +3.70 +2.89 +3.98 +2.73 +2.25

Cyclist
PatchNet 7.47 3.64 3.03 5.83 2.87 2.60

(+ OBMO) 9.30 4.72 4.45 7.81 4.06 3.60
Improvements +1.83 +1.08 +1.42 +1.98 +1.19 +1.00

E. Qualitative Results

To visually evaluate the performance of our method based
on GUPNet, we illustrate some examples in Figure 7. To
clearly show the position of objects in the 3D world space,
we also visualize the LiDAR signals and the ground-truth
3D boxes. We can observe that our outputs are remarkably
accurate for the cases at a reasonable distance. Unfortunately,
it remains a challenge for occluded and truncated objects, a
common dilemma for most monocular 3D detectors.

V. LIMITATIONS AND FUTURE WORK

Although our work tries to alleviate the effect of the depth
ambiguity problem, the prediction of depth in monocular
images is still an ill-posed problem. The occluded and trun-
cated objects which drop some pixel information are even
more challenging to be detected. Our OBMO module only
allows the network to learn a reasonable depth range, making
depth prediction more flexible. And it can not improve the
confidence of an object. If an object with a low 3D object
score, it is still difficult to know its depth range. We will
consider the above situations in future work.

VI. CONCLUSION

In this paper, we point out that it is hard to predict depth
accurately due to the enormous 3D space. According to
this discovery, we design a simple but elegant plug-and-play
module OBMO. We add pseudo labels under the X-Z ratio
and Y-Z ratio, and design two kinds of label scores: IoU Label
Score and Linear Label Score. Compared with existing monoc-
ular 3D object detection methods, OBMO achieves better
performance on challenging KITTI and Waymo benchmarks.
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TABLE XII
EXPERIMENTAL RESULTS OF THE CAR CATEGORY ON THE WAYMO OPEN DATASET VALIDATION SET.

Difficulty Threshold Method 3D mAP / 3D mAPH
Overall 0− 30 m 30− 50 m 50−∞

LEVEL 1

IoU=0.7

PatchNet 0.39/0.37 1.67/1.63 0.13/0.12 0.03/0.03
CADDN [23] 5.03/4.99 14.54/14.43 1.47/1.45 0.10/0.10

PCT [62] 0.89/0.88 3.18/3.15 0.27/0.27 0.07/0.07
MonoJSG [12] 0.97/0.95 4.65/4.59 0.55/0.53 0.10/0.09
GUPNet [33] 8.00/7.94 22.71/22.54 3.17/3.15 0.39/0.38
(+ OBMO) 8.64/8.56 23.39/23.17 4.50/4.47 0.52/0.52

IoU=0.5

PatchNet 2.92/2.74 10.03/9.75 1.09/0.96 0.23/0.18
CADDN [23] 17.54/17.31 45.00/44.46 9.24/9.11 0.64/0.62

PCT [62] 4.20/4.15 14.70/14.54 1.78/1.75 0.39/0.39
MonoJSG [12] 5.65/5.47 20.86/20.26 3.91/3.79 0.97/0.92
GUPNet [33] 17.52/17.37 43.95/43.59 11.33/11.24 1.04/1.03
(+ OBMO) 20.71/20.53 48.08/47.64 16.97/16.85 0.68/0.68

LEVEL 2

IoU=0.7

PatchNet 0.38/0.36 1.67/1.63 0.13/0.11 0.03/0.03
CADDN [23] 4.49/4.45 14.50/14.38 1.42/1.41 0.09/0.09

PCT [62] 0.66/0.66 3.18/3.15 0.27/0.26 0.07/0.07
MonoJSG [12] 0.91/0.89 4.64/4.65 0.55/0.53 0.09/0.09
GUPNet [33] 7.57/7.51 22.64/22.47 3.10/3.08 0.36/0.36
(+ OBMO) 8.28/8.20 23.33/23.12 4.42/4.40 0.51/0.51

IoU=0.5

PatchNet 2.42/2.28 10.01/9.73 1.07/0.94 0.22/0.16
CADDN [23] 16.51/16.28 44.87/44.33 8.99/8.86 0.58/0.55

PCT [62] 4.03/3.99 14.67/14.51 1.74/1.71 0.36/0.35
MonoJSG [12] 5.34/5.17 20.79/20.19 3.79/3.67 0.85/0.82
GUPNet [33] 16.41/16.28 43.80/43.44 10.99/10.91 0.90/0.90
(+ OBMO) 19.41/19.23 47.91/47.47 16.46/16.35 0.59/0.59

Fig. 7. Qualitative results on the KITTI val set. LiDAR point clouds are plotted for reference but not used in our method. We use green and red to denote
predictions and ground truths, respectively.
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