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Abstract— This paper proposes a novel uncertainty-adjusted
label transition (UALT) method for weakly supervised solar
panel mapping (WS-SPM) in aerial Images. In weakly supervised
learning (WSL), the noisy nature of pseudo labels (PLs) often
leads to poor model performance. To address this problem,
we formulate the task as a label-noise learning problem and
build a statistically consistent mapping model by estimating the
instance-dependent transition matrix (IDTM). We propose to
estimate the IDTM with a parameterized label transition network
describing the relationship between the latent clean labels and
noisy PLs. A trace regularizer is employed to impose constraints
on the form of IDTM for its stability. To further reduce
the estimation difficulty of IDTM, we incorporate uncertainty
estimation to first improve the accuracy of noisy dataset
distillation and then mitigate the negative impacts of falsely
distilled examples with an uncertainty-adjusted re-weighting
strategy. Extensive experiments and ablation studies on two
challenging aerial data sets support the validity of the proposed
UALT.

Index Terms— Weakly supervised learning, label noise, solar
panel mapping, uncertainty estimation, aerial images.

I. INTRODUCTION

ENERGY demand has grown significantly in recent
decades and solar energy has been recognized as one

of the best energy sources for the future world [1]. Solar
panels are the key component in solar photovoltaic systems,
converting sunlight into electricity. The installation of solar
panels on households’ rooftops shows an exponential increase
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over the past several years. Collecting comprehensive deploy-
ment information including the locations, sizes, and power
capacity can help the government and power companies gain
a quantitative understanding of solar energy utilization [2].

Aiming at low-cost monitoring, automatic solar panel
mapping leverages high-resolution remote sensing imagery
and machine learning techniques to localize solar panels
and produce a binary prediction for each pixel in the
input image. A collection of research has been devoted
to this area in the past decade. Most pioneer works [3],
[4], [5] take advantage of hand-made features and classical
classifiers including support vector machine and random forest
to implement classification. Due to the significant progress
made by the deep convolutional neural networks (CNNs),
deep learning-based approaches [6], [7], [8], [9], [10] greatly
surpass traditional methods in performance. These CNN-based
methods are mostly developed under the paradigm of fully
supervised learning, which requires a huge number of hand-
labeled pixel-wise ground truth data which are extremely
laborious and time-consuming to get [11]. To reduce the
labeling workload, weakly supervised data with weaker forms
of annotations are adopted [12], [13], [14], [15]. However, due
to the absence of precise object locations and shapes, learning
predictive models in this scenario is much more challenging.
To bridge the gap between image-level labels and pixel-wise
labels, the alternative training scheme provides a solution:
weakly supervised object localization (WSOL) [16], [17],
[18] is firstly utilized to propagate image-level annotations
to pixel-level labels, which are subsequently taken as pseudo
labels (PLs) to build predictive models. Fig. 1 illustrates the
pipeline of the alternative training scheme. The quality of PLs,
however, is far from perfect, as most WSOL methods focus
on discriminative features and may fail to provide integral
object regions with precise boundaries. As reported in many
studies [13], [19], such inaccurate supervision may lead to
performance degradation when the alternative training scheme
is applied.

Recently, weakly supervised solar panel mapping (WS-
SPM) has gained attention from the remote sensing
community [20], [21], [22]. The majority of the studies
achieve progress by modifying WSOL methods [20] or
resort to label correction and regularizers with the alternative
training scheme [21], [23]. Despite the improvement achieved,
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WS-SPM faces three challenges: inaccurate object coverage,
severe object mismatch, and inadequate ability to separate
co-occurring objects. The unavoidable noise in PLs greatly
degenerates the accuracy and reliability of predictive models,
particularly the deep CNN-based ones, due to the memoriza-
tion effects and over-fitting issues.

From the perspective of combating noisy PLs, most works
for WSL in remote sensing images focus on how to mitigate
the side effects of the label noise in PLs instead of modeling
it explicitly. Studies in the field of image classification [24],
[25], [26] show that modeling the label noise, as well as
the generation process of noisy labels, are more effective
in developing a theoretically guaranteed predictive model.
With the assumptions on the label noise distribution, the
noisy labels are assumed to be clean labels corrupted by
the noise. Modeling the noise in a more realistic way, the
instance-dependent label transition matrix (IDTM) describes
the mislabeled probability affected by both the class labels
and the instance features and has been widely adopted to
reveal the label corruption process. Learning IDTM, however,
is an ill-posed problem because the clean class posterior is
latent and unobservable [27]. One feasible way is to learn it
on distilled examples [25] with reasonable assumptions such as
noise rate upper bound. Although the noise rate upper bound
assumption and noisy dataset distillation enable the estimation
of IDTM, there are limitations to be addressed: due to the
over-fitting problem during the training process of the noisy
classifier, the collection of distilled examples is inevitably
biased, which will lead to increased estimation error. Another
issue worthy of attention is the high degree of freedom of
IDTM. Particularly, for the dense prediction task, each pixel
has its corresponding IDTM and each element in the IDTM
can be presented as a function of the instance feature. How
to reduce the computational complexity is the key point in
approximating IDTM accurately.

To cope with the problems, we introduce the predictive
uncertainty to indicate the pixels more likely to be affected
by the label noise and propose an uncertainty-adjusted label
transition (UALT) method for WS-SPM from high-resolution
aerial images. The goal of our work is to learn an accurate
mapping model by estimating IDTM in a parametric way.
Specifically, we consider the PLs generated by GradCAM
as noisy labels with instance-dependent label noise (IDLN).
Under the noisy data, an uncertainty estimation network
(UEN) is constructed to generate the initial mapping results
coupled with the predictive uncertainty levels. Then, we collect
the distilled examples from the initial mapping results to
learn a label transition network (LTN). To make CNN-based
IDTM estimable, we propose an effective trace regularizer and
utilize an uncertainty-adjusted (UA) re-weighting strategy to
alleviate the negative impacts of falsely labeled pixels. Finally,
with the well-estimated IDTM, a target mapping network can
be developed. The contributions of the proposed method are
summarized as follows:

1) To cope with the performance degeneration caused by
label noise in PLs, we formulate the WS-SPM as
a label-noise learning problem and propose a UALT
method to learn a statistically consistent mapping

Fig. 1. The pipeline of the alternative training scheme. WSOL methods
are used to propagate the image-level labels into pixel level and generate
pixel-wise annotations, which subsequently serve as the pseudo labels for the
training processing of a predictive model.

model by approximating the instance-dependent label
transition between the clean labels and noisy PLs with
a parameterized LTN.

2) We develop an uncertainty estimation network based
on Monte Carlo dropout to give initial mapping
results with corresponding uncertainty levels under PLs.
By introducing the stochastic process, UEN is capable of
alleviating the over-fitting issue and improving mapping
accuracy. The improved initial results will benefit the
collection of distilled examples as the initial predictions
with higher uncertainty levels will be assigned with
relatively lower prediction values by UEN.

3) We propose a UA re-weighting strategy to adjust
the contributions of pixels with different uncertainty
levels. The uncertainty levels quantitatively indicate
the likelihood of UEN predictions being influenced by
labeling errors in PLs, i.e., label noise. Pixels with
higher uncertainty levels are supposed to have a stronger
probability of being impacted by the label noise and
wrongly inferred. By UA re-weighting, the detrimental
impact of potentially mislabeled distilled examples will
be further mitigated.

4) To reduce the degree of freedom of the IDTM,
we propose a trace regularizer to impose constraints
on the form of IDTM. By maximizing the trace of
IDTM, the trace regularizer encourages the LTN to focus
on ambiguous areas such as object boundaries. The
trace regularizer significantly reduces the complexity of
estimating IDTM and makes the training process of LTN
more stable.

The rest of this paper is organized as follows. Section II
presents a brief review of solar panel mapping, weakly
supervised learning, and learning with label noise. Section III
provides problem formulation and a detailed introduction to
the proposed UALT. The experiment and analysis are presented
in Section IV. The conclusion is drawn in Section V.

II. RELATED WORK

A. Solar Panel Mapping

Pioneer works [3], [4], [5], [28] draw inspirations from
classical object detection algorithms, which first generate
hand-made features and then utilize classifiers including
support vector machine and random forest to implement
classification. To support the study on solar panel mapping,
data sets [29] collected from satellite images are also created.
Due to the significant progress made by the deep convolutional
neural networks (CNNs), deep learning-based approaches
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Fig. 2. An illustration of the proposed uncertainty adjusted label transition. The black solid lines represent the feed-forward process, and the dashed lines
represent the back-propagation procedure. The purpose of the proposed UALT is to learn the clean predictor f (x, φ) under only noisy PLs. The training
process of the proposed method involves three CNNs, i.e., UEN, LTN, and TMN, trained in sequence. In the inference phase, only the well-trained TMN will
be used for forward propagation to provide mapping results.

greatly surpass traditional methods in performance. Yuan et al.
first employed the ConvNet method to extract the spatial
content of solar panels [6]. Then, classical deep CNN
architectures such as VGG [30], SegNet [31], Unet [32] and
DeepLabv3+ have been introduced to identify solar panels at
pixel level and made dense predictions [7], [8], [9], [10]. These
methods aforementioned are developed under the paradigm of
fully supervised learning.

B. Weakly Supervised Learning

The aim of weakly supervised learning (WSL) is to
take advantage of weak supervision, such as image-level
labels [12], [13], [14], point-level labels [33], bounding-
box-based labels [34] and scribble-based labels [15], [35]
to build predictive models with performance close to fully
supervised ones. The main difficulty in WSL is how to
propagate annotations in weak forms to densely annotated
labels. The alternative training scheme is a popular scheme in
WSL: class-specific object localization generated by WSOL
methods such as class activation mapping (CAM) [16],
gradient-weighted class activation mapping (GradCAM) [17]
and LayerCAM [18] can be subsequently taken as PLs to train
predictive models. Considering the unstable and inconsistent
quality of PLs, strategies such as gated structure-aware loss
[15], conditional random field-based regularizer [36], and label
refinement [37], [38] are developed to address inaccurate
object localization and poor boundary preservation.

Most of the WSL methods for remote sensing images
follow the typical alternative training scheme [39], [40],

[41] and seek to achieve superior performance by refining
the PLs [42], introducing robust learning strategies [43]
and designing consistency regularizer [44]. For example,
Fang et al. [42] proposed a new adversarial climbing strategy
to assist CAM to generate better building pseudo masks that
are further refined with pairwise semantic affinities. Zhang and
Ma [43] incorporated curriculum learning with the feedback
saliency analysis network to produce reliable predictions for
residential areas. Xu and Ghamisi [44] started from point-level
annotations, iteratively expanded annotated areas by selecting
confident pixels, and finally leveraged the consistency loss to
cope with the potential misguide from the inaccurate expanded
annotations.

WSL for solar panel mapping from high-resolution aerial
images has not been extensively explored. Yu et al. [20]
proposed the first WSL-based solar panel mapping method
named “DeepSolar” with only image-level labels, which
modified CAM with a greedy layer-wise training mech-
anism to produce mapping results with clear boundaries.
Zhang et al. [23] proposed a residual aggregated network
(RAN), with the network architecture specially designed for
preserving detailed object boundaries by residual feature
aggregation. Zhang et al. [21] considered the inconsistent
quality of PLs and proposed a confidence-aware loss and self-
paced label correction strategy to adjust the contribution of
quality-varying PLs.

C. Learning with Label Noise

Learning with label noise has gained significant attention
in the machine learning community recently, with most of
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the work focusing on the image classification task. The
algorithms combating noisy labels generally begin with
placing assumptions on the label noise distribution. There
are numerous label noise models of great popularity, such as
random classification noise [45], class-conditional label noise
[46], and IDLN [24], [25], [47], [48]. As a more realistic case,
IDLN can be described by the IDTM, which is characterized
by the mislabeled probability affected by both the clean class
and the instance features. With the noise model, the IDTM
describing the corruption process has been widely exploited
to show the relationship between the input, latent clean labels,
and noisy labels. It is noteworthy that given only noisy data,
it is ill-posed to estimate the IDTM, as the true labels are
latent in this case. A number of studies attempted to mitigate
this issue by learning with noisy dataset distillation [24], [25].
The noisy dataset distillation refers to a process of collecting
distilled examples out of the noisy data, i.e., examples whose
labels are identical to the one assigned by the Bayes optimal
classifier under the clean distribution [25]. With the label noise
upper bound assumption [25], the noisy dataset distillation
makes it possible to learn a classifier that can converge to
the Bayes optimal classifier with clean labels. Furthermore,
involving high computational complexity, estimation of the
IDTM is a non-trivial task. Making reasonable assumptions
on the transition matrix [26] has revealed an effective way to
mitigate this issue.

III. METHODOLOGY

In the proposed UALT, we formulate the WS-SPM in a
label-noise learning framework and develop a statistically
consistent predictive model by estimating the IDTM in
a parametric way. As shown in Fig. 2, the proposed
UALT consists of three parts: uncertainty estimation network,
label transition network, and target mapping network. The
uncertainty estimation network is specifically designed to
generate initial mapping results coupled with predictive
uncertainty. A label transition network is then developed
to approximate the IDTM by learning from the distilled
examples. To effectively reduce the estimation errors as
well as the estimation complexity, an uncertainty-adjusted re-
weighting strategy, and the trace regularizer are proposed.
Finally, with the estimated IDTM, the target mapping network
is optimized by the forward correction to obtain the mapping
results.

A. The Label-Noise Learning Framework

In this paper, we assume that weakly supervised solar
panel mapping can be formulated as a label-noise learning
problem, and the PLs given by GradCAM are noisy labels
transformed from clean labels randomly corrupted with the
instance-dependent noise. Given two random variables X and
Ỹ representing variables for the input and corresponding PL,
we denote D̃ as the noisy joint distribution of (X, Ỹ) ∈

X × Ỹ . With d-dimension input feature in a binary case,
we have feature space X ⊆ Rd , and label space Ỹ ={

ei
: i ∈ {−1,+1}

}
. In our work, e+1 denotes the positive

label and e−1 is the negative one. (x, ỹ) is an observation

sample drawn from the noisy joint distribution D̃. D
denotes the clean distribution of pair-wise variables X and
corresponding clean label Y, which is latent and unobservable.
The goal of the label-noise learning is to disentangle clean
labels y from the noisy labels ỹ with the noisy data
set D̃ : {(x, ỹ)n}

N
n=1. N is the total number of training

samples.
We consider the label noise in an instance-dependent

setting, where each clean label y is supposed to flip into
noisy label ỹ randomly with the probability P(Ỹ | Y,X).
Different from class-conditional noise, instance-dependent
noise is a more general approximation of corruption in the real
world, assuming the flip rate varies with the actual instance
feature.

The instance-dependent transition matrix T (x) is defined
to bridge the posterior probabilities of the noisy and clean
joint distribution. The element Ti, j (x) in T (x) represents the
probability of the clean label y = ei flipped into the noisy one
ỹ = e j :

∀i, j Ti, j (x) = P(Ỹ = e j
| Y = ei ,X = x). (1)

With transition matrix T (x) =
{
Ti, j (x)

}
∈ [0, 1]

2×2, the
noisy class-posterior probability P(Ỹ | X) can be computed
as follows:

P(Ỹ = e j
| X = x) =

∑
i

Ti, j (x) · P(Y = ei
| X = x). (2)

As the noisy class-posterior probability P(Ỹ = e j
| X = x)

can be estimated by exploring the noisy data set, the clean
class-posterior probability is expected to be inferred with an
accurate T (x). By minimizing the empirical risk on the noisy
predictions ȳ and PLs ỹ, we can obtain clean distribution
P(Y|X = x) by learning a mapping f (x;φ) with an estimator
for IDTM T (x; θ) parameterized by θ :

min
φ,θ

R(φ, θ) = −

∑
x∈D̃

∑
i

(1
{̃
yi = 1

}
· log(

∑
s

Ts,i (x; θ) · fs (x;φ)) , (3)

where ỹi denotes the probability for class i in ỹ. fs (x;φ)

denotes the learned clean posterior probability for class s. φ
is the parameter set for the estimator f . 1

{̃
yi = 1

}
is the

indicator function defined as follows:

1
{̃
yi = 1

}
:=

{
1, i f ỹi = 1
0, i f ỹi = 0 (4)

This is also called the forward correction [46]. Intuitively,
when minimizing the object function in Eq.(3), we first learn
an estimator g(x; θ) for the IDTM and train a target mapping
network f (x;φ) with g(x; θ) fixed.

B. Predictive Uncertainty Estimation

Uncertainty of a predictive model usually refers to the
occasions where the predictions of this model are not always
accurate and cannot be trusted blindly. This is a common
case in deep learning-based models, which are not sufficiently
robust to over-fitting. Hence, it is of great importance to
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understand when the models will give uncertain predictions.
In the context of modeling, the uncertainty can be categorized
into either aleatory or epistemic [49]. Aleatory uncertainty
presents the intrinsic noise in the observations while epistemic
uncertainty is defined as that being caused by the model. Under
the theory of Bayesian deep learning, uncertainty estimation
makes it possible to quantify the noise inherent in both training
data and the model. Although various methods were proposed
to measure these two kinds of uncertainty separately [50], [51].
In the setting of WSL under noisy data, modeling both in
a synthesized manner can be more meaningful. Inspired by
Kendall’s work [51], we integrate the measurement of both
aleatory and epistemic uncertainty in a unified uncertainty
estimation network h(x; W) under the noisy data set D̃.

To capture the noise in the training data, we place a
Gaussian distribution over the UEN output and construct two
branches producing mean and variance. Let µ be the output of
the mean branch and σ 2 be the output of the variance branch:〈

µ, σ 2
〉
= h(x; W), (5)

where h(x; W) denotes the UEN with input x and parameter
set W.

By reparameterization, we have p̂:

p̂|W ∼ N (µ, σ 2), (6)
p̂ = µ+ σ · ϵ, ϵ ∼ N (0, I), (7)

where N (0, I) is a standard Gaussian distribution.
To model the epistemic uncertainty, the network architecture

of UEN follows the Bayesian convolutional neural network
with Monte-Carlo dropout, which adds dropout after all
convolutional layers and averages the results of stochastic
feed-forward at the testing time. Gal and Ghahramani
[50] revealed that Monte Carlo (MC) dropout in CNN-
based models can be interpreted as an approximation
to the well-known Gaussian process in Bayesian deep
learning. By repeating the random forward process K times,
we approximate the output of the network by averaging the
results from the mean branch:

µ̂ ≈
1
K

K∑
k=1

µk, (8)

where the sub-script k denotes the k th forward process.
We use the predictive variance to estimate the corresponding

uncertainty:

ψ ≈
1
K

K∑
k=1

σ 2
k +

1
K

K∑
k=1

µ2
k −

(
1
K

K∑
k=1

µk

)2

, (9)

where the first term is the average of the predictive variance,
indicating the potential noise in the predictions. The second
term measures the uncertainty of the model parameters, i.e.
epistemic uncertainty.

The loss of the UEN is defined as:

log Ep̂∼N (µ,σ 2)

[
µ̂
]
. (10)

In practice, to avoid the training degeneration with infinite
uncertainty, we combine the cross entropy loss with a

regularization term to impose constraints on the value of
uncertainty ψ :

Lh = Lce (̃y, µ̂)+ τ · ψ2, (11)

where τ is the weight for the regularization term.
In the testing phase, we run the stochastic feed-forward pass

K times, and obtain the initial mapping results µ̂ and the
predictive uncertainty ψ by Eqs. (8) and (9).

C. Uncertainty Adjusted Label Transition

1) Learning With Distilled Examples: To reduce the
difficulties in estimating IDTM, a reasonable assumption for
the IDN is the noise rates upper bounds [25]:

ρi (x) = P(Ỹ ̸= ei
| Y = ei ,X = x), (12)

0 ≤ ρi (x) ≤ ρimax < 1, i = {+1,−1} , (13)
0 ≤ ρ+1(x)+ ρ−1(x) < 1. (14)

where ρi (x) is the noise rate for class i . Given the input
X = x, it is defined as the probability that the clean label
Y = ei flips into the corrupted one Ỹ ̸= ei . In our work,
ρ+1(x) and ρ−1(x) denote the noise rate for the foreground and
background classes, respectively. This indicates that the noise
rate is dependent on both the true label Y and the input X.
ρimax , i = {+1,−1} denotes the upper bounds of noise rates
for class i . The ρ+1 + ρ−1 < 1 requirement means that the
dataset is not fully corrupted, and there is as least something
left for the model to learn, which is a standard analysis in the
class-conditional setting [52].

With this assumption, distilled examples satisfying the
following rules can be collected out of noisy data:

η̃(x) <
1 − ρ+1 max

2
,

η̃(x) >
1 + ρ−1max

2
,

(15)

where η̃(x) = PD(Ỹ = e+1
| X = x). Although η̃(x) is

inaccessible practically, we can approximate it by training
a noisy classifier with the noisy class posterior probability
PD̃(Ỹ | X = x). Then, the inferred label will be assigned
to distilled examples x∗ as the Bayes optimal label y̆∗. The
details about the theoretical guarantee can be found in Cheng’s
and Yang’s work [24], [25]. In our work, we take UEN as an
approximation to the η̃(x). The initial mapping results of UEN
are leveraged to obtain the distilled examples.

In the training phase of the LTN, we utilize the distilled
subset D∗

:=
{
(x∗, ỹ∗, y̆∗)m

}M
m=1 and aim to train an estimator

g parameterized by θ . With Eq. (2), by minimizing the loss
between the predicted noisy results ȳ∗ and noisy labels ỹ∗, the
LTN can model the transition from clean labels to noisy PLs
by a corrected cross-entropy loss Lcce (̃y∗, T (x∗

; θ), y̆∗):

min
θ

Lcce = −

∑
x∗∈D∗

∑
i

1
{̃
y∗

i = 1
}

· log(ȳ∗

i ),

s.t.
∑

j

Ti, j (x∗, θ)− 1 = 0, (16)

where 1{·} denotes indicator function. T (x∗
; θ) is the predicted

IDTM given by LTN with input x∗ and parameter set θ .
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The restriction term
∑

j Ti, j (x∗, θ)−1 = 0 comes from the
definition of the transition matrix T . For brevity, here we use
Ti, j to denote Ti, j (x∗, θ). In the binary class, we have:

∀ i, Ti,+1 + Ti,−1 = 1. (17)

The noisy prediction ȳ∗ can be computed as:

ȳ∗
= T ⊤

× y̆∗
=

[
T+1,+1 T−1,+1
T+1,−1 T−1,−1

]
×

[
y̆∗

+1
y̆∗

−1

]
(18)

where T ⊤ denotes the transpose of the transition matrix
T (x∗, θ). y̆∗ is the class posterior probability given by the
well-trained UEN for the distilled example x∗.

2) Re-Weighting by Predictive Uncertainty: The process
aforementioned, however, is hardly achieved and inevitably
biased, due to two reasons. As estimators such as CNN-
based classifiers are sensitive to the overfitting issue, the
approximation of η̃(x) ≈ PD̃(Ỹ | X = x) may not be as
accurate as expected, which means the results of the noisy
classifier cannot be trusted blindly. Another issue is that
the selection of distilled examples ignores the ambiguous
observations located in the range

[
1−ρ+1 max

2 ,
1+ρ−1 max

2

]
. These

observations are usually closer to the decision boundary and
contain information valuable for avoiding false alarms and
keeping clear object outlines.

Our strategy to address these problems is to first assume
lower ρmax to make more valuable pixels involved in the
training process and then introduce predictive uncertainty to
mitigate the negative impacts caused by falsely labeled pixels.
Specifically, with the initial mapping results µ̂, the distilled
examples can be collected as:

x∗
=

{
x ∈ X | µ̂+1 ∈

(
1 + ρ−1 max

2
, 1
]⋃[

0,
1 −ρ+1 max

2

)}
.

(19)

By assigning lower classification scores to pixels potentially
affected by the overfitting issue, the UEN is capable of
providing distilled examples with higher accuracy. To further
take advantage of the ambiguous observations, we propose
to set a lower upper bound ρ±1max , thus a growing number
of ambiguous pixels will be involved in the training of the
LTN. This means the distribution of the distilled sub-set is
more likely to match the clean distribution. The participation
of ambiguous pixels, however, will make the sample selection
bias worse and cause larger approximation errors. To cope with
this issue, we perform importance re-weighting by adjusting
the contributions of pixels with different uncertainty levels.
The uncertainty-adjusted loss is defined as:

Lua = exp(−ψ) · Lcce (20)

By adopting the UA re-weighting, pixels with higher
uncertainty will contribute less to the training process and
those with lower risks will dominate this process.

3) Trace Regularizer: Despite the assumptions aforemen-
tioned, estimating IDTM with a parameterized CNN-based
model is challenging. To further reduce the solution space
of T (x; θ), we assume that pixels susceptible to label noise
only make up a small proportion of PLs, and propose a trace

Algorithm 1 Uncertainty Adjusted Label Transition
(UALT)

regularizer to force the LTN focus on the pixels with high
label noise. More specifically, by maximizing the trace of the
estimated IDTM, LTN will pay less attention to the pixels that
have sufficient confidence belonging to one class. The trace
regularizer is defined as:

Ltr =

∑
i

Ti,i (x∗
; θ). (21)

where T (x∗
; θ) is the output of LTN, with the input instance

x∗ and the parameter set θ . Ti,i (x∗
; θ) denotes the i th diagonal

element in T (x∗
; θ).

Combing the UA re-weighting and the trace regularizer, the
loss for training LTN is shown as follows:

Lg =

∑
x∗∈D∗

exp(−ψ(x∗)) · Lcce (̃y∗, T (x∗
; θ), y̆∗)

− γ ·

∑
i

Ti,i (x∗
; θ), (22)

with restriction ∑
j

Ti, j (x∗, θ)− 1 = 0, (23)

where γ is a trade-off parameter controlling the impacts of
the regularizer term.

The process of IDTM estimation is summarised in
Algorithm 1.
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TABLE I
QUANTITATIVE EVALUATION RESULTS ON THE GSM-ACT AND GSM-BRIS DATA SETS

IV. EXPERIMENT AND ANALYSIS

A. Data Sets and Experimental Settings

1) Data Sets: We collected two aerial data sets from Google
Static Map API, GMS-ACT, and GMS-BRIS, for performance
evaluation of the proposed method. Training data in both
data sets are annotated manually with image-level labels. The
GMS-ACT data set was captured over the Australian Capital
Territory, Australia. The training set consists of 3927 positive
samples and 2524 negative samples while the test set contains
consists of 98 positive samples and 87 negative samples. All
the images have a size of 256 × 256 pixels with a spatial
resolution of 0.15 m. GMS-BRIS data set was collected over
Brisbane, Australia with the spatial resolution varying from
0.15 m to 0.3 m. The training set is composed of 2086 positive
samples and 3024 negative samples. The test set contains
90 positive samples and 117 negative samples. Each image
in both data sets has RGB bands available in the size of
256 × 256 pixels. All the samples in the test sets were
annotated with polygons by experts in the field of remote
sensing manually. The polygons for the localization of solar
panels were then transformed into pixel-level binary masks for
testing.

2) Methods for Comparison: In this paper, for comprehen-
sive comparison, we adopted 11 state-of-the-art WSL-based
methods including GradCAM [17], LayerCAM [18], WS-
SOD [15], PSL [43], HWSL [53], MFNet [37], SCW [38],
DeepSolar [20], PS-CNNLC [54], RAN [23], SP-RAN [21].

3) Evaluation Criteria: To measure the mapping per-
formance of our method quantitatively, we adopted five
evaluation metrics including Accuracy (AC), F-measure (Fβ ),
Intersection over Union (I oU ), Mean Absolute Error (M AE),
and S-measure (Sα) [55] to generate quantitative results.
PR curves and E-measure curves [56] are also used for
evaluation.

AC evaluates the proportion of correctly classified pix-
els over the image. When it comes to the small-scale
foreground object, the differences on AC may not be
significant.

Fβ estimates the relation between precision and recall,
as shown in Eq. (24). With a varying threshold in obtaining
Precision and Recall, we can obtain the PR curves presenting
the trade-off between precision and recall. A greater area under

the curve indicates superior performance.

Fβ =
(1 + β2) · T P

(1 + β2) · T P + β2 · F N + F P
, (24)

where TP, FP, and FN are true positives, false positives
and false negatives, respectively. β is a weight reflecting
the importance of precision and recall. In our work, we
calculated TP, FP, and FN on the entire test set to include
negative samples in the performance evaluation. We set
β = 1.

I oU is a measurement used to describe the overlap of two
closed regions. If the predictive results perfectly match the
GT, the I oU score will be equal to 1. We computed it by
measuring the overlap between detected foreground objects
and ground-truth, and then dividing it by the union of these
two regions. In our work, the calculation was performed on
the entire test set.

I oU =
Area of Overlap
Area of Union

. (25)

M AE calculates the mean absolute error between the results
and ground truth, providing an intuitional estimation of the
pixel-wise difference.The definition of M AE is shown below:

M AE =
1

h × w
|Y − G| , (26)

where Y is the mapping result. G is the ground truth.
h × w calculates the total number of pixels in the
image.

Sα is a recently proposed metric aiming to provide an
evaluation from the aspect of structural similarity. Considering
the region (Sr ) and object (So) perspectives, Sα measures
not only the structural similarity but also the foreground-
background contrast. Sα is defined as:

Sα = α · So + (1 − α) · Sr , (27)

where α shows different contributions of region similarity and
object similarity, which is set to 0.5 as default. Sα closer to
1 indicates better performance.

E-measure considers both the pixel-level errors and image-
level errors between the binary foreground maps and ground
truth. Compared with I oU and Fβ measure, E-measure is
capable of capturing the global and local pixel matching
information simultaneously. E-measure curves are generated
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Fig. 3. PR curves and E-measure curves on two aerial data sets. (a) GMS-ACT. (b) GMS-BRIS. The solid line in red is the proposed method. It is observed
that our method produces stable improvement over PR curve and E score.

Fig. 4. Predicted mapping results of competing methods and our method on the GMS-ACT data set. First to third row: positive samples; fourth to fifth
row: negative samples. (a) Test images. (b) GT. (c) GradCAM. (d) LayerCAM. (e) WS-SOD. (f) PSL. (g) HWSL. (h) MFNet. (i) SCW. (j) DeepSolar.
(k) PS-CNNLC. (l) RAN. (m) SP-RAN. (n) UALT(Ours).

Fig. 5. Predicted mapping results of competing methods and our method on the GMS-BRIS data set. First to fourth row: positive samples; fifth row: negative
sample. (a) Test images. (b) GT. (c) GradCAM. (d) LayerCAM. (e) WS-SOD. (f) PSL. (g) HWSL. (h) MFNet. (i) SCW. (j) DeepSolar. (k) PS-CNNLC.
(l) RAN. (m) SP-RAN. (n) UALT(Ours).

by changing the thresholds when producing the binary
foreground maps with predicted results. Higher E scores
indicate better performance.

4) Implementation Details: In this section, we will
introduce the implementation details including how to generate
PLs with GradCAM and how to train UEN, LTN, and TMN.
The configurations of the training procedure of each network
will be also clarified.

For the classification network utilized in GradCAM,
we used the entire training set with image-level annotations.
VGG16 [30] is adopted as the backbone. To avoid the
challenges of training VGG16 from scratch, we opted
for a fine-tuning approach, initializing the weights of its
convolutional layers with a pre-trained model trained on
the ImageNet dataset [57]. During the training process,
a batch size of 16 was utilized, and the learning rate
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Fig. 6. Visual comparison for the ablation study on the GMS-ACT data
set. (a) Aerial images. Results are given by: (b) RAN. (c) UEN. (d) +
Trace regularizer. (e) + UA re-weighting. True positives, true negatives, false
positives, and false negatives are marked in yellow, black, green, and red,
respectively.

Fig. 7. Visual comparison for the ablation study on the GMS-BRIS data
set. (a) Aerial images. Results are given by: (b) RAN. (c) UEN. (d) +
Trace regularizer. (e) + UA re-weighting. True positives, true negatives, false
positives, and false negatives are marked in yellow, black, green, and red,
respectively.

was set to 10−4. The training phase was terminated after
10 epochs.

After the preparation of PLs, the implementation of the
proposed method can be divided into three steps as illustrated
in Fig. 2. The three convolutional neural networks proposed,
i.e., UEN, LTN, and TMN are trained in sequence. The
objective of the proposed method is to learn an accurate
TMN for target mapping, with the aid of IDTM estimation.
In the initial stage, UEN aims to generate initial mapping
results accompanied by uncertainty levels, leveraging the noisy
dataset. Once the UEN is stabilized and fixed, we proceed
to perform noisy data distillation, extracting the distilled set,
which subsequently serves as the training set for LTN. Finally,
the training process of the TMN involves the entire set of noisy

Fig. 8. PR curves and E-measure curves for the ablation study on the
GMS-ACT data set. (a) PR curves. (b) E-measure curves.

Fig. 9. PR curves and E-measure curves for the ablation study on the
GMS-BRIS data set. (a) PR curves. (b) E-measure curves.

training data and corresponding IDTM generated by fixed
LTN. In the inference phase, only the well-trained TMN will
be used for forward propagation to provide mapping results.

All the steps were trained with PyTorch on a PC with a
single NVIDIA GeForce RTX 3090 GPU. The backbone for
UEN, LTN, and TMN is the residual aggregated network,
which is revealed effective in WSL [23]. Adam optimizer was
utilized with a training batch size of 8 in the proposed method.
For the training of UEN, we set the dropout probability
p = 0.2 for both data sets. The stochastic forward process was
implemented for K = 3 times in both the training and testing
phase. The initial learning rate is 10−3, and was decayed by
0.9 after each epoch. The training phase ended after 10 epochs
for the GMS-ACT, and 40 epochs for the GMS-BRIS data set.
Regarding LTN, the whole training takes 30 epochs for GMS-
ACT and 50 epochs for the GMS-BRIS data set. The learning
rate was initialized as 10−3, and was decreased by 10 percent
after every 3 epochs. The training of TMN took 4 epochs, with
the initial learning rate 10−4 decayed by 0.9 after each epoch.

The code and the dataset of our work will be publicly avail-
able at https://github.com/zhangjue1993/Uncertanty-adjusted-
label-transtion.

B. Comparison with The State of The Art

1) Quantitative Comparison: We report the quantitative
performance of the proposed method and methods for
comparison on the two aerial data sets in Table I. Results in
Table I reveal the advantages of the proposed method, which
consistently achieves the best overall performance on both data
sets. Compared with the competing methods, we can observe
that our method remarkably improves the scores of Fβ , I oU
and Sα . The proposed method outperforms the state-of-art
WOSL method LayerCAM by around 0.27 and 0.04 on the
Fβ scores and achieves 0.18 and 0.07 F1 performance boost
when compared with the recently proposed SP-RAN. This
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demonstrates that the proposed method provides predictions
much closer to the GT. We also show the PR curves and
E-measure curves of the proposed method and competing
methods in Fig.3. We can observe that the quality of
predictions given by GradCAM, LayerCAM, PSL, HWSL, and
DeepSolar changes dramatically when the threshold varies.
By contrast, the proposed method (red solid lines in Fig.3)
stably produces high-quality foreground maps and achieves
the best performance on both data sets.

2) Qualitative Comparison: In Figs. 4 and 5, we present
five examples for visual comparison with 11 competing
methods. In these examples, we can find that solar panels
are small-scale objects scattered in complex residential areas.
Sometimes, they share similar colors and textures as the
rooftops, which adds to the mapping difficulty. Another issue
is that there may exist some objects that can cause confusion,
such as the last two rows in Fig. 4 and Fig.5. Constructed
on the binary images classification network, GradCAM and
LayerCAM are two state-of-the-art WSOL methods, which
only highlight the most discriminative regions with blurry
boundaries. WS-SOD successfully locates the target objects
but presents a deficient ability to separate them from the
complex background. PSL and HWSL, originally proposed
for residential area extraction in remote sensing images, fail
to provide enough contrast between the foreground objects
and the background. On the GMS-ACT data set, MFNet
shows limited detection performance. SCW can discover the
desired objects but may fail to provide accurate localization.
On the GMS-BRIS data set, the predictions of MFNet are
not complete. SCW is prone to mix desired objects and
rooftops in proximity and suffers from false detections. The
mapping results given by Deepsolar are blurry. SP-RAN
provides predictions with good shapes, but the object regions
are not complete. For the GMS-BRIS dataset, PS-CNNLC
can find the object boundaries close to the actual object
outline but suffers from high background interference and
false detection. The results on the GMS-ACT dataset show
that despite the advantage of keeping precise boundaries, PS-
CNNLC suffers from background interference. RAN provides
a moderate mapping performance, with considerable ability to
suppress the background, but is not always able to remove
false detection. By contrast, the proposed ULAT exhibits two
noteworthy advantages. Firstly, it excels in identifying desired
objects from visually analogous counterparts, especially those
in low-contrast areas, as evidenced by the results depicted
in the last two rows of Fig. 4. Secondly, it consistently
demonstrates its capability to accurately differentiate desired
foreground objects, i.e., solar panels from the roof situated in
close proximity, which can be observed from the second row
in Fig. 4 and the first row in Fig. 5.

C. Ablation Study

We further evaluate the contribution of each part of the
proposed method in this section. The baseline of our approach
is RAN. UEN is the uncertainty estimation network based on
the Monte-Carlo dropout with predictive uncertainty. In the
training phase of LTN, we studied the influence of the

Trace regularizer and UA re-weighting. We denote “+ Trace
regularizer” as training the LTN with the following loss:

Lg = Lce + γ · Ltr (28)

“+ UA re-weighting” denotes the LTN training by the
proposed loss shown in Eq. (22). The quantitative comparison
is reported in Tables II and III. To see the discrepancy clearly,
we also provide the visual and quantitative results for the
ablation study in Figs. 6 to 10. In Figs. 6 and 7, hard samples
with confusing areas are presented to show the effectiveness
of the proposed method in challenging scenes.

From Tables II and III, we can see that UEN outperforms
RAN by a considerable margin, with the increase reaching
around 0.034 and 0.016 for F1 scores on GMS-ACT and
GMS-BRIS data sets, respectively. This observation supports
the effectiveness of the predictive uncertainty in boosting
the mapping accuracy, which is achieved by introducing the
stochastic forward pass both in the training and testing phases.
Another contribution of the UEN is to help improve the
accuracy of distilling examples by separating noise from the
predictions. From Figs. 6 and 7, we can see that compared
with RAN, UEN can discover more object regions. By
incorporating the trace regularizer, the performance sees an
advantage of removing the false detection. For the GMS-ACT
data set, the increase is around 0.01 and 0.013 on F1 score
and I oU score. For the GMS-BRIS data set, we can also
observe a considerable increase. The employment of the UA
re-weighting also plays a crucial role in the superiority of our
approach. From the quantitative results, we can see a stable
improvement in both data sets, with the Fβ score reaching
0.8016 and 0.7795, respectively. The comparison of PR curves
and E-measure curve Figs. 8 and 9 also show the proposed
UEN, trace regularizer, and UA-reweighting are able to bring
varying degrees of gains in performance improvement.

From the examples in Figs. 6 and 7, the discrepancy
is explicit: the results in the fourth-row show superior
performance in localizing target objects correctly as well as
providing object boundaries closer to the real object outlines.
The baseline, RAN is capable of discovering the target object,
with the average performance in suppressing the background
interference. The mapping results are contaminated by falsely
classified pixels, such as pixels located on the rooftop close
to the solar panels. UEN reduces false alarms to a certain
extent and provides more accurate segments, but we can still
observe a large number of errors. With the trace regularizer
and UA re-weighting, the mapping results are further refined.
The confusion caused by the complex background is well
suppressed and the detected object boundaries are becoming
increasingly close to the actual object outlines.

To further reveal the validity of the trace regularizer and
UA re-weighting, we show several examples of the IDTM
estimated by “+ Trace regularizer” and “+ UA re-weighting”
in Fig. 10. We can observe that the predictive uncertainty in
column (d) assigns proper uncertainty levels to the predicted
results in column (c). With the UA re-weighting, the estimated
IDTM T is less deterministic and more accurate. In the third
row in Fig. 10, we can observe that although there are falsely
detected regions in the initial mapping results, with the high
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Fig. 10. Prediction results of LTN. (a) Training samples. (b) PLs. (c) Initial results by UEN. (d) Predictive uncertainty. w/o UA re-weighting: (e) T00, (f) T11.
w UA re-weighting: (g) T00, (h) T11.

uncertainty levels, the negative impacts of interference on the
IDTM are successfully removed.

D. Statistical Significance Analysis

We also conducted a statistical significance analysis, i.e.,
one-tailed t-test, on the quantitative results of UEN, +Trace
Regularizer, and +UA re-weighting, to reveal whether the
improvement is significant or not. To make the analysis
feasible, we conduct it on the positive samples, so the F1
score and I oU score can be computed for each sample.
Then, we can obtain the mean values and standard deviations
for statistical significance analysis. The statistical results are
shown in Tables V to VIII. On both data sets, we implemented
one-tailed t-test on two collections of positive samples with
different numbers. The t-test results for GMS-ACT and GMS-
BRIS data sets are summarized in Tables VII and VIII. Cases
I II and III denote the method pairs employed in the t-test,
UEN v.s. “+Trace regularize”, UEN v.s. “+UA re-weighting”,
and “+Trace regularizer” v.s. “+UA re-weighting”. In the
one-tailed t-test, the null hypothesis is that methods with the
proposed strategies will not bring any improvement in the F1
score and I oU score on positive samples.

On the GMS-ACT data set, we can observe that “+UA
re-weighting” outperforms UEN and “+Trace regularizer”
with a notable increase in F1 score and I oU score. “+
UA re-weighting” also helps reduce the variation of results.
Compared to UEN, “+Trace regularizer” sees a decline.
All the method pairs except UEN v.s. “+Trace regularizer”
exhibits significant improvement with p < 0.05 when a large
number of positive samples (385) are employed. In case I,
there are no significant improvements between the pairs, which
is understandable as the main purpose of the Trace regularizer
is to make the IDTM estimation stable.

TABLE II
ABLATION STUDY OF THE PROPOSED METHOD

ON THE GMS-ACT DATA SET

TABLE III
ABLATION STUDY OF THE PROPOSED METHOD

ON THE GMS-BRIS DATA SET

On the GMS-BRIS data set, we can see that compared
with UEN, “+ UA re-weighting” also contributes to a stable
increase in F1 score and I oU score as well as variation
suppression. Compared to UEN, “+ Trace regularizer” sees
a slight decline on the set with number = 90. With a larger
number of positive samples (272), the improvement between
UEN and “+ UA re-weighting” is revealed as significant.
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Fig. 11. Illustrating the difference when the dropout probability p changes. (a) GMS-ACT data set. (b) GMS-BRIS data set. The first column in each
sub-figure shows the aerial images. For each value of p, the initial mapping results and corresponding predictive uncertainty are exhibited.

Fig. 12. Impacts of the dropout probability p on the performance of UEN
on the GMS-ACT data set. (a) F-measure. (b) IoU scores.

Fig. 13. Impacts of the dropout probability p on the performance of UEN
on the GMS-BRIS data set. (a) F-measure. (b) IoU scores.

E. Parameter Analysis

In this section, to explain how the parameters in the
proposed method would influence the model performance,
we report the quantitative results with different parameter
values.

1) Dropout Probability p for the UEN: The purpose of
UEN is to produce initial results with accurate uncertainty
levels. As the UEN is built based on Monte Carlo dropout,
it is important to know the impacts of the dropout probability
p on the performance of UEN. Figs. 12 and 13 show the
visual comparison with the dropout probability p changing
from 0.05 to 0.35. Theoretically, as p grows, it will be
increasingly difficult for UEN to converge, and UEN will add
more uncertainty levels to its predictions. We can observe that
for both data sets, with the growing dropout probability p, the

quantitative performance sees a steady increase and reaches
the peak when p = 0.2. After that, the figures decrease
quickly and we can see a huge performance degeneration
with p = 0.35. The produced predictive uncertainty is also
presented to show the discrepancy visually in Figs. 11 with
p = 0.1, 0.2 and 0.3. The uncertainty level exhibits a notable
increase in the object boundaries and co-occurring objects
similar in color and texture. When p gets larger, e.g. p = 0.3,
the UEN is more likely to assign higher uncertainty levels
to its predictions, although the predictions are correct, which
leads to performance degeneration. This is reasonable as a
larger dropout probability means a more dramatic stochastic
feed-forward process would happen and it will be increasingly
difficult for the model to converge. Hence, in our work, we set
p=0.2.

2) Trade-off Parameter γ for the Trace Regularizer:
The trade-off parameter γ help imposes different levels of
constraints on the trace of the IDTM. In this part, we studied
the impacts of γ in two situations: “w UA re-weighting”
and “w/o UA re-weighting”. Quantitative results are reported
in Table IV. We can observe that without UA re-weighting,
a smaller weight γ help achieves the best results: setting
γ=0.1 for GMS-ACT and GMS-BRIS data sets, the achieved
Fβ scores reach 0.7916 and 0.7693. As γ grows, there is a
slight degeneration of the model performance. On the GMS-
ACT data set, the figures first notably decrease to 0.7761 and
then see a considerable increase to 0.7820. On the GMS-
BRIS data set, the quantitative results are quite close when
γ varies. With the UA re-weighting, we can see a different
trend. Firstly, compared with “w/o UA re-weighting”, the
proposed uncertainty-based modification provides a further
improvement when γ has different values. The best overall
performance is achieved at γ=0.5 and 0.2 for GMS-ACT and
GMS-BRIS data sets, respectively, and the Fβ scores reach
their peak at 0.8016 and 0.7795. This observation also supports
the validity of the employment of predictive uncertainty. With
the re-weighting guided by uncertainty, our method becomes
more stable against the parameter change of γ . Considering
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TABLE IV
PARAMETER ANALYSIS FOR γ W/O AND W UA RE-WEIGHTING ON THE GMS-ACT AND GMS-BRIS DATA SETS

TABLE V
MEAN AND STANDARD DEVIATION OF F SCORE AND IOU SCORE ON GMS-ACT POSITIVE SAMPLES

TABLE VI
MEAN AND STANDARD DEVIATION OF F SCORE AND IOU SCORE ON GMS-BRIS POSITIVE SAMPLES

TABLE VII
STATISTICAL SIGNIFICANCE ANALYSIS ( p-VALUE)

ON GMS-ACT POSITIVE SAMPLES

the subtle discrepancy of model performance with UA re-
weighting, we set γ = 0.5 and 0.2 for GMS-ACT and
GMS-BRIS data sets in our work.

F. Performance on Sub-Sets With Varying-Size Objects

To reveal the high imbalance in the solar panel data sets,
we calculated the percentage of positive pixels in testing sets.
Fig.14 exhibits the histogram of ratios of positive pixels in
every image to statistically show the distributions of solar
panels with varying sizes. The target class and the background
have an uneven distribution of observation, with most solar

TABLE VIII
STATISTICAL SIGNIFICANCE ANALYSIS ( p-VALUE)

ON GMS-BRIS POSITIVE SAMPLES

panels accounting for less than 5% of the total pixels in
a single image. For the GMS-ACT and GMS-BRIS test
sets, the ratios of positive/negative pixels in the test set are
approximately 1/38 and 1/93. Furthermore, the size of the
solar panels also varies greatly. In this case, to validate the
effectiveness of our method, we separated the positive samples
in the test sets into three subsets, with varying percentages
of positive pixels, i.e. 0∼5%, 5%∼25%, and 25%∼40%. The
quantitative results are reported in Tables IX and X. On GMS-
BRIS test subsets, as there are no positive samples with object
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Fig. 14. Distributions of images with different object sizes in the test set.
(a) GMS-ACT data set. (b) GMS-BRIS data set. The x-axis is the ratio of
the positive pixels in each image. The y-axis is the number of images.

TABLE IX
PERFORMANCE OF THE PROPOSED METHOD

ON THE GMS-ACT TEST SUBSET

TABLE X
PERFORMANCE OF THE PROPOSED METHOD ON

THE GMS-BRIS TEST SUBSET

percentages above 25%, we only show the results on the
subsets 0∼5% and 5%∼25%. We can see that on both data
sets, the proposed method achieves consistent increases on F1
score, I oU score, and Sα as the object size increases from
0∼5% to 5%∼ 25%.There is a decline with M AE when the
object size grows, but the F1 score and I oU score still support
the validity of our method.

V. DISCUSSION AND CONCLUSION

This paper proposed a novel UALT method for WS-SPM
using only image-level annotations. By taking the PLs as
noisy labels, we formulate the WSL problem as a label
noise problem. The purpose of the proposed method is to
develop a parameterized model to first estimate IDTM and
then produce accurate predictions. Approximating IDTM with
a CNN is quite challenging due to two reasons: inaccurate
selection of distilled examples and the high degree of freedom
of IDTM. To solve these problems, we propose to use
predictive uncertainty to mitigate the over-fitting issue, which
helps improve the accuracy of collecting distilled examples.
In the training of LTN, we also propose a UA re-weighting
strategy to adaptively modify the contributions of pixels
with varying uncertainty levels. To reduce the complexity of
estimation IDTM, we propose a trace regularizer to increase
the stability of LTN training. Quantitative and visual inspection
of the mapping results on two aerial data sets for solar
panel detection demonstrated the superiority of the proposed
method. We also performed an ablation study to explain the

contribution of each part of our method. With a larger number
of positive samples, the improvement by employing UA re-
weighting is consistently significant.

In the proposed UALT, there are two crucial assumptions:
the noise rate upper bound assumption helps guarantee the
feasibility of using distilled examples to estimate IDTM; in the
proposed trace regularizer, we assume that pixels susceptible
to label noise only make up a small proportion of PLs. PLs
with high noise levels may not satisfy these two assumptions.
In future work, we will investigate the impacts of varying noise
levels in PLs on the feasibility and performance of the label
noise learning framework.
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