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Coarse- and Fine-Grained Fusion Hierarchical
Network for Hole Filling in View Synthesis

Guangcheng Wang™, Kui Jiang~, Member, IEEE, Ke Gu™, Senior Member, IEEE, Hongyan Liu ™,
Hantao Liu™, Senior Member, IEEE, and Wenjun Zhang ", Fellow, IEEE

Abstract— Depth image-based rendering (DIBR) techniques
play an essential role in free-viewpoint videos (FVVs), which
generate the virtual views from a reference 2D texture video
and its associated depth information. However, the background
regions occluded by the foreground in the reference view will be
exposed in the synthesized view, resulting in obvious irregular
holes in the synthesized view. To this end, this paper proposes
a novel coarse and fine-grained fusion hierarchical network
(CFFHNet) for hole filling, which fills the irregular holes pro-
duced by view synthesis using the spatial contextual correlations
between the visible and hole regions. CFFHNet adopts recurrent
calculation to learn the spatial contextual correlation, while the
hierarchical structure and attention mechanism are introduced
to guide the fine-grained fusion of cross-scale contextual fea-
tures. To promote texture generation while maintaining fidelity,
we equip CFFHNet with a two-stage framework involving an
inference sub-network to generate the coarse synthetic result and
a refinement sub-network for refinement. Meanwhile, to make
the learned hole-filling model better adaptable and robust to
the “foreground penetration” distortion, we trained CFFHNet by
generating a batch of training samples by adding irregular holes
to the foreground and background connection regions of high-
quality images. Extensive experiments show the superiority of our
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CFFHNet over the current state-of-the-art DIBR methods. The
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framework.

[. INTRODUCTION

S THE pursuit of visual experience is constantly

upgraded, traditional 2D display technologies are chal-
lenging to meet people’s demands for work, life, and
entertainment, so 3D-related techniques, including virtual
reality, augmented reality, and mixed reality, have been devel-
oped rapidly. Free-viewpoint TV (FTV) can provide viewers
with any viewing angle and position, due to the excellent
human-computer interaction experience and viewing immer-
sion, which is considered to be the main development direction
of digital TV in the future. Free-Viewpoint Video (FVV) has
attracted increasing attention and interest owing to its wide
application scenarios, such as video conference, remote edu-
cation, immersive entertainment, medical applications, military
area, and more [1], [2]. The MPEG-I (I: Immersive) standard,
formulated by the MPEG committee for immersive media,
focuses on the encoding representation of multi-view + depth
videos [3].

Fig. 1 shows the free-viewpoint butterfly deployment of
“Dancing Miracle” in the Huawei exhibition at the China
International Audio-visual Conference. To realize the func-
tion of freely switching viewpoints, it is necessary to set
up cameras in different directions to shoot the same scene.
When a free-viewpoint video requires N viewpoints for users,
this video will generate N times the data in a regular
single-viewpoint video, putting tremendous pressure on data
collection, storage, and transmission. The virtual viewpoint
synthesis technology uses the scene captured at the reference
viewpoint to synthesize the scene obtained when the virtual
viewpoint faces the same scene, so as to greatly save the cost
of streaming media data collection, storage, and transmission
bandwidth. In addition, 6 degrees of freedom (6-DoF) nav-
igation needs to render the required viewpoints in real-time
according to the user’s arbitrary navigation paths, where the
view synthesis provides the alternative solution for this task.

The view synthesis technology can be mainly divided
into two categories: 3D model-based rendering (MBR) and
depth-image-based rendering (DIBR) [4], [5], [6]. Compared
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Fig. 1. The free-viewpoint butterfly deployment of “Dancing Miracle”. This
figure is from http://ciac.org.cn/detail?id=6516.
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Fig. 2. Examples of hole filling. (a) is an unfilled image with holes. (b) is
produced by the Criminisi et al.’s method [14]. (c) is produced by the Daribo
et al.’s method [15]. (d) is the ground-truth image corresponding to (a). The
distortions in the green box are the “foreground penetration” artifacts.

with MBR techniques’ complex 3D reconstruction process,
DIBR technologies only need a reference 2D video and its
corresponding depth maps to generate the free-view video.
Therefore, DIBR techniques are more easily deployed in real-
time applications, such as sports live, video conference, remote
diagnosis, remote education, and more. Unfortunately, the
captured depth map is not accurate enough, or the background
area may be occluded by some foreground objects in the
reference viewpoint and become visible at the virtual view-
point. Consequently, the synthesized virtual viewpoint usually
contains irregular holes. How to fill holes to guarantee the
affinity and fidelity between the hole and known contextual
regions of the synthesized view remains a non-trivial problem
in DIBR.

In recent decades, massive DIBR algorithms have been
proposed, which can be divided into two categories. The first is
to reduce hole regions by preprocessing the depth map [7], [8],
[9], [10]. The Low-pass filters, such as symmetric Gaussian
low-pass filter [7], [8], asymmetric filter [9], or adaptive edge-
oriented smoothing filter [10] are employed to smooth the
depth map. The low-pass filtering-based DIBR algorithms can
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effectively reduce the hole regions in the synthesized view.
Those methods are dedicated to solving scenarios where the
reference and virtual viewpoints are relatively close. When the
reference and virtual viewpoints are far away, they are far from
producing satisfactory results.

To solve the shortcomings of the aforementioned methods,
the second type of algorithm uses the patch matching strategy
to select the best-matching patch from hole-free regions to fill
hole regions without preprocessing the depth map. The multi-
reference viewpoint-based DIBR algorithms [6], [11], [12],
[13] can greatly reduce the hole areas in the synthesized view
but come at the cost of huge transmission bandwidth. By con-
trast, the single-reference viewpoint-based DIBR methods are
more practical. For example, Criminisi et al. [14] employed an
exemplar-based sampling method combining the advantages of
inpainting and texture synthesis. By calculating the priority of
the hole boundary pixels, it can search for the best-matching
patch from non-hole regions and copy the selected patch to
the highest priority area. However, the foreground textures are
usually used to fill the hole regions. To alleviate this defect,
Daribo et al. [15] further introduced the depth map of the
virtual viewpoint on the basis of Criminisi et al.’s method [14]
to compute the priority of the hole boundary pixels and patch
distance. However, the depth map of the virtual viewpoint is
not always available in the actual scenarios. To overcome this
problem, Ahn and Kim [16] and Buyssens et al. [17] proposed
to predict the depth map of the virtual view while filling the
hole regions. Ceulemans et al. presented a Markov random
field-based inpainting method for multiview video [18]. The
method steers the Markov random field optimization towards
completion from background to foreground and exploits the
available depth information to avoid bleeding artifacts. These
aforementioned methods all perform patch matching in a
single frame, which are suitable for small hole filling. When
the distance between the reference viewpoint and the virtual
viewpoint is far away, the hole regions in the synthesized
view are too large, and the performance of these algorithms is
relatively limited. To deal with this issue, Luo and Zhu [19]
and Luo et al. [20], [21] proposed to exploit the background
information from the whole video sequence to fill the hole
regions of the current frame. Specifically, they first split the
foreground and background of the whole synthesized video
and then use the patch matching-based hole-filling methods to
search for the best-matching block in the known background
regions of all frames to fill the hole regions. These works [19],
[20], [21] can cover large holes more effectively but come
at the cost of great computational and memory consumption,
making it infeasible for real-time application scenarios. Fig. 2
shows some hole-filling examples of partial patch-matching-
based hole-filling algorithms. Obviously, these algorithms
commonly tend to fill the foreground texture into the hole
areas, thus creating the “foreground penetration” artifact [21].
Though Daribo et al.’s method [15], Ahn et al.’s method [16],
Zhu et al.’s method [19], and Luo et al.’s method [21] further
introduce depth information or separate the foreground and
background, these algorithms still cause “foreground penetra-
tion” because the obtained depth information is not accurate
or the precision of segmentation is not enough.
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To deal with the “foreground penetration” distortion,
we propose a coarse and fine-grained fusion hierarchical net-
work (CFFHNet) for hole filling in view synthesis. To promote
the texture generation while keeping the fidelity, we equip
CFFHNet with a two-stage framework involving a genera-
tive adversarial network (GAN)-based inference sub-network
(ISN) to generate the coarse synthetic result with pleasant
visual contents and a convolutional neural network (CNN)-
based refinement sub-network (RSN) to promote the fidelity
and consistency. In particular, we introduce the residual recur-
rent memory to exploit the spatial contextual correlations from
the visible regions to infer the missing details of the hole
regions. Meanwhile, we specially construct the backbone of
CFFHNet with a hierarchical framework for the multi-scale
cooperative representation. Overall, the design principle of
CFFHNet is to capture and fuse multi-scale texture features
in a coarse-to-fine manner while guaranteeing the affinity
and fidelity between the hole and known contextual regions,
which is crucial for dealing with the “foreground penetration”
distortion. By doing so, our synthesized views are more
faithful to the ground-truth and make the visual experience
more natural.

We highlight our major contributions as follows:

e We propose to exploit the spatial contextual correlations
from the visible regions to infer the missing texture
details of the hole regions, and construct a novel CFFH-
Net for hole filling in view synthesis. ISN introduces
an adversarial training strategy to improve texture gen-
eration. RSN is responsible for inferring more realistic
texture details.

e CFFHNet extracts the pixel-level spatial contextual cor-
relations to restore the synthesized view, which can
effectively reduce the “foreground penetration” dis-
tortion introduced by the patch-matching-based image
inpainting methods.

e Our CFFHNet exhibits excellent performance in filling
the hole regions existed in the synthesized view, which
outperforms the popular and state-of-the-art (SOTA)
DIBR algorithms.

The rest of this paper is organized as follows. Section II
introduces some related works and the research motivations of
this work. Section III elaborates on the design of our network.
In Section IV, we compare our method with dozens of the
popular and SOTA DIBR algorithms. In section V, we conduct
various ablation studies to demonstrate the effectiveness of our
network. Section VI concludes this work.

II. RELATED WORKS AND MOTIVATIONS
A. Deep Learning-Based Image Inpainting

The CNN and GAN have facilitated the rapid development
of image inpainting tasks [22], [23], [24], [25], [26], [27],
which usually repair damaged images by learning the intrinsic
statistics knowledge from massive data. For instance, Li et al.
designed a recurrent feature inference network consisting of a
recurrent feature inference module and a knowledge-consistent
attention module [22]. Mimicking the process of the human
brain in dealing with difficult problems by first solving the

easier parts and then using the preliminary results to solve
the difficult parts, the network iteratively infers the hole
boundaries of the convolutional feature maps and then uses
them as clues for further inference. In literature [23], Xu et al.
adopted the edge structure information to guide the image
inpainting task. Lahiri et al. designed a prior-oriented GAN for
semantic inpainting [24], which maps the implicit noise prior
distribution to the manifold of natural images when training
the generative model, thereby using the noise prior to enhance
the structural prior to improve the inpainting reconstruction
result. To precisely employ the valid information in an image
to repair the damaged regions, Wang et al. proposed a dynamic
selection network to distinguish the damaged regions from the
undamaged valid regions [25]. Yu et al. presented a novel
free-form image inpainting system based on an end-to-end
generative network with gated convolution, trained with the
pixel-wise ¢; loss and a patch-based GAN loss [26]. Zeng
et al. proposed a learnable auxiliary contextual reconstruction
loss combined with the traditional inpainting loss (i.e., ¢
loss and the the adversarial loss) to encourage the generator
network to select appropriate known regions as references to
fill the missing regions [27]. The deep learning-based image
inpainting algorithms can fill holes, but there still exits obvious
limitations in the following two main aspects. First, most
existing image inpainting algorithms are designed for some
regular holes. Second, existing deep learning-based image
inpainting methods are not designed with the characteristics
of DIBR techniques, i.e., they do not focus on how to avoid
misfilling the foreground textures into the background regions.

B. Motivations

The general deep learning-based image inpainting algo-
rithms tend to fill the foreground textures into the background
holes when filling the holes generated by view synthesis. This
is because the large-scale holes in synthesized images are
generated by foreground occlusion. This also indicates that
it is difficult to avoid the “foreground penetration” artifact
only through network architecture and loss function. Moreover,
some works have been devoted to reducing the probability
of filling the foreground texture into the background area
by segmenting the foreground and background of synthesized
images and then filling the hole area with only the background
texture information [19], [21]. However, these methods are still
susceptible to the inaccurate foreground and background seg-
mentation, filling foreground textures into background regions
and resulting in “foreground penetration” artifacts. Inspired by
the shortcomings of the above two kinds of work, we consider
adopting the specific sample (preferably directly generated by
warping) and model co-driving strategy to design a hole-filling
algorithm more suitable for view synthesis. Based on the
targeted design model (i.e., network architecture and loss func-
tion), the model is further endowed with the ability to suppress
the “foreground penetration” artifact through specific training
samples. Next, we will introduce the design motivation for
the particular training data, network architecture, and loss
functions.

1) Training Data: However, in the actual environment,
there are no massive multiview video-plus-depth (MVD)
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Fig. 3.

sequences with different scenes to generate many training
samples that can be used for training hole-filling networks.
Therefore, we generate a batch of training samples by adding
irregular holes in the foreground-and-background junction
regions so that the learned CFFHNet can protect semantic
information, that is, it can effectively suppress the “foreground
penetration” artifact, which is the next best thing. The specific
generation method of the training samples is detailed in
Section IV-A.

2) Network Design: This paper proposes a coarse
and fine-grained fusion hierarchical network to solve the
hole-filling problem in view synthesis. We adopt the residual
recurrent unit in the coarse-grained fusion module to better
extract the global contextual texture relationship to repair hole
regions. And the channel attention mechanism is introduced
in the fine-grained module to express the contextual texture
relationship learned in the coarse-grained fusion module more
finely. In addition, we introduce a hierarchical architecture to
fuse information of different spatial resolutions, which can
also effectively protect the semantic information of images,
thereby effectively avoiding filling foreground textures into
background areas.

3) Learning Strategy: We define the hole filling problem
as “Inote = Ig + Iinask”, 1.€., Iyask is the residue map of the
hole image I, and its ground-truth image I,. This paper
regards the cause of the hole regions in a synthesized image
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Framework of the proposed coarse- and fine-grained fusion hierarchical network (CFFHNet) for hole filling in view synthesis.

as adding a degradation factor I, to its associated ground-
truth image. The purpose of the proposed CFFHNet is to learn
this residue map. Then, computing “Ijp7e — Inask” can obtain
the restored synthesized view. Note that we define the hole
filling problem as “Ijoe = Ig + Lnask”, which is different
from this type of deep learning-inpainting algorithms [22],
[26] that these methods learn the projection directly from the
hole image to its ground-truth image. This work proposes
a two-stage learning strategy for hole filling, including the
GAN-based inference sub-network to promote the texture
generation and the CNN-based refinement sub-network to
guarantee the fidelity and affinity. The GAN-based methods
have been widely used in the image enhancement and image
inpainting tasks in recent years, where the powerful texture
generation capability of GAN is crucial for filling the large
holes. Since some large irregular holes will also be introduced
due to disocclusion in view synthesis, this work introduce
GAN to solve the hole filling problem in view synthesis. The
original intention of GAN is to make the generated images
more realistic. However, in the view synthesis applications, the
fidelity of the synthesized images is crucial. Thus, we intro-
duce the content loss (i.e., the MSE loss) on the basis of
adversarial loss to guarantee the consistency of the inferred
contents to the ground truth. Moreover, to eliminate the
high-frequency noise brought by adversarial training, a CNN-
based refinement sub-network is further introduced to refine
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the textures to promote the affinity between the predicted
hole regions and the known contents. In particular for the
optimization of RSN, the content loss and edge-preservation
loss are used for the joint optimization.

III. METHODOLOGY
A. Coarse and Fine-Grained Hierarchical Network

This part first details the design of the proposed coarse and
fine-grained fusion hierarchical network. As shown in Fig. 3,
our proposed two-stage CFFHNet contains two sub-networks:
ISN and RSN. For convenience, ISN and RSN share the same
generator framework, and it is designed with a hierarchical
framework to promote the feature fusion and representation.
We take the first stage as an example to detail its components.
The generator consists of the initial feature extraction module,
the coarse-grained fusion module (CFM), the fine-grained
fusion module (FFM), and the mask reconstruction module.
As illustrated in Fig. 3, for a given hole image .., we first
use a Gaussian kernel to down-sample the original image to
generate the multi-scale hole images, such as 1/2 scale. Then,
the initial feature extraction module takes them as inputs to
extract the corresponding initial features using multiple paral-
lel initial layers. After that, we integrate the residual recurrent
unit (RRU) into the hierarchical framework to construct CFM
to exploit the global contextual correlations. For a better fusion
of multi-scale features, unlike CFM, FFM replaces the residual
recurrent unit in CFM with the U-shaped residual unit, where
the pyramid attention mechanism can guide the scale-specific
knowledge aggregation. Finally, the mask reconstruction mod-
ule obtains the I, by integrating the spatial contextual
correlations generated from CFM and FFM. In particular, the
mask reconstruction module first concatenates the output of
CFM with the output of FFM, and then uses convolutional
layers to learn the interdependence of the two models. Finally,
the mask information at different hierarchies is fused (that
is, up-sampling and concatenating) to predict the I,,5¢. The
design principle of our proposed CFFHNet is to alleviate the
“foreground penetration” distortion by fusing low-level visual
features (such as edges and colors) and high-level semantic
features extracted from different spatial scales. In the following
paragraphs, we explain the design principle and architecture
of CFM and FFM in detail.

As shown in Fig. 3, CFM uses multiple parallel RRUs to
further extract and fuse the outputs from the initial feature
extraction module. We present the structure of a RRU in
Fig. 4. The RRU combines residual learning and recurrent
calculation to extract the global texture of images. Specifically,
the convolutional long short term memory (Conv-LSTM) [28]
is employed to model the information flow of the contextual
textures with the recursive memory, in which the contextual
texture correlations are transformed into structured cyclic
dependencies to capture the texture information. The feature
extraction procedures in the RRU can be formulated as

Xt = Hconv(X),
ir=0(Wyi OX, + Wy O H1 + Wi 0Ciy + by),
fi=oWyr © Xy + Wiy © H—1 + Wep 0o Gy + by),

Ht

t1 t
|
1

M-
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X X, o,

I:I Convolution @ Pixel-wise Summation

Fig. 4. Structure of the residual recurrent unit (RRU).

_EB—.

Skip connection

—"| F3N64S2 |—'[ CAU H H CAU ]—‘ F3N64S2 I——‘
T ” Tl R Strided Deconvolution

= Strided Convolution

@ ° ‘:‘ Global Average Pooling

Channel Attention Unit

Skip connection  F: Fliter Size N: Channel S: Stride

@ Sigmoid Function (R Elementevise Product

Fig. 5. Structure of the U-shape residual attention unit. F3N64S2 denotes
the convolutional layers with filter size of 3 x 3, number of channels of 64 and
stride size of 2.

Cr = fi o Ci—1+i; otanh(Wye © Xy +Wpe © Hi—1+b.),
0r =0 (Wxo © Xy + Wpo © Hi—1 + Weo 0 C; + bo),
H; = 0; o tanh(Cy),

Frru = Hconv(or) + X4, ey

where H,,,,(+) represents the convolution layer, which takes
the preceding spatial contextual texture correlation feature as
input. Then given the input X; in Eq (1), we recurrently
revise the estimation of the spatial contextual texture in current
RRU with the collaboration of the gate units (the input
gate iy, the forget gate f;, and the output gate o;), the cell
body C;, and the hidden state in the #;; state via Hadamard
product (o) and convolution operation (©). W and b are the
weight parameters and bias. The estimated spatial contextual
correlation o, and the updated cell C; can be determined by
the preceding features X; and the previous hidden states H;_.
Through the memory (the hidden state), the current stage
can explore the useful components for refinement from the
previous stage. Meanwhile, the recursive memory calculation
decomposes the learning task into multiple stages, greatly
releasing the learning burden. Note that similar to the sequence
features representation, the Conv-LSTM in this study is used
to recurrently extract the image features via multiple memory
stages, which is more powerful for exploring the contextual
texture compared to the standard convolution.

FFM refines the spatial contextual texture information
extracted by CFM. The structure of FFM is similar to CFM,
using multiple parallel U-shape residual attention units to
refine the outputs of CFM. As shown in Fig. 5, the proposed
U-shape residual attention unit consists of stride convolution,
deconvolution, skip connection, and multiple channel attention
units. The specific structure of the channel attention unit is
depicted in Fig. 5. The design basis of the proposed U-shape
residual attention unit considers three aspects: (a) To make
the collaborative representation more effective, we introduce
the channel attention unit to focus on the most informative
specific-scale knowledge. (b) We adopt strided convolution
to reduce spatial dimensions of features, thereby saving



computational resources. (c) Deconvolution is employed to
prevent the loss of resolution information. The design fun-
damental of combining CFM and FFM is to finely represent
the global texture of the hole image Ij,/., SO as to accurately
estimate the error map I,,45x between the hole image Ij,;. and
its corresponding ground-truth image /.

B. Two-Stage Learning for Virtual View Synthesis

To improve the generative ability of the proposed CFFH-
Net, we introduce generative adversarial training for virtual
view synthesis. Compared with CNN-based methods, gen-
erative adversarial training shows impressive capability in
generating visual pleasant contents. Meanwhile, due to the
instability of generative adversarial training, some redundant
high-frequency noise will be introduced [29]. To promote the
texture generation while keeping fidelity, we further refine the
output of ISN using RSN. Fig. 3 presents the framework of
our proposed two-stage learning strategy.

1) Inference Sub-Network Training Stage: As depicted in
Fig. 3, the generator aims to predict the error map Ipusk
between the hole image Iy, and its associated ground-truth
image I,. Then, the discriminator tries to distinguish between
fake Io(s,) (i-€., Inoie-Imask) and ground-truth I,. For the
discriminator, we use the network architecture of the discrim-
inator in the literature [31] as a reference. The adversarial loss
for optimizing the generator and discriminator is defined as

Ladv(eD) = - 10g D(Ig, QD)
- 10g[1D(Ih()le - G(Ih()le)’ 9[))], (2)

where G(-) and D(-) denote the functions of the generator
and discriminator, respectively. p is the parameters of the
discriminator network.

The perceptual loss proposed by Johnson et al. can guide
the generator to generate visually pleasing results [32], and
this perceptual loss has been widely used in GAN-based image
enhancement tasks [33], [34], [35]. Thus, this paper introduces
the perceptual loss to improve the visual quality of virtual
views. The specific definition of the perceptual loss is as
follows:

N
1
Lyer = 5 2 @) = @i ©)
i=1

where @(-) represents the pretrained 4th resblock before the
5th max-pooling layer of VGG19-net [36]. N is the size of
a mini-batch. Moreover, the content loss, i.e., Mean Squared
Error loss, has been commonly used as the constraint in visual
tasks [37], [38], [39], which can ensure that the synthesized
virtual view and the ground-truth are as close as possible at
the pixel-level. Therefore, the content loss is further employed
to constrain the generator, which is calculated as

N
1
Leon = 55 2\ Uotsny.i = g0 )
i=1

The whole loss function used in the generative adversarial
training is given by

Lgan = Lper +a-Laay + B Leon, )
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where the parameters o and B adjust the contribution of
different loss components. The settings of parameters o« and
B are detailed in Section IV-C 3).

2) Refinement Sub-Network Training Stage: To guarantee
the fidelity of the generated texture, we further use RSN to
refine the output of ISN. Specifically, we still use the proposed
generator as the CNN module and use edge-preservation loss
and content loss to optimize the parameters of the CNN
module. The definition of the proposed edge-preservation loss
is as follows:

1 N
Letg = 5 D) @Uatsn) = S U2, ©)
i=1

where ¢ is a differentiable Canny operator [40], [42] to
extract the edge map of a given image. Then, we combine
the proposed edge-preservation loss with the content loss
(i.e., equation (4)) as the overall loss in the refinement stage,
as shown below.

N
1
Lepn = N ; (I()(Sz),i - Ig,i)2 +v- Ledgv @)

where the weight parameter y is set to 0.05 to balance the
loss terms. The ablation study of parameter y is detailed in
Section IV-C 3).

IV. VALIDATION AND DISCUSSION

We conduct massive experiments on ten MVD sequences
to evaluate the performance of the proposed method, seven
state-of-the-art (SOTA) DIBR algorithms and two deep
learning-based inpainting algorithms.

A. Experimental Setup

Training and validation datasets: Due to the limited number
of MVD sequences, it is difficult to train our proposed DIBR
algorithm based on deep learning. To effectively train our
proposed method, we use 10k images from the COCO2017
dataset as well as randomly generated hole masks to synthesize
massive hole/ground-truth image pairs. 80% and 20% of the
collected image pairs serve as the training and validation
datasets, respectively. Here, we briefly describe the used
hole generation method. To effectively alleviate the dilemma
faced by the general deep learning-based image inpainting
algorithms in view synthesis, the generated holes need to have
the following two properties: (a) the holes should destroy the
texture information at the boundaries of the image foreground
and background. Thus, the trained hole-filling model can
protect the edge semantic information, effectively suppressing
the ‘foreground penetration’ artifact. (b) the generated irregular
holes should be diverse to avoid overfitting. To this end, this
paper proposes a simple irregular hole generation method that
can destroy images’ foreground and background areas. First,
the proposed hole generation method employs the instance
segmentation algorithm [41] to roughly locate the image’s
foreground and background intersection area, which can help
the Canny operator [42] to detect important edges of the
foreground and background intersection area with a high
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Fig. 6. Examples of images with irregular holes generated by the proposed
hole generation method.

probability. Then, some important edges are selected by a
randomized algorithm, and white lines similar to the edge
direction are drawn in these edge areas. At the same time, the
white lines are rotated repeatedly at small angles (the angle
range can be set to 0°-15°) to generate hole regions. We have
drawn many white lines with different angles and lengths in
advance. Fig. 6 shows some images with holes generated by
the proposed hole generation method.

Testing dataset: Six MVD sequences, including Ballet (BA)
[43], Breakdancers (BR) [43], Dancer (DA) [44], Painter (PA)
[45], Classroom (CL) [46], [47], and ChocofountainBxl (CH)
[48], [49] are employed to test the performance of our method
and the representative SOTA DIBR algorithms. Compared with
the sequences BA, BR and DA, the sequences PA, CL and
CH have richer texture information and more accurate depth
information. The sequence warped from reference view 4 to
virtual view 1 of BA is named as ‘BA4—1’. Note that the
hole image 7;,,;. at the virtual viewpoint is obtained by the 3D
image warping process based on the texture information, depth
information, and camera settings information at the reference
viewpoint. This 3D image warping procedure is not new and
coincides with the approach applied in most peering methods
[21], [50], [51].

Objective visual quality evaluation criterion: In our work,
we employ three types of image/video quality assessment
methods to evaluate the performance of the hole filling algo-
rithms. Similar to other related studies [16], [21], the first
category of performance evaluation indicators includes two
general-purpose image quality assessment algorithms, namely
Peak Signal-to-Noise Ratio (PSNR) and Structural SIMilarity
(SSIM) [52]. PSNR evaluates the synthesized image quality
by calculating the mean squared error of the pixel values
between the synthesized image and its ground-truth image.
SSIM measures the synthesized image quality by comparing
the luminance, contrast, and structural similarities between the
synthesized image and its ground-truth image. The second type
of performance evaluation index consists of the morphological
wavelet PSNR (MW-PSNR) [53], the morphological pyramid
PSNR (MP-PSNR) [54] and the LOcal Geometric distortions
and global Sharpness (LOGS) [55], which are designed for

the local geometric distortion (i.e., the “foreground pene-
tration” artifact) existing in the DIBR-synthesized images.
The third type of evaluation index is the flickering distortion
intensity (FDI) [56], which measures the visual quality of
DIBR-synthesized videos by quantifying the temporal domain
flickering distortion. The larger values of PSNR, SSIM, MP-
PSNR, MW-PSNR, and LOGS, while the smaller value of FDI
represent the better performance of the corresponding hole
filling algorithm. The quality assessment criterion MP-PSNR,
MW-PSNR, LOGS and FDI designed for DIBR-synthesized
images can more accurately measure the performance of the
hole filling algorithms compared with the general-purpose
image quality evaluation methods PSNR and SSIM.

B. Implementation Details

In our CFFHNet, we set the hierarchical to 2, that is, the
original scale and 1/2 down-sampling scale. Corresponding
to the increasing resolution, we set the number of filters
for each recurrent Conv-LSTM in the CFM to 32 and 64,
respectively. The number of the channel attention unit in the
FFM is set to 3. In the ISN training stage, we input the hole
images into the network with a batch size of 16. The Adam
optimizer [57] is used to optimize our ISN model with the
initial learning rate at 1073, and the learning rate decreases to
1 x 1076 with a decay rate of 0.7 after each epoch. We conduct
experiments on an AMD Ryzen Threadripper 2950X CPU
and one NVIDIA GTX 2080Ti GPU. We trained our network
on TensorFlow platform. The implementation details of the
RSN-based refinement are the same as the ISN training stage.
According to the aforementioned settings, we trained our ISN
and RSN for 20 epochs in two stages, respectively.

C. Ablation Studies

In this part, the network architecture, learning strategy
and loss functions of the proposed work are studied for
ablation, and the experimental validations are carried out on
the sequences BA and BR.

1) Ablation Studies of the Hierarchy Number: This section
investigates the effect of the number of network hierarchies on
the model performance. Specifically, we design another two
models with the hierarchy to 1, 2 and 3, and evaluate their
performance on the MVD sequences BA and BR, respectively.
The hierarchy numbers 1, 2 and 3 represent that the proposed
method fills the hole regions based on the contextual texture
relationships with the original spatial scale, the original and
1/2 spatial scales, and the original, 1/2 and 1/4 spatial scales,
respectively. Table I tabulates the comparison results in terms
of the visual quality assessment indicators PSNR, SSIM, MP-
PSNR, MW-PSNR and LOGS.

When the number of network hierarchies is set to 1, the
mean values of MP-PSNR, MW-PSNR, PSNR, SSIM and
LOGS obtained by the proposed method on MVD sequences
BA and BR are 32.48, 29.67, 28.30, 0.874 and 9.548, respec-
tively. Except for SSIM, the network with a hierarchy number
of 1 performs worse on both the MVD sequences BA and BR
than the networks with a hierarchy number of 2 and 3. This
suggests that fusing contextual texture relations on multiple



TABLE I

THE PSNR, SSIM, MP-PSNR, MW-PSNR AND LOGS VALUES OF THE
PROPOSED NETWORK WITH DIFFERENT HIERARCHY NUMBERS ON
MVD SEQUENCES BA AND BR. THE BEST PERFORMANCE IS

HIGHLIGHTED
[ Seq. |BA4—1BA4—3BA5—2BA5—4BR4—1BR4—3BR5—2BR5—4 Avg.|
| Hierarchy Number: 1 |
MP-PSNRT| 27.10 3220 28.69 3324 3345 3558 3358 36.02 32.48
MW-PSNRT| 24.97 29.67 2621 3035 30.04 3257 30.27 33.29 29.67
PSNR?T 2436 3043 2475 3030 2641 3072 2743 31.99 28.30|
SSIMT 0.838 0924 0.838 0926 0.841 0.890 0.843 0.892 0.874
LOGS?T 9.671 9.362 9.761 9.562 9.778 9.784 9.376  9.087 9.548
[ Hierarchy Number: 2 |
MP-PSNRT| 27.33 32.16 28.76 33.30 34.00 36.17 3436 36.64 32.84
IMW-PSNRT| 25.07 29.26 2630 3048 3096 3341 3098 33.75 30.03]
PSNR?T 2497 30.64 2528 3071 2798 3090 27.76 31.90 28.77|
SSIMT 0.839 0924 0.838 0.926 0.841 0.890 0.843 0.892 0.874
LOGST | 9.645 9332 9.790 9.867 9.751 9.664 9.469 9.521 9.63
| Hierarchy Number: 3 |
MP-PSNR7T| 27.22  31.85 2858 33.11 3392 3598 3442 36.52 32.7
MW-PSNRT| 25.05 29.77 2624 30.64 30.81 33.53 30.73 33.88 30.0!
PSNR?T 2436 29.80 2473 30.18 27.56 30.69 28.86 33.46 28.71
SSIMt 0.842 0924 0.840 0.930 0.879 0917 0.885 0.922 0.892
LOGST | 9.657 9.468 9.718 9.510 9.829 9.794 9.386 9.104 9.558
TABLE I

THE PSNR, SSIM, MP-PSNR, MW-PSNR AND LOGS VALUES OF THE
PROPOSED NETWORKS WITH TWO HOLE FILLING STRATEGIES ON
MVD SEQUENCES BA AND BR. THE BEST PERFORMANCE IS

HIGHLIGHTED
[ Seq. [BA4—1BA4—3BA5—2BAS—4BR4— 1BR4—3BR5—2BR5—4 Avg |
[ Filling Strategy L: I}, ;. — Network — I, |
MP-PSNRT[ 27.45 32.06 28.64 3330 3400 36.00 3419 3597 3270
IMW-PSNR1| 25.34 29.65 2630 3038 30.63 33.02 30.60 33.25 29.89
PSNRT | 24.61 30.14 2533 3083 26.89 30.66 28.02 32.18 28.58
SSIMT | 0.855 0931 0.857 0937 0.890 0.920 0.893 0.922 0.90!
LOGST | 9733 9450 9.693 9.441 9.822 9741 9401 9.445 9.59
| Filling Strategy II: I, 5;c — Network — Ipqsr — Iy |
MP-PSNRT[ 27.33  32.16 28.76 3330 3400 36.17 3436 36.64 32.84
IMW-PSNR1{ 25.07 2926 2630 3048 3096 3341 3098 33.75 30.03
PSNRT | 2497 3064 2528 3071 27.98 3090 27.76 31.90 28.77
SSIMT | 0.839 0924 0.838 0926 0.841 0.890 0.843 0.892 0.874]
LOGST | 9.645 9332 9790 9.867 9.751 9.664 9.469 9.521 9.63

spatial scales is more helpful in filling the hole regions. The
network with a hierarchy number of 2 performs the best on the
performance evaluation metrics MP-PSNR, PSNR and LOGS.
The network with a hierarchy number of 3 performs the best
on the performance evaluation metrics MW-PSNR and SSIM.
Compared to the model with hierarchy number of 3, the model
with hierarchy number of 2 gains similar or better scores on
the DIBR-synthesized image quality assessment indexes while
with less model parameters and complexity. Combining the
above experimental results, we finally set the hierarchy number
of the proposed network as 2 to optimize the performance of
the proposed hole filling network.

2) Ablation Study of the “Ipore = Ig + Ijnask”: We inves-
tigate the ablation of two types of hole filling strategies,
including the direct prediction to the ground truth, and the
residual learning between the hole image and the ground truth
to generate the final result via subtraction. Table II shows the
performance of the models obtained by the proposed networks
with two hole filling strategies on the MVD sequence BA
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TABLE III

THE IMPACT OF THE PARAMETER § ON THE PERFORMANCE OF THE
PROPOSED CFFHNET. THE BEST PERFORMANCE IS HIGHLIGHTED

[ Seq. [BA4—1BA4—3BA5—2BA5—4BR4— IBR4—3BR5—2BR5—4 Avg |
[ F=1 |
MP-PSNRT[ 27.45 31.18 28.81 32.54 3243 3389 32.08 34.10 31.56]
IMW-PSNRY| 24.97 2846 2599 2894 2942 31.34 29.01 31.75 28.73
PSNRT | 20.32 22.87 2139 24.13 2516 2871 2557 29.62 24.72
SSIMT | 0.818 0.890 0.824 0.896 0.837 0.882 0.832 0.885 0.858
LOGST | 9.702 9.447 9706 9.533 9.680 9.653 9.551 9.482 9.594|
I B=5 |
MP-PSNRT[ 27.33  32.16 28.76 3330 3400 36.17 3436 36.64 32.84
IMW-PSNRY{ 25.07 29.26 2630 30.48 3096 3341 3098 33.75 30.03|
PSNRT | 24.97 30.64 2528 3071 2798 3090 27.76 31.90 28.77
SSIMT | 0.839 0.924 0.838 0.926 0.841 0.890 0.843 0.892 0.874
LOGST | 9.645 9.332 9.790 9.867 9.751 9.664 9.469 9.521 9.630|
I B =10 |
MP-PSNRT[ 27.14 32.10 28.75 33.06 33.49 3555 3379 36.01 32.49
IMW-PSNRY| 25.02 29.47 26.14 2997 30.18 32.55 3033 33.10 29.60|
PSNRT | 2501 30.54 2529 3043 2682 3092 27.64 31.58 28.53
SSIMT | 0.858 0.929 0.859 0.935 0.888 0.927 0.889 0.926 0.901
LOGST | 9.585 9.351 9.782 9.769 9.762 9.643 9.493  9.575 9.620)
TABLE IV

THE IMPACT OF THE PARAMETER Yy ON THE PERFORMANCE OF THE
PROPOSED CFFHNET. THE BEST PERFORMANCE IS HIGHLIGHTED

[ Seq. [BA4—IBA4—3BA5—2BA54BR4— IBR4—3BR5—2BR5—4 Avg |
[ ~ =0.01 |
MP-PSNRT| 27.18 31.83 2838 3355 34.07 3593 34.15 36.18 32.66|
IMW-PSNR1{ 25.07 28.98 26.06 3041 30.79 33.00 30.14 3325 29.71
PSNR1 2457 29.60 2548 30.86 27.19 30.24 28.38 32.50 28.60
SSIM T 0.850 0.927 0.855 0.934 0.899 0.930 0.901 0.932 0.900|
LOGST | 9.637 9366 9.599 9.299 9.872 9.863 9.476 9.109 9.530
| 5 =005 |
MP-PSNRT| 27.33  32.16 28.76 3330 34.00 36.17 3436 36.64 32.84
IMW-PSNR1( 25.07 29.26 2630 3048 3096 3341 3098 33.75 30.03
PSNRT 2497 30.64 2528 30.71 2798 3090 27.76 31.90 28.77
SSIM1 0.839 0924 0.838 0.926 0.841 0.890 0.843 0.892 0.874|
LOGST | 9.645 9.332 9.790 9.867 9.751 9.664 9.469 9.521 9.630|
| v =05 |
MP-PSNRT| 27.14 31.58 28.58 3332 34.03 36.01 34.10 35.93 32.59
IMW-PSNRT| 25.09 28.78 26.13 3052 30.86 3322 3056 32.85 29.75
PSNRT 2483 30.16 2539 31.32 2748 31.00 27.07 32.32 28.70
SSIM1 0.858 0.930 0.859 0939 0.898 0.929 0.896 0.931 0.900
LOGS?T | 9.702 9447 9.706 9.533 9.680 9.653 9.551 9.482 9.590|

and BR, respectively. The filling strategy I-based network, that
is, directly learns the filling process from the hole image to
its ground-truth image, achieves the MP-PSNR, MW-PSNR,
PSNR, SSIM and LOGS mean values of 32.70, 29.89, 28.58,
0.90 and 9.59, respectively. The proposed network based on
the filling strategy II, that is, repairing the hole regions by
learning the error map between the hole image and its ground-
truth image, outperforms the filling strategy I-based network
in the performance indicators MP-PSNR, MW-PSNR, PSNR
and LOGS. The reason may lie in that when learning the
projection from the hole image to its ground-truth image
directly, the hole-free regions may be degraded due to the
local connectivity and translation equivariance of convolution
operation. By contrast, defining the problem to be “Ijy. =
I+ 1Iya5i” greatly simplifies the learning task, where only the
residue (hole regions) are required to be focused on during the
inference.
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TABLE V

THE PERFORMANCE COMPARISON OF ISN, RSN, AND THE COMPLETE CFFHNET ON THE EVALUATION INDEXES PSNR, SSIM, MP-PSNR, MW-PSNR,
AND LOGS. THE BEST PERFORMANCE IS HIGHLIGHTED

Seq PSNRT SSIMT MP-PSNRT MW-PSNR?T LOGS?T
’ ISN RSN CFFHNet | ISN RSN CFFHNet | ISN RSN CFFHNet | ISN RSN CFFHNet | ISN RSN CFFHNet

BA4—1 | 2455 2453 24.97 0.820 0.816 0.839 2722 27217 27.33 25.03 25.03 25.07 9.637 9.633 9.645
BA4—3 | 30.28 2991 30.64 0911 0.907 0.924 32.09 32.03 32.16 29.18 29.11 29.26 9.346  9.460 9.532
BA5—2 | 24.66 24.83 25.28 0.811 0.803 0.838 28.74 28.69 28.76 26.26  26.25 26.30 9.766  9.764 9.790
BA5—4 | 29.63 29.74 30.71 0.915 0.902 0.926 3312 33.17 33.30 3036 30.36 30.48 9.853 9.850 9.867
BR4—1 | 2647 26.53 27.98 0.834 0.830 0.841 3333 3247 34.00 2991 29.23 30.96 9.737 9.697 9.751
BR4—3 | 30.62 30.36 30.90 0.876  0.869 0.890 35.55 3451 36.17 32.68 3191 33.41 9.625 9.619 9.664
BR5—2 | 27.49 27.10 27.76 0.838 0.827 0.843 3315 3224 34.36 29.96 29.17 30.98 9.429 9.428 9.469
BR5—4 | 31.20 31.17 31.90 0.878 0.870 0.892 3593 34.55 36.64 33.05 32.15 33.75 9.444  9.449 9.521

Fig. 7.

|
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An example of a phased visualization of our network learning. (a) is the input image (i.e., the hole image). (b) is the predicted residue I,,45r in

ISN. (c) is the base recovery result generated by ISN (i.e., Fig. 7 (a) - Fig. 7 (b)). (d) is the predicted residue I,,,,5¢ in RSN. (e) is the final recovery result

generated by RSN (i.e., Fig. 7 (c) - Fig. 7 (d)). (f) is the ground-truth image.

3) Parameter Sensitivity Analysis: For the inference sub-
network, the balanced weights of perceptual loss and adversar-
ial loss are referred to the pioneering study of GAN on image
reconstruction by setting to 1 and 10~3 (the parameter o) [31].
In our work, the weight parameter 8 of the content loss is set
to 5 to guarantee the consistency and facticity of the inferenced
contents. Additionally, we set the parameter 8 to another two
values 1 and 10, and train two models. The comparison results
on the test datasets are tabulated in Table III, showing that the
model with 8 to 5 gains the highest scores on average on the
evaluated indexes MP-PSNR, MW-PSNR, PSNR and LOGS.
A possible reason for the best performance achieved by the
model with 8 to 5 is that a larger weight of 8 may weaken the
inference capability of generator while a smaller value causes
the false content generation with worse consistency.

For the refinement sub-network, we adjust the weight value
of the edge-preservation loss by additionally setting the param-
eter y to 0.5 and 0.01 to train another two models. The
quantitative results are shown in Table IV, showing that the
model with the parameter y to 0.05 gains the highest scores on
average on the performance evaluation indicators. A possible
reason for the best performance achieved by the model with
y to 0.05 that a larger or a smaller value of the parameter y
will produce the over-sharp or over-smooth result.

4) Ablation Studies of Inference Sub-Network and Refine-
ment Sub-Network: We introduce ISN with the adversarial
learning to enhance the texture generation ability of our
method. After ISN, we further employ RSN to restrain noise
and refine contents with better fidelity and affinity. To further
analyze the reasonableness of the proposed two-stage learning
strategy, we respectively verify the performance of only ISN
or RSN architecture on MVD sequences BA and BR. The
training details of the ablation experiments are similar to
training the whole model. For the fair comparison, we trained

the ISN and RSN models with the same hyper-parameter
setting and the similar model parameters to the complete
CFFHNet. Table V shows the PSNR, SSIM, MP-PSNR, MW-
PSNR and LOGS values of the ISN, RSN, and complete
CFFHNet on 10 synthesized sequences. The best results are
highlighted in boldface. Experimental results show that the
complete CFFHNet performs better than the ISN and RSN,
indicating that the ISN and RSN can complementarily improve
the visual quality of the synthesized views.

For more convincing and better understanding to the
two-stage framework, we visualize the intermediate results,
including the predicted residue and the corresponding base
recovery result by ISN, as well as the refined components and
final result by RSN. As shown in Fig. 7, with the guidance of
the GAN loss and perceptual loss, ISN can infer photo-realistic
contents, but GAN-based model tends to generate results with
obvious noises and visual inconsistency to the ground truth.
Through the detail refinement of RSN, the final result enjoys
better fidelity and clarity with the supplementary of the refined
components.

5) Ablation Studies of the Proposed Training Data Gen-
eration Method: Here, we conduct ablation research on the
effectiveness of our training data generation method for view
synthesis. Compared with the warped data (the holes occurring
in disoclussion areas), we believe that using the data polluted
in the foreground and background intersection areas (as shown
in Fig. 6) is more beneficial to the ability of the hole-filling
network to suppress “foreground penetration” artifacts. To val-
idate this hypothesis, we compared the performance of the
hole-filling model trained by the proposed generated training
data with the hole-filling model retrained by the warped data
using MVD sequences. Table VI presents the performance
comparison of the above two models on sequences CH and PA.
The data for training model I is obtained from the proposed
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Fig. 8.
result by model II. (d) is the ground-truth image.

training data generation method. Model II is retrained from
2,000 hole images generated by MVD sequences (BA, BR,
DA, and CL) through 3D warping on the basis of model
I. From the experimental results, we can easily see that
model II, retrained with 3D warping data, has a decline in
six performance indicators, which directly demonstrates the
effectiveness of the proposed training data generation scheme
in the hole-filling of view synthesis. In addition, Fig. 8 shows
some hole-filling examples of the two models. The yellow
circle region has obvious “foreground penetration” artifacts,
which indicates that model II has weakened the suppression
ability of “foreground penetration” artifacts compared with
model I. The hole-filling model learned from our generated
training data performs better in subjective visual quality. Thus,
the proposed training data generation scheme is beneficial to
solve the “foreground penetration™ artifact introduced by hole
filling in view synthesis. Moreover, note that as described in
Section II-B, we improve the ability of the obtained hole-filling
model to suppress the “foreground penetration™ artifact (that
is, effectively protect image semantic information) in view
synthesis by combining the training data generation method
and the design of the hole-filling network. The first stage of
our hole-filling network repairs the synthesized images based
on the GAN. The second stage of our hole-filling network uses
CNN to fine-tune the output of the first stage network, which
mainly focuses on protecting the edges of synthesized images
constrained by edge loss. The two-stage sub-network’s coarse-
and fine-grained fusion modules integrate the global and local
contextual textures to protect the image semantic information
by using visual signals with different resolutions.

D. Objective Visual Quality Comparison

To verify the effectiveness of our CFFHNet, we collect
a large amount of traditional patch matching-based DIBR

Subjective visual quality comparisons of model I and model II. (a) is the hole image. (b) is the recovered result by model I. (c) is the recovered

TABLE VI

ABLATION EXPERIMENT RESULTS OF THE PROPOSED TRAINING DATA
GENERATION SCHEME

[ Sequence: CHO2, 11, 13, 22— 12 |

Metric | PSNRT  SSIM{ MP-PSNRT MW-PSNRt LOGS?  FDIJ
Model I | 2924 0939 34.94 31.09 9.646  10.746
Model I | 24.16  0.930 3293 30.75 9310 10.762

[ Sequence: CHO1, 02, 03, 11, 13, 21, 22, 23—12 |

Metric | PSNRT _ SSIM{ MP-PSNRT MW-PSNRT LOGST _ FDI|
Model T | 29.02  0.937 34.69 31.84 9.608 10727
Model I | 2899  0.934 3248 30.35 9.281  10.741

| Sequence: PA4, 5, 7, 8—6 |

Metric | PSNRT _ SSIM{ MP-PSNRT MW-PSNRT LOGST  FDI|
Model I | 3429 0964 38.92 3528 9401 10262
Model I | 3375 0957 38.71 34.83 9.152  10.291

[ Sequence: PA2, 3,4, 5,7, 8,9, 106 |

Metric | PSNRT  SSIM{ MP-PSNRT MW-PSNRf LOGSt  FDI|
Model T | 3677 0977 41.62 37.84 8988 10278
Model I | 3555  0.963 40.85 37.29 8414 10.285

methods and deep learning-based image inpainting methods
for comparison. The traditional patch matching-based DIBR
methods include Criminsi et al.’s method [14], Daribo et al.’s
method [15], Ahn et al.’s method [16], Zhu et al.’s method
[19]], Luo et al’s method [21], VSRS [58] and RVS [59].
Moreover, we select the GAN-based image inpainting algo-
rithms that are good at filling large-area irregular holes,
including Li et al.’s method [22] and Yu et al.’s method [26] as
the competing algorithms. These methods may effectively fill
the large-area irregular holes caused by the DIBR technique.
Table VII shows the average PSNR, SSIM, MP-PSNR, MW-
PSNR, LOGS and FDI values of our CFFHNet, the patch
matching-based DIBR algorithms, and the GAN-based image
inpainting algorithms on MVD sequences BA, BR and DA.



332

TABLE VII
OBJECTIVE VISUAL QUALITY EVALUATIONS OF OUR CFFHNET AND OTHER SOTA DIBR ALGORITHMS USING PSNR, SSIM, MP-PSNR, MW-PSNR,

LOGS AND FDI. THE BEST AND SECOND-BEST RESULTS ARE SHOWN IN BOLD AND UNDERLINED, RESPECTIVELY

Seq PSNRT SSIMt

’ Criminsi | Daribo | Ahn [ Zhu | Luo [VSRS| Li | Yu [ Pro. | Criminsi [ Daribo| Ahn | Zhu [ Luo [ VSRS| Li [ Yu | Pro.
BA4—1 22.76 22.56 |23.27|23.54 (2433 | 22.23 | 17.64 | 22.14 | 24.97 | 0.739 0.713 | 0.748 | 0.755 | 0.779 | 0.761 | 0.723 | 0.769 | 0.839
BA4—3 | 25.08 27.63 | 28.15|28.72 [ 29.31 | 25.93 | 29.26 | 25.84 | 30.64 | 0.839 0.835 | 0.847 | 0.850 | 0.859 | 0.851 | 0.885 | 0.861 | 0.924
BA5S—2 | 24.38 23.97 | 24.29 | 25.10 | 25.33 | 23.89 | 18.90 | 23.20 | 25.28 | 0.742 0.720 | 0.739 | 0.755 | 0.776 | 0.765 | 0.746 | 0.769 | 0.838
BA5S—4 | 26.56 29.60 | 30.54 | 31.93 | 32.06 | 27.60 | 29.02 | 26.45 | 30.71 | 0.847 0.845 | 0.855 | 0.863 | 0.866 | 0.858 | 0.888 | 0.866 | 0.926
BR4—1 25.87 26.92 | 2691 |27.07 | 27.59 | 27.03 | 27.76 | 21.76 | 27.98 | 0.764 0.764 | 0.774 | 0.775 | 0.788 | 0.781 | 0.822 | 0.752 | 0.841
BR4—3 | 29.74 30.20 |30.40 | 30.41 | 30.75 | 29.61 | 30.68 | 22.82 | 30.90 | 0.820 0.815 | 0.822 | 0.823 | 0.825 | 0.813 | 0.868 | 0.797 | 0.890
BR5—2 | 2623 27.55 | 27.32 | 27.66 | 28.55 | 26.40 | 28.16 | 21.89 | 27.76 | 0.766 0.768 | 0.774 | 0.776 | 0.789 | 0.761 | 0.821 | 0.752 | 0.843
BR5—4 | 30.24 30.86 | 30.27 | 31.14 | 31.62 | 30.25 | 31.08 | 23.46 | 31.90 | 0.822 0.818 | 0.823 | 0.823 | 0.821 | 0.813 | 0.870 | 0.803 | 0.892
DA1—5| 26.74 27.64 | 27.80 | 28.07 | 30.46 | 26.42 | 27.52 | 27.60 | 31.48 | 0.941 0.943 | 0.945 | 0.944 | 0.949 | 0.943 | 0.959 | 0.962 | 0.967
DA5—9 | 26.69 27.56 | 27.32|127.96 | 30.25 | 26.22 | 27.73 | 28.25 | 32.16 | 0.940 0.942 | 0.943 | 0.944 | 0.949 | 0.941 | 0.958 | 0.961 | 0.967
Average | 26.43 27.45 | 27.63 | 28.16 | 29.03 | 26.56 | 26.78 | 24.34 | 29.38 | 0.822 0.816 | 0.827 | 0.831 | 0.840 | 0.829 | 0.854 | 0.829 | 0.893
soq MP-PSNRT MW-PSNRT

’ Criminsi [ Daribo [ Ahn [ Zhu | Luo [VSRS| Li [ Yu [ Pro. | Criminsi [ Daribo [ Ahn | Zhu | Luo [VSRS| Li | Yu [ Pro.
BA4—1 27.31 26.48 | 27.50 | 27.67 | 28.13 | 27.26 | 25.96 | 26.05 | 27.33 | 24.17 23.62 | 24.72 | 24.53 | 25.24 | 24.80 | 24.29 | 23.28 | 25.07
BA4—3 | 30.57 31.04 | 31.44 | 31.85|32.24 | 32.10 | 32.01 | 30.26 | 32.16 | 27.15 28.07 | 28.62 | 28.52|29.58 | 29.18 | 29.20 | 27.16 | 29.26
BA5—2 | 28.30 27.70 | 28.05 | 28.45 | 29.06 | 28.52 | 26.92 | 26.63 | 28.76 | 24.98 24.41 | 24.62 | 25.14 | 25.68 | 25.43 | 24.32 | 23.58 | 26.30
BA5—4 | 3040 32.17 | 32.34 | 33.01 | 33.31 | 33.25 | 32.64 | 31.02 | 33.30 | 26.35 28.63 | 28.93|29.31|29.61 | 28.89 | 28.88 | 27.70 | 30.48
BR4—1 31.74 32.86 |33.19 | 31.75 | 33.74 | 33.50 | 33.47 | 31.17 | 34.00 | 28.34 29.41 | 29.85|27.86 | 30.24 | 30.03 | 30.05 | 27.65 | 30.96
BR4—3 | 35.65 35.92 | 35.73 | 34.59 | 35.73 | 35.54 | 35.40 | 32.04 | 36.17 | 32.60 32.67 | 32.62 | 30.88 | 32.69 | 32.55 | 32.46 | 28.68 | 33.41
BR5—2 | 3242 33.21 | 33.03|32.12 | 32.95 | 33.03 | 33.55 | 30.97 | 34.36 | 28.70 29.46 | 29.24 | 28.16 | 29.53 | 29.13 | 29.08 | 27.49 | 30.98
BR5—4 | 35.25 35.04 | 35.40 | 33.81 | 35.77 | 34.58 | 35.66 | 32.14 | 36.64 | 32.24 31.95 | 32.19 [ 29.91 | 32.58 | 31.27 | 32.27 | 28.93 | 33.75
DA1—-5| 29.94 30.55 | 30.71 | 26.53 | 32.19 | 29.74 | 30.10 | 31.71 | 33.01 | 27.07 27.46 | 27.68 | 23.42 | 28.65 | 27.05 | 27.99 | 27.71 | 32.69
DA5—9 | 30.23 30.78 | 30.82 | 30.73 | 32.60 | 29.91 | 29.84 | 31.90 | 33.18 | 27.27 27.50 | 27.26 | 27.71 | 29.30 | 27.12 | 28.28 | 28.51 | 31.67
Average | 31.18 31.58 | 31.82 | 31.05 | 32.57 | 31.74 | 31.56 | 30.39 | 32.89 | 27.89 28.32 | 28.57 | 27.54 | 29.31 | 28.55 | 28.68 | 27.07 | 30.46
Seq LOGST FDI|

’ Criminsi | Daribo [ Ahn [ Zhu | Luo [VSRS| Li [ Yu [ Pro. | Criminsi [ Daribo [ Ahn | Zhu | Luo [VSRS| Li | Yu [ Pro.
BA4—1 | 9.592 9.605 |9.600 | 9.590 | 9.793 | 9.598 | 9.521 | 9.546 [ 9.645 | 10.93 12.25 | 10.98 | 10.92 | 10.87 | 11.18 | 10.91 | 10.94 | 10.84
BA4—3 | 9.293 9.293 [9.599 | 9.297 | 9.596 | 9.286 | 9.268 | 9.294 | 9.532 | 10.84 11.32 | 10.87 | 10.88 | 10.77 | 10.85 | 10.87 | 10.83 | 10.78
BA5—2 | 9.669 9.660 |9.645 | 9.655|9.795 | 9.684 | 9.611 | 9.637 [ 9.790 | 10.83 11.97 | 10.89 | 10.86 | 10.74 | 11.15 | 10.86 | 10.85 | 10.75
BA5—4 | 9.070 9.025 [9.017 | 8.991 | 9.810 | 9.090 | 9.775 | 9.758 | 9.867 | 10.81 11.27 | 10.83 | 10.83 | 10.75 | 10.86 | 10.78 | 10.82 | 10.77
BR4—1 | 9.605 9.611 [9.603 | 9.605 | 9.717 | 9.633 | 9.638 | 9.663 | 9.751 10.84 10.99 | 10.69 | 10.64 | 10.84 | 10.70 | 10.92 | 10.90 | 10.69
BR4—3 | 9.522 9.535 [9.521 | 9.521 | 9.632 | 9.547 | 9.520 | 9.622 | 9.664 | 10.48 10.54 | 10.48 | 10.49 | 10.47 | 10.58 | 10.52 | 10.59 | 10.49
BR5—2 | 9.441 9.369 |9.453(9.461|9.460 | 9.417 | 9.220 | 9.339 [ 9.469 | 10.86 11.02 | 10.67 | 10.66 | 10.01 | 10.78 | 10.82 | 10.78 | 10.40
BR5—4 | 9.487 9.482 [9.458 19.482|9.581 | 9.414 | 9.230 | 9.294 | 9.521 | 10.59 10.69 | 10.58 | 10.52 | 10.57 | 10.66 | 10.64 | 10.60 | 10.59
DA1—5| 8.105 8.145 | 8.110 | 8.225 | 8.338 | 8.098 | 8.011 | 8.106 | 8.389 | 11.68 11.67 | 11.69 | 11.73 | 10.68 | 11.60 | 11.65 | 11.77 | 10.79
DA5—9 | 8.108 8.122 | 8.091 | 8.119 | 8.317 | 8.080 | 8.007 | 8.070 | 8.395 | 11.67 11.67 | 11.69 | 11.74 | 10.50 | 11.60 | 11.65 | 11.79 | 11.18
Average | 9.189 9.185 [9.210 | 9.194 | 9.404 | 9.185 | 9.180 | 9.233 [ 9.402 | 10.95 11.34 | 10.94 | 10.93 | 10.62 | 11.00 | 10.96 | 10.99 | 10.73

The best and second-best results are respectively highlighted
on red and blue. On sequences BA5—2, BA5—4, and
BR5—2, our proposed method has lower PSNR values than
the Luo’s method [21]. When the interval between the virtual
and reference viewpoints is smaller, the warped image contains
fewer holes. The temporal information-based DIBR method
[21] can utilize more useful information to fill the holes, which
makes the visual quality of the rendered image higher. When
the virtual viewpoint is far from the reference viewpoint, the
warped image contains numerous holes. Hence, there are little
visible areas to be utilized for temporal information-based
DIBR methods [19], [21], which limits the superiority of the
DIBR algorithms based on video sequence over the single
frame-DIBR algorithm. The PSNR results in Table VII show
the performance of the proposed algorithm outperforms other
competing DIBR algorithms on the MVD sequences with a
large distance between the virtual and reference viewpoints,
i.e., BA4—1, BR4—1, DA1—5, and DA5—9. Notably that
the average SSIM values of our proposed method are the best
on all test MVD sequences. This is also because SSIM focuses

on perceiving the structural information of images, and we also
adopt edge loss to constrain the structure of DIBR-synthesized
views.

On sequences BR and DA, the proposed CFFHNet out-
performs all competing methods on the evaluation metrics
MP-PSNR and MW-PSNR. The MP-PSNR and MW-PSNR
values obtained by the proposed method on sequence BA are
also second only to the Luo et al.’s hole filling method based
on temporal information. In addition, the overall performance
of the proposed method is better than the competing methods
in terms of the mean values of MP-PSNR and MW-PSNR on
sequences BA, BR, and DA. On the evaluation index LOGS,
the proposed method performs best on sequences BAS—4,
BR4—1, BR4—3, BR5—2, DA1—5 and DA1—5. The mean
LOGS values obtained by the proposed method on sequences
BA, BR and DA are also second only to Luo et al.’s method.
On the evaluation index FDI, Luo et al.’s method shows the
best comprehensive performance on sequences BA, BR and
DA, which indicates that filling hole regions based on temporal
information can effectively protect temporal consistency of
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TABLE VIII

PERFORMANCE COMPARISONS OF OUR CFFHNET AND THE RVS ALGORITHMS ON MVD SEQUENCES PA, CL AND CH. THE BEST AND SECOND-BEST
RESULTS ARE SHOWN IN BOLD AND UNDERLINED, RESPECTIVELY

Seq PSNR?T SSIMT MP-PSNR?T
Li Yu RVS Pro. Li Yu RVS Pro. Li Yu RVS Pro.
PA3, 4, 6, 75 32.17 3258 35.12 3682 | 0939 0936 0945 0978 | 39.17 38.60 40.04 41.73
PA4, 5,7, 8—6 3031 3146 32.81 3429 | 0918 0.906 0926 0.964 | 36.34 35.75 37.77 38.92
PAS, 6, 8, 9—7 27.19 2727 2949 3036 | 0.867 0.864 0.887 0932 | 3244 32.46 33.37 34.45
CL3, 4, 6, 7—5 33.04 3354 3495 36.64 | 0934 0932 0941 0973 | 37.14 37.20 38.30 40.00
CL4, 5,7, 8—6 30.12 3098 3190 3338 | 0918 0916 0929 0.958 | 34.28 34.17 35.25 36.37
CLS, 6, 8, 9—7 28.05 2874 29.62 3049 | 0.887 0.889 0.894 0938 | 31.98 31.76 32.99 34.07
CHO1, 10, 12, 21—11 25.63 25.69 26.02 27.01 | 0.867 0.868 0.872 0.886 | 31.30 31.60 34.57 35.89
CHO02, 11, 13, 22—12 27.66 28.06 28.25 29.24 | 0907 0.905 0915 0939 | 31.01 31.68 33.62 34.94
CHO3, 12, 14, 23—13 2325 2378 24.84 2648 | 0.879 0.876 0.892 0.881 | 31.16 31.47 32.24 34.62
Average 28.86 29.12 30.33 31.64 | 0902 0.899 0911 0939 | 33.87 33.85 35.35 36.78
PAl, 2, 3,4, 6,7, 8, 95 3483 3526 35.68 3743 | 0947 0.941 0951 0.981 | 39.38 39.52 40.55 42.56
PA2,3,4,5,7,8,9, 106 3437 3448 3495 36.77 | 0933 0939 0945 0977 | 37.14 37.80 3891 41.62
PA3,4.,5,6,8,9, 10, 117 3134 3192 3222 33.60 | 0902 0.903 0913 0957 | 31.19 32.13 34.13 35.51
CLl, 2,3,4,6,7, 8,95 3392 34.16 35.00 36.72 | 0931 0935 0944 0970 | 37.12 37.26 38.19 40.19
CL2, 3,4,5,7,8,9, 10—6 31.86 32.64 33.87 3556 | 0928 0.930 0941 0.969 | 34.98 35.04 36.18 38.77
CL3,4,5,6,8,9, 10, 117 30.78 31.84 3230 33.58 | 0.892 0.896 0907 0.951 | 32.08 32.16 33.80 35.05
CHO0, 01, 02, 10, 12, 20, 21, 22—11 | 25.58 26.38 27.95 2893 | 0.896 0.894 0916 0.920 | 31.38 31.99 35.23 35.56
CHO1, 02, 03, 11, 13, 21, 22, 23—12 | 26.29 26.60 28.04 29.02 | 0.896 0.897 0917 0937 | 31.63 31.96 34.35 34.69
CHO2, 03, 04, 12, 14, 22, 23, 24—13 | 23.90 2454 2493 26.51 | 0.879 0.877 0.895 0.883 | 31.46 31.89 32.23 34.60
Average 30.32 30.87 31.66 33.13 | 0911 0912 0925 0.949 | 34.04 34.42 35.95 37.62

MW-PSNRT LOGS?T FDIL|

Li Yu RVS Pro. Li Yu RVS Pro. Li Yu RVS Pro.
PA3, 4, 6, 75 3423 3326 36.60 3892 | 9215 9.205 9.369 9.398 | 10431 10422 10.325 10.325
PA4, 5,7, 8—6 3391 32.88 3437 3528 | 9303 9.315 9437 9401 | 10297 10.291 10.276 10.262
PAS, 6, 8, 9—7 30.38 3044 31.21 3225 | 9217 9.206 9.397 9.237 | 10351 10.359 10.305 10.305
CL3, 4, 6, 7—5 3326 3439 35.18 3749 | 9336 9.340 9.498  9.520 | 10.453 10.498 10.305 10.305
CL4, 5,7, 8—6 32.06 3227 33.14 34.05 | 9301 9293 9491 9413 | 10401 10.398 10.299 10.298
CLS, 6, 8, 9—7 28.36 2848 2933 30.37 | 9.012 8996 9.353 9.128 | 10.509 10.513 10.400 10.401
CHO1, 10, 12, 21—11 27.03 27.22 2832 2871 | 9419 9427 9.511 9482 | 10.778 10.749 10.542 10.542
CHO02, 11, 13, 22—12 30.28 3093 31.08 31.09 | 9482 9.508 9.674 9.646 | 10.753 10.756 10.742 10.746
CHO3, 12, 14, 23—13 28.06 28.01 28.68 29.08 | 9.165 9.181 9.529 9.372 | 10.792 10.798 10.700 10.693
Average 30.84 30.88 31.99 33.03 | 9272 9.275 9473 9400 | 10.529 10.532 10.433 10.430
PAl, 2, 3,4, 6,7, 8, 95 3648 3624 3699 39.51 | 9.115 9.131 9335 9.385 | 10515 10.521 10.318 10.315
PA2,3,4,5,7,8,9, 106 35.02 3547 36.05 37.84 | 8881 8.875 9.169 8.988 | 10386 10.391 10.284 10.278
PA3,4,5,6,8,9, 10, 117 31.33 3126 32.26 33.60 | 8848 8.853 9.254 9.029 | 10395 10.391 10.280 10.281
CLl, 2,3,4,6,7, 8,95 3403 34.14 3526 37.55 | 9501 9.543 9.796 9.761 | 10.397 10.389 10.280 10.281
CL2,3,4,5,7,8,9, 10—6 3398 34.16 35.04 36.70 | 8970 8.981 9.493 9.190 | 10396 10.398 10.297 10.296
CL3,4,5,6,8,9, 10, 117 28.17 2843 29.77 31.02 | 8.866 8.847 9.273 9.060 | 10.391 10.385 10.266  10.265
CHO0, 01, 02, 10, 12, 20, 21, 22—11 | 28.08 28.92 30.70 31.07 | 9.429 9.423 9.649 9.603 | 10.736 10.850 10.500 10.501
CHO1, 02, 03, 11, 13, 21, 22, 23—12 | 30.95 29.19 31.80 31.84 | 9473 9434 9.638 9.608 | 10.744 10.775 10.725 10.727
CHO2, 03, 04, 12, 14, 22, 23, 24—13 | 27.03 27.58 28.75 29.12 | 9.282 9.253 9.544 9.385 | 10.786 10.783 10.679 10.676
Average 31.67 31.71 3296 3425 | 9.152 9.149 9461 9.334 | 10.527 10.543 10.403 10.402

the synthesized sequences. Pleasingly, the proposed method,
filling the holes based only on the contextual texture relation-
ship of the synthesized image itself, performs overall second
only to Luo et al.’s method in terms of temporal consistency.
In summary, the performance of the proposed single-frame-
based hole-filling method is very close to that of the temporal
information modeling-based hole filling method designed by
Luo et al. in terms of DIBR-synthesized image/video quality
evaluation metrics.

Compared with MVD sequences BA, BR and DA,
sequences PA, CL and CH have more complex texture and
accurate depth information. To this end, Table VIII further
compares the performance of the proposed CFFHNet, RVS,
Li et al.’s method and Yu et al.’s method on sequences PA,
CL and CH. The RVS is a well-performing view synthesis
algorithm at present, which replaces the VSRS into the latest

MPEG-I standard. As described in the literature [59], the
RVS method performs better on four inputs and eight inputs
than the current mainstream view synthesis algorithms based
on machine learning and non-machine learning. Therefore,
we test the experimental results of view synthesis with four
and eight reference views as input, which can effectively verify
the effectiveness of the proposed CFFHNet. From Table VIII,
we can easily see that the proposed CFFHNet performs better
than the RVS method on the first type of general-purpose
evaluation metrics (i.e., PSNR and SSIM). Especially on
SSIM, this is because our sub-network RSN of CFFHNet
focuses more on the inference of the overall structure of
the synthesized image. On the second category of evaluation
metrics for DIBR-synthesized images, the average MP-PSNR
and MW-PSNR values obtained by our method are about
1.5 dB higher than that of the RVS method, but our method
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Daribo Ahn
Fig. 9. Subjective visual quality comparisons for BA4—1 and BA4— 3. The first and second rows are the images contained in sequence BA4— 1. The third
and fourth rows are the images contained in sequence BA4— 3. The fifth and sixth rows are the images contained in sequence BR4—3. The seventh and
eighth rows are the images contained in sequences DA5—9 and DA1— 5, respectively.

IWarped Criminsi

is slightly weaker than the RVS method on LOGS. In the
third category of DIBR-synthesized video quality evaluation
metric FDI, our proposed method is very close to the FDI
values obtained by RVS, i.e., the performance of our proposed
method is very close to the RVS algorithm in terms of temporal
consistency. Li et al’s method and Yu et al.’s method are
inferior to RVS and the proposed CFFHNet in the six objective
visual quality assessment criterion. In summary, this paper still
achieves competitive performance on MVD sequences with
complex textures. In addition, combined with Table VII and
Table VIII, we find that the proposed method performs better
in temporal consistency for sequences PA, CL and CH than
for sequences BA, BR and DA. This result indicates that more
accurate depth information is very beneficial to enhance the
visual effect of viewpoint synthesis.

E. Subjective Visual Quality Comparison

Fig. 9 shows the subjective visual quality comparisons for
the MVD sequences with different distances between the
virtual and reference viewpoints. The Criminsi et al.’s method
[14], Daribo et al.’s method [15], Ahn et al.’s method [16],
VSRS [58], Li et al.’s method [22], and Yu et al.’s method
[26] all mistakenly fill the foreground texture into the hole
regions, resulting in the “foreground penetration” artifacts.
Subject comparison results show that our proposed method
can restrain noise and preserve sharp edges more successfully
than other competing DIBR methods. However, our method is
not natural enough to deal with the boundaries between the

VSRS Ground-truth

hole and visible areas. In fact, besides Ahn et al.’s approach,
other DIBR methods leave traces at the boundaries of the
hole and visible regions. The Ahn et al.’s method introduces
depth information to weaken the filling traces at the boundaries
of the hole and visible areas. Since the performance of the
depth estimation approach is not robust, the Ahn et al.’s
method still produces the “foreground penetration” artifacts,
such as the sequences BA4—1 and DA1—5 obtained by
Ahn et al’s algorithm in Fig. 9. Compared with BA4—1,
the filling traces of the Zhu et al’s method [19] and Luo
et al.’s method [21] on BA4— 3 are much weaker. Thus, when
the distance between the virtual and reference viewpoints is
small, utilizing multi-frame information can effectively reduce
the filling traces. However, the Zhu et al.’s method and Luo
et al.’s method need to adopt the background texture of the
whole video sequence to fill the hole areas, and so these
DIBR methods are difficult to apply in real-time application
scenarios. In addition, due to the inaccurate segmentation of
foreground and background, the hole filling algorithms based
on temporal background information modeling still have a
chance to fill the foreground texture into the background
area, as shown in the sequence BR4—3 generated by Zhu
et al.’s method. Fig. 10 shows the visual quality comparison
of the proposed method against the ground-truth and the RVS
software. The synthesized images and its ground-truth are
derived from the synthesized sequence CH 00, 01, 02, 10, 12,
20, 21, 22— 11 and CH 11, respectively. From Fig. 10, it can
be observed that the proposed method and the RVS method
perform very closely in the subjective visual quality, and both
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Fig. 10. Visual comparison of our method against ground truth and the RVS
Software. We use a yellow rectangular box to mark the area with significant
differences and make a local enlargement.

are very close to the ground-truth. Fig. 11 shows the visual
comparisons of the proposed and some SOTA methods on the
translucent object filling. The competing methods employed
are the deep learning-based image inpainting algorithms of Li
et al. [22] and Yu et al. [26] and the Luo et al.’s algorithm [21],
which performs similarly to the proposed algorithm. The red
rectangular box areas are the regions where the filling quality
of the competing algorithms is obviously inferior to that of the
proposed method. Experimental results show that the proposed
hole-filling method can also deal with complex samples such
as transparent objects well.

FE. Running Speed Comparison

For fairness, we compare the running speed of our CFFHNet
with the deep learning-based image inpainting algorithms pro-
posed by Li et al. [22] and Yu et al. [26]. The test environments

Input

Fig. 11. Visual comparison of the proposed method, Li et al. ‘s method [22],
Yu et al.” s method [26], and Luo et al. ’s method [21] for filling transparent
objects.

are AMD Ryzen Threadripper 2950X CPU and one NVIDIA
GTX 2080Ti GPU. Li et al.’s method, Yu et al.’s method and
the proposed CFFHNet require 0.90 seconds, 1.03 seconds
and 0.24 seconds, respectively, to test an RGB image with the
resolution of 1024 x 768. Besides the performance superiority,
our CFFHNet also enjoys faster inference speed over the
competing methods.

V. CONCLUSION

In this paper, we have proposed a coarse and fine-grained
hierarchical network (CFFHNet) for hole filling in view
synthesis. The proposed CFFHNet fills the irregular holes
produced by view synthesis with the spatial contextual corre-
lation in a visually plausible manner. The spatial contextual
correlation is extracted by using recurrent calculation. The
hierarchical structure and attention mechanism are introduced
to lead the fine-grained fusion of the spatial contextual cor-
relations at different spatial scales, which fuses low-level
visual features and high-level semantic features to fill the
irregular holes. We introduce a two-stage learning framework
to ensure the affinity and fidelity between the hole and visible
areas of the synthesized view. Extensive experiments verify
the superiority of the proposed CFFHNet over the state-of-
the-art hole filling algorithms for view synthesis. Our future
work further utilizes depth information and adjacent frames
to improve the visual quality of the synthesized view while
removing filling traces. Moreover, due to the limitation of
GPU’s memory, existing works usually only train hole filling
models with low-resolution images, which can easily lead to
deep learning-based hole filling models that may introduce
blur effects in local areas of synthesized images. It is also of
great significance to carry out research to address this issue in
the future work.
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