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Inverse-like Antagonistic Scene Text Spotting via
Reading-Order Estimation and Dynamic Sampling
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Abstract—Scene text spotting is a challenging task, especially
for inverse-like scene text, which has complex layouts, e.g., mir-
rored, symmetrical, or retro-flexed. In this paper, we propose a
unified end-to-end trainable inverse-like antagonistic text spotting
framework dubbed IATS, which can effectively spot inverse-like
scene texts without sacrificing general ones. Specifically, we pro-
pose an innovative reading-order estimation module (REM) that
extracts reading-order information from the initial text boundary
generated by an initial boundary module (IBM). To optimize
and train REM, we propose a joint reading-order estimation loss
(L rE) consisting of a classification loss, an orthogonality loss, and
a distribution loss. With the help of IBM, we can divide the initial
text boundary into two symmetric control points and iteratively
refine the new text boundary using a lightweight boundary
refinement module (BRM) for adapting to various shapes and
scales. To alleviate the incompatibility between text detection
and recognition, we propose a dynamic sampling module (DSM)
with a thin-plate spline that can dynamically sample appropriate
features for recognition in the detected text region. Without extra
supervision, the DSM can proactively learn to sample appropriate
features for text recognition through the gradient returned by the
recognition module. Extensive experiments on both challenging
scene text and inverse-like scene text datasets demonstrate that
our method achieves superior performance both on irregular and
inverse-like text spotting.

Index Terms—Scene text spotting, inverse-like scene text,
reading-order estimation, dynamic sampling

I. INTRODUCTION

EXT spotting aims to localize and recognize text in

images. It has received ever-increasing attention for its
extensive real-world applications, such as vehicle intelligence
and road sign recognition in autonomous driving. Although
text spotting has made significant progress recently, existing
methods still face challenges in recognizing text with complex
layouts, such as arbitrary orientations or shapes [11, [2], [3],
[4]], [5]. To address these problems, existing text spotting
frameworks propose the Masked Rol [1]], [6], [7] and Thin
Plate Spline (TPS) [8], [3]], [9] strategies. Masked Rol based
methods allow for the suppression of background information,
as shown in Fig. [I] (al-a2), but they still struggles with
irregular texts. TPS based methods can transform irregular
texts into horizontal texts by symmetrical boundary points, as
seen in Fig. 1| (b1-b3), but they also suffers from the accuracy
of detected boundaries.
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Fig. 1. Tllustrations of different text feature sampling methods: (a) Masked

Rol: a shape mask is used to formulate text regions, while background noise
can be suppressed; (b) TPS without reading-order: the text is transformed into
a horizontal region using boundary control points to generate fixed sample
grids; (c) TPS with reading-order; (d) DSM with reading-order.

In text spotting, two critical problems still require further
improvement. Firstly, the crucial reading-order information is
not fully explored for the recognizer to decode text characters
in the correct sequence. Although many existing datasets
follow the text reading direction, most ignore this issue, except
Text Perceptron [8] and PGNet [[L0]. However, these two ap-
proaches only use information pointing to the head and tail of
text, which in some cases (as shown in Fig. [[(al)) cannot fully
reflect the reading-order. Inverse-like texts are universal and
appear mirrored, symmetrical, or retroflexed. Simply clipping
the detection result of such exceptional text makes recognition
difficult, as shown in Fig.[I] (al-a3). Suppose the network can
fully excavate and learn the reading-order information hidden
in the training samples labeled with the reading direction. In
that case, the reading-order information will suitably align
the text for better recognition. The second issue is that text
recognition accuracy is heavily dependent on the precision
of detection, resulting in potential error propagation from
detection to recognition, as pointed out in previous studies
[L1], [12]. Current methods [IL]], [8]] generally adopt inflexible
sampling strategies that rely on fixed sampling grids manually
determined by detection boundaries or segmented masks. As
a result, when detection accuracy is compromised or sampling
features are inadequate, the recognizer may fail in decoding
the correct sequence, as shown in Fig. [T] (c1-c3). Therefore,
exploring an adaptive dynamic feature sampling approach that
can improve recognition performance is nontrivial, especially
in challenging scenarios where detection accuracy is limited.
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Fig. 2. Comparison of TPS and DSM.(a) Boundary control points with
reading-order; (b) TPS: generating a fixed and regularly sampling grids
heavily relay on control points; (c) DSM: dynamically generating adaptive
sampling grids through self-adjustment with recognition model; (d) Visual
comparison of sample grids for TPS and DSM.

In this paper, we propose a unified end-to-end trainable
inverse-like antagonistic text spotting framework (dubbed
IATS), which can effectively spot inverse-like scene texts
without sacrificing general ones following human reading
habits. Specifically, we propose an innovative reading-order
estimation module (REM) that extracts reading-order infor-
mation from the initial text boundary generated by an initial
boundary module (IBM). As shown in Fig. 2] (a), the reading-
order estimation module (REM) based on a circular convolu-
tion network can accurately estimate four key corner points on
the coarse initial boundary. To ensure the reliability of REM,
we propose a novel joint reading-order estimation loss (Lrf)
to optimize and train REM, which includes a classification
loss, an orthogonality loss, and a distribution loss. According
to the predicted reading-order, we divide the initial text bound-
ary into two symmetric boundary control points and use a
lightweight boundary refinement module (BRM) to iteratively
refine them to adapt to the diversity of text shapes and scales.
To further alleviate the incompatibility between detection and
recognition, we propose a novel dynamic sampling module
(DSM) with thin-plate spline, which is used to dynamically
sample features in the detected text region for recognition.
During training, DSM can actively learn how to dynamically
sample optimal features through the gradient returned by the
recognition module without extra supervision. Benefiting from
the DSM, our method can recognize text instances accurately
even if detected text boundaries are not perfect, as shown in
Fig. [1] (d1-d3). Extensive experiments on challenging scene
text (Total-Text, CTW-1500, and ICDAR2015) and inverse-
like scene text datasets (Rot.Total-Text, and Inverse-Text)
verify that our method achieves superior performance both on
irregular and inverse-like text spotting tasks.

Overall, our main contributions are summarized as follows:

o« We propose a unified end-to-end trainable inverse-like
antagonistic text spotting framework (dubbed IAST),
which can effectively spot inverse-like scene texts without
sacrificing general ones.

o We propose an innovative reading-order estimation mod-
ule (REM) with a joint reading-order estimation loss
(LgrEp) to fully learn and excavate the key reading-order
information in text boundaries.

o We propose a dynamic sampling module (DSM), which

can adaptively learn how to dynamically sample appropri-
ate features in detected text regions through the gradient
returned by the recognition module.

« Extensive experiments verify that our method achieves
competitive results in scene text spotting benchmarks and
also significantly surpasses previous methods in spotting
irregular and inverse-like scene text.

II. RELATED WORK
A. Text Detection

Traditional deep learning-based text detection methods [[13]],
[L4], [15], [L6], [L7], [18], [19] mainly focus on multi-oriented
texts. Anchor-based methods [13] adopt rotated anchors and
RRol pooling for detecting multi-oriented texts. Anchor-free
methods [16] directly regress the offsets from boundaries
or vertexes to the current point for detecting texts. Some
methods [14], [20] try to design a hidden anchor mechanism
to integrate the advantages of the anchor-based method into
the anchor-free method. Recently, a series of text detection
methods have been proposed for detecting irregular text. The
Connected Component (CC) based methods [21], [22] usually
detect individual text parts or characters first, followed by a
link or group post-processing procedure for generating final
texts. Segmentation-based methods [23[], [[L7] use instance
segmentation to detect arbitrary shape text and design different
schemes to separate adjacent text instances. But, segmenta-
tion accuracy significantly determines the quality of detected
boundaries. Contour-based methods [24]], [25], [26l], [27], [28]
resort to modeling the text boundary for better representation
of arbitrarily-shaped texts.

B. Text Recognition

Scene text recognition involves recognizing texts in a
cropped image. Traditional methods [29], [30] rely on
character-level annotations for character detection, while meth-
ods [31l], [32] extract features from line-level text using
CNN and RNN, and use a CTC-based decoder for prediction
alignment. However, these methods are designed for regular
text recognition and struggle with irregular text. To address this
problem, Shi et al. [33] propose a rectification network with
STN for arbitrary shape text, while Litman et al. [34] use TPS
and selective attention decoder for visual and contextual fea-
tures. CharNet [35] uses a Character-Aware Neural Network
to detect characters first and then separately transform them
into a horizontal one. AON [36] extracts features with four
directions and character position clues, while SAD [37]] applies
a 2D-attention mechanism to catch irregular text features,
both achieving impressive results. To address the attention
drift issue, RobustScanner [38] design a position enhancement
branch in the recognition model. In addition, some methods
use semantic segmentation to assist in text recognition.

C. Text Spotting

Traditional text spotting methods [39], [40] perform text
detection and recognition as two separate steps. Generally,
a text detector extracts regions of interest (Rol), which are
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Fig. 3. Overview of the proposed framework. The orange lines indicate the detection flow, and the blue lines indicate the recognition flow. The predictions

of the different modules are also visualized in the origin image.

then fed into a recognition model. However, recent end-to-
end text spotting approaches [41], [42], [43], [8] have con-
firmed that detection and recognition tasks are highly relevant
and complementary to each other. By sharing features and
jointly optimizing the modules [41], [44] in a unified end-to-
end trainable network, they achieved improved detection and
recognition performances simultaneously.

Recently, several methods [2]], [45], [43l], [6], [1], [46], [LO],
[27], [47], [48], [49], [50] have been proposed to address
arbitrary shape text spotting. Mask TextSpotter [6] and PAN++
[1] use Rol Masking to focus on the arbitrarily shaped
text region. MANGO [4] uses a Mask Attention module to
retain global features for multiple instances but still requires
centerline segmentation to guide the grouping of the predic-
tions. Boundary TextSpotter [45] and TPSNet [9] localize the
boundary points of text instances and rectify the features using
Thin-Plate-Spline before feeding them into the recognition
branch. CRAFTS [46] uses character region maps supervised
by character-level annotations to help the attention-based rec-
ognizer attend to precise character center points. PGNet [10]
transforms the polygonal text boundaries to the centerline,
border offset, and direction offset and performs multi-task
learning for these objectives. Inspired by Pix2Seq [51], some
methods, such as TESTR [47]], TTS [52], and SPTS [48]], use
a network combining CNN and Transformer that tackles text
spotting as a sequence prediction task, similar to language
modeling. However, these methods usually require extensive
computing and data resources.

Although the text spotting methods (e.g., ABCNet [43],
[53], TESTR [47] and SwinTextSpotter [54]) have achieved
great improvement for arbitrarily shaped text spotting, they
still suffer from inverse-like text because of the absence
of key reading-order information. However, the reading of
inverse-like scene text is important, even though it has just

been noticed in DPText [27]. The other problem is that
the reading performance of these methods also suffers from
the accuracy of detected boundaries because of fixed feature
sample. In this paper, we aim to effectively spot inverse-like
scene texts without sacrificing general ones. Hence, we design
a reading-order estimation module and a dynamic sampling
module, which greatly improves the accuracy of inverse-like
text spotting without losing generality.

III. PROPOSED METHOD
A. Overview

The framework of our method presented in Fig. [3] mainly
consists of six components: feature extraction module, init
boundary module (IBM), reading-order estimation module
(REM), boundary deformation module, dynamic sampling
module (DSM), and text recognition module. The feature ex-
traction module extracts features from input images for the text
detection and recognition tasks. To preserve spatial resolution
and utilize multi-level information, we use a multi-level feature
fusion strategy similar to [53]]. As noted in [435]], the two tasks
have different requirements for feature maps. Specifically, the
recognition task needs more detailed information for character
sequence prediction, while the detection task focuses on the
whole text instance. Therefore, we use lightweight convolu-
tions to separate the detection and recognition features.

B. Initial Text Boundary

The initial boundary module generates rough text bound-
aries to locate text instances. Similar to [25]], [28]], our module
consists of multi-layer dilated convolutions, including two
3 x 3 convolution layers with different dilation rates and
one 3 x 3 convolution layer, as illustrated in Fig. d{a). It
uses shared detection features to provide prior information for
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Fig. 4. (a) Architecture of initial boundary module; (b) The generation of
initial text boundaries.

text location. The prior information can be in the form of
field information such as classification, distance, and direction
in[25]], [28], probability maps in DB [56], or text kernels in
PSENet [57] and PAN [58]. Using the prior information, we
can obtain the text segmentation and generate a coarse text
boundary, as shown in Fig. [d(b). The accuracy of these text
boundaries is not deterministic, as they are only used as initial
information and will be refined in our method.

C. Reading-Order Estimation

The reading-order is crucial for accurate understanding
and recognition of text sequences. In existing text detection
datasets, the annotation of text detection follows the reading
direction of human beings, as it aligns the text features suit-
ably for better recognition. However, the implicit learning of
reading-order can degrade the detector’s robustness, resulting
in false positives and jagged edges, as shown in Fig. ] (b).
Even with extensive training with rotation augmentations,
the detector still struggles to learn correct reading-orders, as
shown in Fig. 3] (c).

Learning reading-order explicitly is rare in existing meth-
ods, except for Text Perceptron [8] and PGNet [10]. Text
Perceptron uses order-aware segmentation to indicate the head
and tail of text instance, while PGNet extracts the text reading-
order using TDO maps, as shown in Fig. El (d) and (e).
However, both methods only consider the order of information
from the head to tail, neglecting the top and bottom. In some
cases, this imperfect reading-order fails to reflect the actual
case, such as inverse-like text, which may occur in natural
images with more complex layouts like mirror, symmetry, or
inversion, efc.. In these cases, simply clipping the detection
results with an artificial or imperfect reading-order disturbs
recognition, as shown in Fig. [T] (al-a3) or Fig. ] (b-e).

To fully explore the reading-order information of humans
hidden in annotations [27], we design a reading-order esti-
mation module (REM) to accurately learn the text reading-
order information. In detection tasks, text instances are typ-
ically found in long strips, with two long edges in the text
boundary, as noted in [59], [27]. Hence, we adopt four key
corners at both ends of the text’s long side to indicate the
reading-order, as depicted in Fig. |§| (®). In this work, we
tackle the problem of reading-order estimation by treating

@)

Fig. 5. (a) The original label form of text boundary implies the reading-
order. (b) The original label form induces the detector to implicitly learn the
reading order, resulting in false positives and jagged edges. (c) Even with
extensive rotation augmentation during training, the detector still can’t learn
the reading-order well. (d) Text Perceptron [] uses order-aware segmentation
to indicate the head and tail of text instances and capture latent reading-
orders. (e) PGNet uses text direction offset (TDO) maps to extract the text
reading-order. (f) Our method uses the four key corners on the text boundary
to indicate the reading-order.
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Fig. 6. (a) The structure of Reading-order Estimation Module (REM). (b)
The adjustment process of the initial boundary with predicted reading-order.

it as a classification task. Our approach involves a reading-
order estimation module (REM) that identifies whether each
point on the initial boundary belongs to one of the four key
corners. Specifically, we employ a “CirConv” block, a fusion
block, and a prediction head (as depicted in Fig. |§| (a)) to
construct REM. The “CirConv” block consists of four circular
convolution layers with different dilation rates (e.g., [1, 1, 2,
4]) to enhance REM’s information aggregation capability. We
use dense shortcut connections across all layers to improve
the interaction between each layer [60]. The fusion block
uses a Ix1 convolution layer and max pooling to merge
information in the “CirConv” block. Then, the deeply fused
features are distributed to each initial boundary point by con-
catenating their features. Finally, three 1x 1 convolution layers
with ReLU activation and sigmoid generate the classification
information ([rq, 71,72, 73]) for each initial boundary point.
To enable batch processing and avoid missing key corners
due to a large sampling interval, we sample 2K vertices
(P =py,..sPi, Do, ) for each initial text boundary, form-
ing a closed contour (as shown in Fig. [6| (b)-(1)). Circular
convolution will encode the cyclicity of points along the closed
contour effectively, building on the success of DeepSnake
[61]. However, an excellent network structure is not sufficient
to learn the correct reading-order, as the input information
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Fig. 7. (a) The 2K control points on detected text boundary, where red points represents normal control points, and non-red points (yellow, green, blue, and
purple) represent four key corners for reading-order. (b)-(c) The distribution of key corners in these 2K control points can be divided into two different types
when these control points are arranged into a one-dimensional sequence. The wave with same color indicate the key corner located on the same long side,

such as yellow and green, blue and purple.

also plays a decisive role. To ensure REM obtains more
reliable information to accurately estimate the reading-order,
the input feature F.(i) consists of geometric attributes (Fy (1))
of vertex p;, visual features (Fy(4)), and order embedding
features (F,(¢)) of the initial boundary.

The geometric attributes (F, (7)) of vertex p; includes cosine
(cos(6;)) of angle, coordinates (Ax;, Ay;) relative to the initial
boundary centroid (x.,y.), and distance (d;) relative to the
(¢, ye). Thus, the geometric attributes (Fy(z)) of vertex p;
can be formulated as

Fy(1) = [cos(0;), d;, Ax;, Ays), (D
The cosf; can be calculated as

—
PiPiyq1 "PiDPiy

——— T, 2
P | PP

cosb; =

where the angle () of vertex p; is defined as the angle between
vector p,p,,; and p,p, |, as shown in Fig. |§| (b)-(1). The
(¢, yc) is the centroid of the initial boundary, formulated as

2K—-1

(rerte) = (5 3

=0

2K—-1

1
migggw, 3)

After we get the (z., y.), the coordinates (Ax;, Ay;) and the
distance (d;) of vertex p; can be calculated as follows:

) N LTy —Te Yi — Ye
(Axh Ayl) ( w 9 h )7 (4)

P s
" Max(dslj € 0,2K))

(&)

where w and h are the width and height of the bounding
rectangle of the initial boundary (P = {p,, ..., D, ---Dagc_1 })-
Here, we have obtained three geometric attributes for vertex p;,
providing important prior information for vertex classification.

We know that text instances in word-level and line-level typ-
ically have two long sides and two short sides in their bound-
aries, and the key points we need to identify are usually located
at the intersection of the long and short sides. These points
have distinct geometric attributes Fy(i) = [0i,d;, Az;, Ay;).
As shown in Fig. [f] (b)-(1), the angle 67 of these key points
usually exhibits sudden changes and is significantly smaller

than that of other non-key points. The distances d; from these
key points to the centroid (z.,y.) are typically greater than
those of other points, although not always the smallest. To
improve the fusion of visual (Fy(4)) and geometric (F (7))
features during module reasoning, we embed the geometric
attributes of each vertex p; into a high-dimensional space as
[21]. Specifically, we apply sine and cosine functions with
varying wavelengths to F;. The geometric attribute embedding
is calculated as follows:
27 - Fy(4)
100021/¢
27 - Fy(4)
100021/¢
where C' is the dimension of the embedding vector (emprir-
ically set to 36). The geometric attribute F, (i) of vertex
pi is embedded into a vector GE(r,(;)) of dimension C.
Because Fy(i) = [0;,d;, Az;, Ay;] has four attribute values,
the dimension of each attribute scalar is C'/4.

The Fy(z;,y;) includes a 32-D detection shared features F,
obtained by CNN backbone and 4-D prior features I}, as

Fy(xi, i) = Fa(xi, yi) ® Fp(xi, vi), )
Fy(i) = Fy(xi, yi) — Fo(2e, ye), &)

where “@” denotes concatenation operation. (i) has 36
dimensions. Fy(x.,y.) is the visual features of the centroid
(Ze,ye) in F.

As texts vary in scale, the sampled points may be too close
to each other, resulting in very little difference between the
visual and geometric features. This can cause confusion in the
network output. To avoid this, we embed order information
(Fe(i) = Embedding(i,C)) of the point sequence into the
input feature F, () for vertex p; using an embedding operation
in Pytorch. Therefore, the input feature F, of the reading-order
estimation module is calculated as follows:

GE(F,(i),2j) = cos( ),j €(0,C/2—-1), (6)

GE(F,(i),2j+1) = sin( ),j€0,C/2-1), D

113

2K—-1

Fo = {GE g,y ® Fy(i) © Fe(i)}iZ, (10

where ¢ denotes the ¢-th sampling point in initial boundary. The
classification results (O = [0g, 01, 02, 03]T) of these sampling
points will be obtained after the input features are encoded and
reasoned by REM. o; = [p,, ..., D, , ..., D,x_,] 18 a probability
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distribution, and each element p, represents the probability
that the vertex p, belongs to j-th class of the key points.

Joint reading-order estimation loss. To optimize and train
our REM, we propose a joint reading-order estimation loss
(LRrE), consisting of a classification loss, an orthogonality
loss, and a distribution loss. We use the balance binary cross
entropy loss to supervise classification as

3 2K-1

O

jO’LO

) 1og(p, (7)), (11)

where y represents the predicted labels for the classification
of every control point. Thus, y, represents the label for ¢-th
control point p,, which is a one-dimensional vector with four
elements in total (as y, = [y,(0),...,y,(4), .-, y,(3)]). When
the control point p, belongs to j-th key corner point, y,(j) =
1; otherwise y,(j) = 0. Thus, p,(j) is probability of control
point p, belongs to the j-th key corner point.

To ensure that the four key points found are independent and
different from each other, we further designed an orthogonality
loss and a distribution loss to constrain the optimization of
REM. The orthogonality loss can be expressed as

L, = Drr(0T0,1), (12)

where Dy is the KL Divergence loss; OT O is the similarity
matrix of prediction of REM ( O = [0g, 01, 02,03]T); I is an
identity matrix of dimension 4 x 4.

As shown in Fig. [/| (a), the four key points not only
have independent positions but also follow a specific spatial
distribution. For word-level and line-level text detection, these
key points are usually located at the intersection of the long
and short sides in long strips of text. When these sampling
points are flattened into a sequence from the short or long
side (as @ @ B @shown in Fig. [/] (a)), the distributions
of the four key points are similar regardless of category, as
shown in Fig. [7] (b) and (c). Typically, the sequence length
of the long side (l3) is greater than that of the short side
(l1). To fully utilize this distribution information and better
constrain the REM to learn and extract the hidden reading
order information, we introduce a distribution constraint loss
via KL-divergence as

13)

where 0; = [Py, ..., D,,..-»Doxc_,] 1S @ probability distribution
predicted by REM. y; = [y, ..., Y,, -, Yox_.] is the one hot
representation of sample points ({p,,...,D,, .--Pyr_, }) label
belonging to j-th category. Finally, the proposed reading-order
estimation loss (L) is a combination of classification loss
L. , orthogonality loss £, and distribution loss £, as follows

ERE:£C+CM*(£0+£d), (14)

where a is set to 0.1 because orthogonality loss L,, and
distribution loss L4 only serves as auxiliary constraints.
According to the four key points obtained, we divide the text
boundary into top and bottom sides, as shown in Fig. [§] (b).
At the same time, we re-sample K /2 control points according

(a) Iter 1

(a) Itel 0 (I)Itel 2

Fig. 8. (a)The readjusted initial boundary in O-th iteration. (b) The refined
text boundary in 1-th iteration. (c) The refined text boundary in 2-th iteration.
The green contour is the annotated text boundary. The yellow contour is the
top side, and the blue contour is the bottom side.

to the principle of equidistance on the top and bottom sides,
respectively. As shown in Fig. [6] (b), the re-adjusted initial text
boundary has K control points (' = {c,, Croi D
which are symmetrically distributed on top and bottom sides.

Boundary Refinement Module. Due to the varying direc-
tions and shapes of text, it is challenging to directly predict
accurate text boundary. Therefore, we first use the initial
boundary to roughly locate text and separate the neighboring
text. But, these coarse initial boundaries only partially cover
the text instances, resulting in inaccurate recognition due
to incomplete text regions. Similar to TextBPN++ [28], we
employ a lightweight transformer network as our boundary
refinement module (BRM). To simplify the model structure
and reduce parameters, we adopt the strategy of sharing
parameters and self-iterative refinement, as shown in Fig. [3]
In each refinement iteration, the BRM takes the previously
predicted boundary as input and generates a new boundary,
enabling dynamic refinement of text boundaries to adapt to
various text shapes and scales.

As illustrated in Fig. 3] the refined text boundaries be-
come closer to the actual text boundaries as the number
of iterations increases. Unlike TextBPN++[28]], which uses
point matching loss, we optimize this module by minimizing
the Smooth L1 distance between each refined text boundary

ceey Z,...’

T =cy,...,¢;5 ..., ce—1) and its corresponding target (I' =
Co, - c“ K,l). Specifically, the loss Lpp of this module
is formulated as
| No1E-1
Lpr = AN ZO Z; Smooth,;l(cuyi),ci)), (15)
j=0 i=

where the N is the number of iterations, ¢,
prediction of point c,.

. is j-th refined

D. Dynamic Sampling

Thin-Plate Spline (TPS) has been widely used as a grid
sampling approach in arbitrary shape scene text spotting [S]],
[45], [9]. However, TPS is an inflexible sampling strategy that
only generates fixed sampling grids manually, as illustrated
by the blue grid points in Fig. [9} These fixed sampling grids
result in the sampled CNN features for recognition sequence
being highly dependent on the detected text boundary. As
a consequence, it becomes challenging for the recognizer to
decode the correct sequences when the detection is inaccurate
or the sampling features are inadequate, as shown in Fig. [I]
(c1-c3). Therefore, the recognition performance highly relies
on the text detection accuracy, leading to potential error
propagation to recognition in these methods [8], [45], [9].
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TPS sample grids
. \ >

Fig. 9. The schematic of the dynamic sampling module. The blue point is the
sampling of TPS, and the red point is the sampling with dynamic adjustment.

To solve this problem, we propose a novel dynamic sam-
pling module with thin-plate spline, named DSM, which can
dynamically sample the features in the detected text region for
the recognition module. Our DSM can mitigate the incompati-
bility between text detection and recognition, especially when
the detected text boundaries are imperfect for recognition. As
shown in Fig. [0 the dynamic sampling module comprises
two stacked 3 x 3 convolutional layers with dilation [3,1] and
one fully connected layer. Inspired by DCN[62], which learns
offsets to produce deformable convolution kernels based on
traditional convolution, we employ a lightweight convolution
head to predict a set of position offsets for the basic grid points
generated by the TPS algorithm. Specifically, we first use TPS
to generate the fiducial grid points G of size w, x h,. Then,
the lightweight convolution head produces a set of normalized
position offsets for the fiducial grid points G, as

Agi; = Tanh(C1x1(Csx3(Csxs(fij, ds), dr))),

where Cs.3 denotes 3 x 3 convolutional layer, and Cjx1
denotes 3 x 3 fully connected layer realized by 1 x 1 con-
volution. f;; is the input features of points g;; extracted from
recognition shared features (F.). d3 and d; indicate that the
dilation are set to 3 and 1, respectively. Ag;; is the normalized
offset of the point g;; in gird G. To make the learning of offset
Ag;; not affected by the size of the text instance, we normalize
it by the sigmoid function. Therefore, the real offset can be
calculated as

(16)

Agi; = Agi; - o(w, h),
G =G+ 8- AG,

a7
(18)

where w and h are the width and height of the bounding
rectangle of the text instance. AG = {Ag;;||i € [0,w,),j €
[0,ho)} is the set of Agi;, and G is the updated gird.
is the scale coefficient and is set to 0.1, which can ensure a
suitable offset space for the sampling points, as the detected
text boundaries usually do not have significant errors.

In training, DSM adaptively adjusts the position of fiducial
grid points by using the gradient returned from the recognition
module without extra supervision. During inference, DSM can
dynamically sample appropriate features in the detected text
region for the recognition module to decode the text sequence
accurately. Our DSM can decode text content more accurately,
even in challenging scenes where the detected text boundaries
may have flaws or are imperfect for recognition, as shown in
Fig. 2] and Fig. [T0] In Fig. [I0} the detected text boundary
does not cover the entire instance, making the recognition

Fig. 10. Visual comparison of TPS and DSM.

module decode the character ‘i’ as ‘I’ incorrectly. However,
the sampling points of our DSM can exceed the detection
boundary, enabling the recognition module to accurately de-
code the correct characters, even when the detected boundary
does not completely cover the text instance.

E. Optimization

By dynamically sampling features by DSM, any recognition
model can be applied for the recognition. For a fair compari-
son, we take the model in [53]], [9] as our recognition module,
which consists of 6 convolutional layers, one bidirectional
LSTM layer, and an attention-based decoder.

For end-to-end training the network, the objective of the
function is combined with the losses of modules mentioned
above, which is formulated as

L=Lig~+ Ne* LRE + Aor * LBR + Arec * LrREC, (19)

where L;p is the loss of the initial boundary module as in
TextBPN++ [28]]; LrE is the loss of reading-order estimation
module as Eq. T4 Lpg is the loss of boundary refinement
module as Eq. [I3} Lrgc is the Cross Entropy Loss for the
recognition module as in [53], [9]]. In pre-training, the A, is
set to 1/e(i=ePs)/eps the ), is set to 0.1/e(i=¢Ps)/ers eps
denotes the maximum epoch of training, and ¢ denote the -
th epoch in training. In this way, our model can prioritise
learning to find the interested text region at the beginning
of training, ensuring that the training can converge normally.
In fine-tuning, A.. is set to 1.0, Ay, is set to 0.01. A, is
empirically set to 0.2.

IV. EXPERIMENTS
A. Datasets

SynthText 150k is synthesized in [43] comes with 150k
synthetic images containing mostly straight text and curved
texts. It is different from SynthText 800k, which contains
mostly straight texts in quadrilateral annotations.

Total-Text is a word-level dataset including the horizontal,
oriented and curved text, which contains 1255 training images
and 300 test images.

Rot.Total-Text [27] is a test set derived from Total-Text,
which applies large rotation angles (0°, 45°, 135°, 180°, 225°,
315°) on images of the Total-Text test set to examine the model
robustness, resulting in 1,800 test images.

CTW-1500 is a line-level dataset containing horizontal, multi-
oriented and curved text instances, including 1000 training
images and 500 test images.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

TABLE I
ABLATIONS ON TEST SETS. “ ROTATION” DENOTES TRAINING THE MODEL WITH RANDOM ROTATION AUGMENTATION. WITHOUT D-TPS MEANS THE
TPS 1S USED INSTEAD. WITHOUT REM MEANS IMPLICITLY LEARNING THE READING-ORDER ONLY BY THE SUPERVISED REGRESSION LEARNING OF
BOUNDARY CONTROL POINTS, LIKE [3].

| Total-Text | Rot.Total-Text | Inverse-Text
Method Rotation  REM  DSM \ Detection End-to-End | Detection End-to-End | Detection End-to-End
| P R F None Full | P R F None Full | P R F None  Full
889 826 856 67.2 78.8 80.8 734 769 48.3 62.7 819 766 79.2 52.6 66.6
Baseline v 899 828 862 67.4 79.2 | 885 81.8 850 51.8 66.2 | 88.0 81.8 8438 574 68.4
v v 90.8 833 869 69.6 80.7 | 88.8 832 859 53.4 68.0 | 89.0 827 857 60.5 70.7
v v 912 84.0 875 69.2 80.3 | 889 828 86.2 66.4 776 | 83.6 838 86.1 64.8 76.6
v v v 927 848 88.6 70.5 81.6 | 894 84.6 86.9 68.8 80.2 | 90.3 836 86.8 67.1 78.3

ICDAR2015 is a word-level and multi-oriented text dataset, TABLE II

including 1000 training images and 500 test images. This
dataset includes many incidental scene text, such as blur or
small text, which challenges text spotting.

Inverse-Text [27] is established in [27], only consists of 500
testing images. It is a challenging arbitrarily-shaped scene text
test set with about 40% inverse-like scene texts, and some of
these texts are even mirrored.

B. Implementation Details

We use ResNet-50 with DCN [62] as the backbone and
pre-train our model for 100 epochs on a mixture of SynthText
150K, MLT-2017, Total-Text, and ICDAR2015 datasets. Dur-
ing pre-training, we apply the Adam optimizer with an initial
learning rate of 0.001 and weight decay of 0.0001. The pre-
trained model is then fine-tuned on the target dataset for 800
epochs with the initial learning rate set to 0.0001 and divided
by ten at 400 epochs, using the Adam optimizer. We use 16
control points for text boundary and perform five iterations of
BRM. The default number of sampling points is 16 x 64, and
data augmentation techniques such as random scaling, crop-
ping, and distortion (e.g., random blur, brightness adjustment,
and color change) are applied. To enhance the model’s ability
to recognize text in different reading-orders, we add random
rotation with a wide-angle (—180°,180°)) and denser sam-
pling around [0°, +30°, £60°, £90°, 120°, +150°, £180°].

During training, we randomly crop text regions without
cutting any text and resize them to 640 x 640. We pre-train
our model using two RTX-3090 GPUs with an image batch
size of 24 and fine-tune using a single RTX-3090 GPU with
an image batch size of 12. During inference, we maintain the
aspect ratio of test images and resize and pad them to the same
size. Our implementation is based on PyTorch 1.7 and Python
3, and testing is performed on a single RTX-3090 GPU with a
single thread. Recall, Precision, and F-measure are represented
by R”, P”, and “F”, respectively.

C. Ablation Studies

In exploration experiments, we only pre-train the model
with ten epochs to reduce training time costs. Other training
details are described in Sec. Some special details are
described in the corresponding section. In default, random
rotation data augmentation is used.

Reading-order estimation module (REM). Tab. [I| shows
that using the reading-order estimation module (REM) im-
proves both detection and recognition performance, especially

RESULTS OF SPOTTERS ON INVERSE-TEXT.

Sampling Method ~ REM Detection End-to-End

P R F None  Full
Masking ROI 884 804 842 558 664
BezierAlign 89.3 812 851 583 69.2
TPS 88.0 81.8 84.8 574 684
DSM 89.0 827 857 605 70.7
Masking ROI v 89.0 8l.6 85.1 624 742
BezierAlign v 90.5 81.8 859 650 772
TPS v 88.6 838 86.1 64.8  76.6
DSM v 90.3 83.6 868 67.1 78.3

on Rot.Total-Text and Inverse-Text datasets, compared to the
baseline model without REM. REM also brings significant
improvement in text spotting performance, with 14.6% and
11.4% improvement on ‘None’ and ‘Full’, respectively, on
Rot.Total-Text, and 7.4% and 8.2% improvement on ‘None’
and ‘Full’ respectively on Inverse-Text. However, the gain
brought by REM is less significant on Total-Text, with only
1.8% and 1.1% improvement on ‘None’ and ‘Full’, respec-
tively. The experimental results suggest that the impact of
REM on text spotting performance depends on the ratio of
inverse-like text in the testing data, which is about 40% in
Inverse-Text and relatively high in Rot.Total-Text due to small
angle rotations that can turn some texts into inverse-like. The
ratio of inverse-like instances is low in Total-Text, but REM
is still important for accurately recognizing texts, as shown in
Tab. Regardless of the sampling method, REM improves
text recognition performance by about 6.5% on ‘None’ and
8% on ‘Full’ on Inverse-Text.

TABLE III
RESULTS OF SPOTTERS ON INVERSE-TEXT.

Lr Lo Lo La Detection End-to-End

P R F None  Full
+ classification v 892 821 855 645 763
+ orthogonal ' v 89.7 832 863 664 774
+ distribution v v v 90.3 836 868 671 783

Joint reading-order estimation loss (Lzg). In Tab.
we examine the impact of the proposed joint reading-order
estimation loss (LRE) on Inverse-Text, which comprises a
classification loss Lc, an orthogonality constraint Lo, and a
distribution constraint £d. By conducting incremental exper-
iments, we evaluate the effectiveness of each component in
LRE. Our results reveal that when the orthogonality constraint
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Schauraum
s

Fig. 11. Qualitative results for inverse-like scene text detection. Our method can not only adapt to arbitrary shape text detection but also accurately mark the
reading-order of each text instance. Some failure cases are marked with yellow arrows.

) L+ L,

Fig. 12. The intermediate visual comparison results for classification loss L,
an orthogonality constraint £,, and a distribution constraint L.

Lo is applied, there is a performance improvement of 0.8%
in F-measure and 1.9% in ‘None’ for both detection and
recognition tasks. Similarly, when we add the distribution
constraint L4, we observe a 0.5% improvement in F-measure
and 0.9% in ‘Full’ for both tasks. Combining Lo and Ld leads
to significant performance improvement of 1.5% in Recall,
1.3% in F-measure, 2.6% in ‘None’, and 2.0% in ‘Full’. We
also present intermediate visual comparison results to verify
the impact of orthogonality and distribution constraints on
the prediction of reading-order, as depicted in Fig. [I2] (a-
¢). Specifically, Lo ensures the independence of the four key
points of reading-order and maintains their distinctness. In
contrast, £d constrains the orderly distribution of these points
at the corners of the text boundary. The combination of three
losses (Lc, Lo, and L) significantly improves the detection
and recognition performance, as shown in Fig. [I2] (c).
Sampling methods. In Tab[ll] we can see that our DSM
sampling method outperforms other methods such as Masking
ROI, BezierAlign, and TPS. Specifically, with REM, our DSM
improves performance by 4.7% on ‘None’ and 3.1% on ‘Full’
compared to Masking ROI, by 2.1% on ‘None’ and 1.1%
on ‘Full’ compared to BezierAlign, and by 2.3% on ‘None’
and 1.7% on ‘Full’ compared to TPS. When the detection
results are slightly poor without REM, the advantages of
our DSM become even more significant. This demonstrates
that our DSM performs well when text detection results are
imperfect and can improve text detection. Moreover, our DSM
also brings slight performance improvements in detection

~ (b)DSM |

Fig. 13. The intermediate visual comparison results for sampling methods; (a)
TPS suffer from the precision of detected boundary, (b) DSM can adaptively
adjust sampling points to alleviate the impact of detected boundaries.

TABLE IV
ANALYSIS ON INITIAL BOUNDARY MODULE (IBM) BASED ON DETECTION
RESULTS ON TOTAL-TEXT.

Method for initial Text Boundary Detection Only

Precision  Recall  F-measure
Text Kernel(PSENet) 89.59 85.08 87.28
Probability Map(DBNet) 90.78 84.81 87.69
Distance Field(TextBPN++) 90.51 85.50 87.93

compared to TPS. Fig. [I3] shows visual comparisons between
TPS and DSM sampling points.

Initial boundary module (IBM). We conducted experi-
ments on the Total-Text dataset to assess the robustness of
our model with different initial boundary generation strategies
(such as Text Kernel in PSENet [57], Probability map in
DB [56], Distance Field in TextBPN++[28]]). To ensure a
fair comparison, we trained the detection branch with the
same settings (600 epochs with AdamW optimizer and initial
learning rate of 0.0001). Our results, as shown in Tab.
indicate that different initial boundary generation strategies
do not have a significant impact on detection performance
(87.28% F-measure for Text Kernel, 87.69% F-measure for
Probability map, 87.93% F-measure for Distance Field). In our
method, the initial boundaries are mainly used to locate the
text instance roughly, and the subsequent boundary refinement
module refines these coarse boundaries to accurate text bound-
aries. The detected text boundary of any text detection method
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TABLE V
SCENE TEXT SPOTTING RESULTS ON TOTAL-TEXT. . * DENOTES THE METHOD USING RESNET50 WITH DCN AS BACKBONE. “NONE” REPRESENTS
LEXICON-FREE, WHILE “FULL” INDICATES ALL THE WORDS IN THE TEST SET ARE USED. IC13 MEANS ICDAR2013; IC15 MEANS ICDAR2015; TT
MEANS TOTAL-TEXT; MLT MEANS MLT-2017.

. Detection End-to-end
Method Data Backbone Published i R F Nond Full FPS
Mask TextSpotter V1 [42] Syn800k, IC13, IC15, TT ResNet-50-FPN ECCV’18 | 69.0| 55.0| 61.3| 529| 71.8| 4.8
CharNet [35] Syn800k, IC15, MLT, TT ResNet-50-Hourglass57 | ICCV’19 | 87.3| 85.0| 86.1| 66.2 - 1.2
TextDragon [2] Syn800k, IC15, TT VGG16 ICCV’19 | 85.6| 75.7| 80.3| 488 | 74.8| -
TUTS [7] Syn200k, IC15, COCO-Text, TT,MLT, { ResNet-50-MSF ICCV’19 | 83.3| 834 83.3| 67.8 - 4.8
Mask TextSpotter V3 [6] Syn800k, IC13, IC15, TT, AddF2k ResNet-50-FPN ECCV’20 - - - 653 774 2.0
Text Perceptron [8] Syn800k, IC13, ICI5, TT ResNet-50-FPN AAAT20 | 88.8| 81.8| 852| 69.7| 78.3 -
ABCNet V1 [43] Syn150k, COCO-Text, TT, MLT ResNet-50-FPN CVPR’20 - - - 488 | 748 -
CRAFTS [10] Syn800k,TT IC13, IC15 ResNet-50-FPN ECCV’20 | 89.5| 85.4| 87.4| 78.7 - -
PGNet [10] Syn150k, COCO-Text, TT, MLT ResNet-50-FPN AAAT'21 | 855 | 86.8| 86.1 | 63.1 - 36
Boundary TextSpotter [45] Syn150k, COCO-Text, TT, MLT ResNet-50-FPN TIP’22 89.6| 81.2| 852| 66.2| 784 | 13
Li et al. [63] Syn800k, IC13, IC15, TT, MLT, AddF2k ResNet-101-FPN TPAMI'22| - - - 57.8 - 14
PAN++ [1] Syn150k, COCO-Text, TT, MLT ResNet-18-BFPN TPAMI'22| 89.9| 81.0| 853 | 68.6| 78.6| 21
ABCNet V2 [53] Syn150k, COCO-Text, TT, MLT LSVT ResNet-50-FPN TPAMI'22| 90.2 | 84.1| 87.0| 704 | 78.1| 10
SPTS [48] Syn150k, COCO-Text, TT, MLT ResNet-50-Transformer | MM’22 - - - 742 | 82.4 -
TPSNet [9] Syn150k, TT, MLT, ArT ResNet-50-FPN* MM’22 90.2 | 86.8| 88.5| 76.1| 82.3| 9.3
TESTR [47] Syn150k, TT, MLT, IC15, IC13 ResNet-50-Transformer | CVPR’22 | 934 | 81.4| 869 | 73.3| 83.9| 53
TAST(Ours) | Syn150k, TT, MLT, IC15 \ ResNet-50-FPN* \ - \ 94.7 [ @[ 89.7 [ 71.9 [ @[ 7.8
TABLE VI TABLE VII

RESULTS OF DETECTION ON TOTAL-TEXT. AND “ITER 0” INDICATES OUR
EXPERIMENT JUST USING INITIAL TEXT BOUNDARY AS DETECTION.

Detection Only

Iteration

Precision  Recall F-measure FPS
Iter. O 91.21 74.09 81.76 10.87
Iter. 1 91.15 82.44 86.58 10.64
Iter. 2 91.04 84.62 87.71 10.42
Iter. 3 90.51 85.50 87.93 10.21
Iter. 4 90.45 85.53 87.92 10.02
Iter. 5 90.40 85.50 87.88 9.80

can be used as our initial boundary, meaning that any text
detection method (such as TextField, DB, PSENet, etc.) can
serve as our IBM to quickly build an end-to-end text spotting
method, even if its detection results are not as satisfactory.

Refining iteration number. Our BRM model allows flex-
ibility in choosing the number of iterations during testing,
thanks to its shared parameters and self-iterative design. In
Tab. we demonstrate that as the number of iterations
increases, the detection performance gradually improves and
eventually stabilizes while the inference speed decreases.
Notably, even a single iteration leads to a significant im-
provement in detection performance. With three iterations,
the performance stabilizes around 87.9% on F-measure. The
approximate time cost for each iteration is about 2ms, much
less than the time cost of other parts (about 92 ms). Balancing
efficiency and performance, we set the default number of
iterations to 3 during testing.

D. Comparisons with State-of-the-art Methods

We evaluate our method on four publicly available bench-
marks: Total-Text, CTW-1500, ICDAR2015, and Inverse-Text.
Quantitative results against other state-of-the-arts are presented

in Tab. [V] and For inverse-like scene text

detection and spotting, we show qualitative visual results in

Fig. [T1] and respectively.
Total-Text. In testing, we scale the input image sides into

(640, 1024) while maintaining the aspect ratio. As shown

END-TO-END TEXT SPOTTING RESULTS ON CTW-1500. “NONE”
REPRESENTS LEXICON-FREE, WHILE “FULL” INDICATES ALL THE
WORDS IN THE TEST SET ARE USED.

Method Detection End-to-End
P R F None  Full
TextDragon[2] 84.5 828 83.6 39.7 72.4
Text Perceptron[8] 875 819 84.6 57.0 —
ABCNet[43] — — — 452 74.1
ABCNet v2[53] 85.6 83.8 84.7 57.5 77.2
MANGO[4] — — - 58.9 78.7
TESTR-Bezier [47] 89.7 83.1 863 53.3 79.9
TESTR-Polygon [47] 92.0 82.6 87.1 56.0 81.5
SPTS-Bezier [48] — — — 52.6 73.9
SPTS-Point [48] — - - 63.6 83.8
TPSNet [9] 87.7 851 864 59.7 79.2
ABINet++ [64] — — - 60.2 80.3
TAST(Ours) 89.2 84.8 869 624 829

in Tab. our method outperforms all previous methods
in detection, surpassing the best-reported result by 4.5% on
Precision and 1.2% on F-measure. For the end-to-end case,
our method achieves competitive results (83.5% on ‘Full’)
compared to methods based on "ResNet-50-Transformer” like
TESTR [47] (83.9% on ‘Full’). Our method outperforms all
previous methods based on "ResNet-50-FPN” and surpasses
the best-reported result [9] by 1.2% on ‘Full’.

CTW-1500. For CTW-1500, we set the number of control
points on the text boundary to 32, and the number of sampling
points is set to 16 x 128 due to the line-level curved text
dataset. The input image sides are scaled into (640, 1024)
while maintaining the aspect ratio. As shown in Tab. our
method outperforms all previous methods in both detection
and end-to-end results, except for CNN-Transformer-based
methods like TESTR [47] and SPTS [48]. Specifically, our
method outperforms all previous CNN-based methods like
ABINet++[64]], TPSNet [9], ABCNet v2 [S3], and surpasses
the best-reported result [64] by 2.2% on ‘None’ and 2.6% on
‘Full’ in terms of F-measure. In detection, our method only
slightly lags behind the best-reported CNN-Transformer-based
method [47] by 0.2% on F-measure. Our method ranks second
in most metrics, with only a slight gap to the first. Due to
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Fig. 14. Qualitative results for inverse-like scene text spotting on Inverse-Text. Our method can accurately read various complex layout and inverse-like scene

texts. Some failure cases are also marked with yellow arrows.

TABLE VIII
RESULTS ON ICDAR2015 DATASET. “S”, “W”, “G”, “N”
REPRESENT RECOGNITION WITH “STRONG”, “WEAK”,
“GENERIC” OR “NONE” LEXICON RESPECTIVELY.

Method Detection End-to-End

P R F S W G N
TextNet[65] 89.4 854 874 7877 749 60.5 —
FOTS[41] 91.0 852 88.0 81.1 759 60.8 —
CharNet R-50[35] 91.2 88.3 89.7 80.1 745 62.2 60.7
Boundary([3] 89.8 87.5 88.6 79.7 752 64.1 —
TUTS[7] 89.4 85.8 87.5 834 799 68.0 -—
Text Perceptron(8] 92.3 825 87.1 80.5 76.6 651 —
Mask TextSpotter v3[6] —  — — 833 781 742 —
Boundary TextSpotter[45] 88.7 84.6 86.6 82.5 774 71.7 —
ABCNet v2[53] 904 86.0 838.1 82.7 785 73.0 -—
MANGO[4] - - — 818 789 673 —
PGNet[10] 91.8 84.8 88.2 833 783 635 -—
PAN++ (1] 914 839 875 827 782 692 —
TESTR [47] 90.3 89.7 90.0 85.2 79.4 73.6 65.3
SPTS [48] - -  — 775 702 658 —
TAST(Ours) 92.5 86.6 89.5 84.4 80.0 73.8 64.7

CTW-1500 is a line-level dataset, there are some overly long
sentences inside. Our method based on CNN is limited by the
receptive field, which may result in lower recognition accuracy
than these transformer based method. Another problem is that
CTW-1500 has some unreasonable or missing annotations,
as mentioned in [17], [21]], which also can bringing some
performance losses.

ICDAR2015. We conducted evaluations on the ICDAR2015
benchmark, which includes many perspective texts, and the re-
sults are listed in Tab[VIII] During testing, we scaled the short
side of the input image to 960 while maintaining its aspect
ratio. Our method achieved comparable performance with text
spotting methods like CharNet[35] and TESTR in the detection
stage. In the Word Spotting tasks, our method also delivered a
competitive performance with text spotting methods like Mask
TextSpotter v3 [6] and TESTR, and it achieved remarkable

TABLE IX
RESULTS OF SPOTTERS ON INVERSE-TEXT. “DPTEXT” INDICATES THE
EXPERIMENTAL RESULTS ARE GAINED FROM DPTEXT [27]], “REPRO”
INDICATES THE EXPERIMENT RESULTS ARE REPRODUCED BY DPTEXT
BASED ITS OFFICIAL RELEASED CODE. * INDICATES THE RESULTS ARE
REPORTED IN DPTEXT BY TESTING THE OFFICIALLY RELEASED MODEL
OF PREVIOUS STATE-OF-THE-ART SPOTTERS ON INVERSE-TEXT.

Method Rotaon P R F _bndtoEnd

None  Full
ABCNet v2x [53] v 820 702 756 345 474
TESTR* v 83.1 674 744 342 41.6
SwinTextSpotterx v 945 858 899 554 679
ABCNet-v2 (DPText repro.) v 834 732 780 57.2 69.5
ABCNet-v2 w/ Pos.Label (DPText repro.) v 90.7 839 872 622 767
TESTR (DPText repro.) v 89.4 844 86.8 62.1 74.7
TESTR w/ Pos.Label (DPText repro.) v 88.8 857 872 61.9 74.1
TESTR w/ Pos.Label (DPText detector) v 90.7 842 873 631 754
SwinTextSpotter (DPText repro.) v 945 847 8.3 629 747
SPTS [48] v - - - 383 462
DeepSolo (Res-50,#2) v - - - 646 712
DeepSolo (VITAEvV2-S,#3) v - - - 68.8 758
TAST(Ours) v 925 86.6 895 688 80.6

performance (80.0%) on weak lexicon cases. Furthermore, our
method significantly outperformed previous TPS-based meth-
ods like TUTS and ‘Boundary TextSpotter’, demonstrating the
effectiveness of our method.

Inverse-Text. Although reading-order is important for scene
text spotting, the ratios of inverse-like scene texts are relatively
low in several datasets, such as 2.8% in Total-Text, 5.2%
in CTW-1500, and 0.0% in ICDAR2015. Therefore, in these
datasets, our reading-order estimation module (REM) does not
fully demonstrate our DSM module achieves its advantages
and more positive gains. To demonstrate the effectiveness
of our REM, we conducted experiments on Inverse-Text, an
arbitrary-shape scene text test set with approximately 40%
inverse-like instances. As Inverse-Text does not have a training
set, we fine-tuned our model on Total-Text with random
rotation for 800 epochs and evaluated it on Inverse-Text,
scaling the input image to (640, 1280) while maintaining its
aspect ratio. Our method outperformed all previous methods
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Fig. 15. Some visual comparison results with ABCNet v2 [53] and SwinTextSpotter [66] on Inverse-Text dataset, where The results of ABCNet v2 and
SwinTextSpotter are reproduced by their official open-source code and model. Some failure cases of each method are highlighted in red boxes.

and achieved the best performance on multiple evaluation
metrics (e.g., Recall, F-measure, None, Full). In the text
spotting task, our method surpassed the best result by 5.7%
on ‘None’ and by 3.9% on ‘Full’, significantly outperform-
ing CNN-Transformer based methods such as TESTR and
SwinTextSpotter. Furthermore, our IAST accurately predicts
the reading-order of scene text with very complex layouts and
recognizes inverse-like scene text via the predicted reading-
order, as shown in Fig. [IT]and Fig.[T4} Our results demonstrate
the effectiveness of our methods in reading inverse-like scene
text and highlight the importance of reading-order for scene
text spotting, particularly in complex layout scenes.

Visual Comparison. We utilize some previous state-of-
the-art spotters to get qualitative results on Inverse-text for
giving a more intermediate visual comparison, as shown in
Fig. [I5] We select ABCNet-v2 [53] representing the CNN-
based spotting methods which predict control points. We se-
lect SwinTextSpotter [66] representing the transformer-based
spotting methods which predict text segmentation. Officially
released model weights trained on Total-Text are adopted for
producing visual results. We can find that the spotters (e.g.,
ABCNet-v2 and SwinTextSpotter) failed to correctly recognize
inverse-like texts because of the unconventional reading-order,
as shown in Fig. |'1;5| (a) and (b). Benefiting from the ability to
aware reading-order, our model can accurately recognize these
inverse-like texts, as shown in Fig. [T3] (c). These examples
in Fig. [I5] are enough to demonstrate the improvement of
our method when reading the complex layout and inverse-like
texts.

E. Weakness

The proposed method shows strong performance in spotting
both normal and inverse-like scene text in most cases, although
it may struggle with some special cases, such as mirror text,

(d)

Fig. 16. Failures cases on hard inverse-like texts, such as mirror text, overlap
of key points, and small blurry text with red boxes.

small blurry text, and occlusion text, as shown in Fig. [T6]
Some failure cases are also marked with yellow arrows in
Fig. [T1] and Fig. [T4] As shown in Fig. [T (a) and (d), mirror
texts are especially challenging as their control points need to
be pressed counterclockwise. Additionally, some small blurry
texts are detected, but their recognition accuracy cannot be
verified, as shown in Fig. (b), as they were annotated
as ‘Don’t Care’. In rare cases, overlapping key points in
the reading-order may result in unsatisfactory predictions, as
shown in Fig.[I6](c). Fortunately, these errors can be corrected
through additional processing. It’s worth noting that these
special cases are challenging for all text spotting methods and
require further research.

V. CONCLUSION

Inverse-like text is a common problem in scene text recog-
nition, but it has not been attracted enough attention and effec-
tively solved. To address this problem, we propose a unified
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end-to-end trainable framework called IAST, which accurately
reads both normal and inverse-like scene text through reading-
order estimation and dynamic sampling. Our REM module can
learn and extract reading-order information from the initial text
boundary, while the DSM can dynamically sample appropriate
features for recognition in the detected text region. Extensive
experiments demonstrate the effectiveness of our methods for
reading inverse-like scene text and highlight the importance of
reading-order information for scene text spotting, especially in
complex layouts.
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