
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

DEA-Net: Single image dehazing based on
detail-enhanced convolution and content-guided

attention
Zixuan Chen†, Zewei He†, Zhe-Ming Lu∗, senior member, IEEE

Abstract—Single image dehazing is a challenging ill-posed
problem which estimates latent haze-free images from observed
hazy images. Some existing deep learning based methods are
devoted to improving the model performance via increasing
the depth or width of convolution. The learning ability of
convolutional neural network (CNN) structure is still under-
explored. In this paper, a detail-enhanced attention block (DEAB)
consisting of the detail-enhanced convolution (DEConv) and the
content-guided attention (CGA) is proposed to boost the feature
learning for improving the dehazing performance. Specifically,
the DEConv integrates prior information into normal convolution
layer to enhance the representation and generalization capacity.
Then by using the re-parameterization technique, DEConv is
equivalently converted into a vanilla convolution with NO extra
parameters and computational cost. By assigning unique spatial
importance map (SIM) to every channel, CGA can attend more
useful information encoded in features. In addition, a CGA-
based mixup fusion scheme is presented to effectively fuse
the features and aid the gradient flow. By combining above
mentioned components, we propose our detail-enhanced attention
network (DEA-Net) for recovering high-quality haze-free images.
Extensive experimental results demonstrate the effectiveness of
our DEA-Net, outperforming the state-of-the-art (SOTA) methods
by boosting the PSNR index over 41 dB with only 3.653 M
parameters. The source code of our DEA-Net will be made
available at https://github.com/cecret3350/DEA-Net.

Index Terms—Image dehazing, Detail-enhanced convolution,
Content-guided attention, Fusion scheme.

I. INTRODUCTION

IMAGES captured under hazy scenes usually suffer from
noticeable visual quality degradation in contrast or color

distortion [1], leading to significant performance drop when
inputting to some high-level vision tasks (e.g., object de-
tection, semantic segmentation). Haze-free images are highly
demanded or required among these tasks. Therefore, single
image dehazing, which aims to recover the clean scene from
the corresponding hazy image, has attracted significant atten-
tion among both the academic and industrial communities over
the past decade. As a fundamental low-level image restoration
task, image dehazing can be the pre-processing step of the
subsequent high-level vision tasks. In this paper, we attempt to
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Fig. 1. Graph of PSNR vs. number of parameters. We compare our DEA-
Net with some state-of-the-art methods (after 2020). The results are tested
on SOTS-indoor dataset. Note that AECR-Net adopts a sharing strategy to
reduce the number of parameters.

develop an effective algorithm to remove the haze and recover
the details from the hazy input.

Recently, with the rapid development of deep learning,
convolution neural network (CNN) based dehazing methods
achieve superior performance [2]–[6]. Earlier CNN-based
methods [2], [7], [8] first estimate the transmission map
and the atmospheric light separately, and then utilize the
atmospheric scattering model (ASM) [9] to derive the haze-
free images. Typically, the transmission map is supervised by
the ground truth, which is used for synthesizing the training
dataset. However, inaccurate estimation of the transmission
map or the atmospheric light would significantly influence the
image restoration results. More recently, some methods [6],
[10], [11] prefer to predict the latent haze-free images in an
end-to-end manner since it tends to achieve promising results.

However, there still exists two main issues:
(1) Less effectiveness of vanilla convolution. Previous works

[12]–[14] prove that well-designed priors like dark channel
prior [12], [15], non-local haze-line prior [13], and color
attenuation prior [14], are helpful for recovering missing
information. Most of existing dehazing methods [5], [6],
[16] adopt classical convolution layers for feature extraction
without utilizing these priors. However, vanilla convolutions
search the vast solution space without any constrains, which
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to some extend may limit the expressive ability (or modeling
capacity). In addition, some transformer-based methods [17]
expand the receptive field to the whole image for mining long-
distance dependencies. They can enhance the expressive ability
(or modeling capacity) at the cost of complex training strategy
and tedious hyper-parameter tuning. Also, the prohibitive
computational cost and vast GPU memory occupation cannot
be ignored. In this regard, the ideal solution is to embed
the well-designed priors into CNN for improving the feature
learning capability.

(2) Haze non-uniformity. There are two kinds of non-
uniformity in the dehazing problem: uneven haze distribution
in image level and channel-wise haze difference in feature
level. To cope with the first one, Qin et al. [5] employed
a pixel attention (i.e., spatial attention) to generate a spatial
importance map (SIM), which can adaptively indicating the
importance levels of different pixel locations. Through this
discriminative strategy, the FFA-Net model treats thin and
thick haze regions unequally. Similarly, Ye et al. [11] tried to
model the density of haze distribution via a density estimation
module, which essentially is also a spatial attention. However,
seldom researchers paid attention to the non-uniformity in
feature level, which remains to be unexploited. The channel
attention used in [5] can produce a channel-wise attention
vector 1 to indicate the importance level of each channel,
which fails to consider the contextual information in the spatial
dimensions. The haze information is encoded into the feature
maps after applying convolution layers. Different channels in
the feature space have different meanings depending on the
role of the filters applied. In this regard, we argue that spatial
importance maps should be channel-specific, and consider
two kinds of non-uniformity (image level and feature level)
simultaneously.

To address above mentioned issues, we design a detail-
enhanced attention block (DEAB), which consists of a detail-
enhanced convolution (DEConv) and a content-guided atten-
tion (CGA) mechanism. The DEConv contains five convolu-
tion layers (four difference convolutions [18] and one vanilla
convolution), which are parallel deployed for feature extrac-
tion. Specifically, a central difference convolution (CDC), an
angular difference convolution (ADC), a horizontal difference
convolution (HDC), and a vertical difference convolution
(VDC) are adopted to integrate traditional local descriptors
into the convolution layer, thus can enhance the representation
and generalization capacity. In difference convolutions, the
pixel differences in the image are firstly calculated, and then
convolved with the convolution kernel to generate the output
feature maps. The strategy of pixel pair’s difference calculation
can be designed to explicitly encode prior information into
CNN. For instance, HDC and VDC explicitly encode the gra-
dient prior into the convolution layers via learning beneficial
gradient information.

Moreover, the sophisticated attention mechanism (i.e.,
CGA) is a two-step attention generator, which can produce
the coarse spatial attention map firstly and then refine it

1The global average pooling (GAP) operation reduces the spatial dimen-
sions to one point.

to the fine version. Specifically, given certain input feature
maps, we utilize the spatial attention mechanism presented in
[19] and the channel attention presented in [20] to generate
the initial SIMs (i.e., the coarse version). Then, the initial
SIMs are refined according to every channel of input feature
maps to produce final SIMs. By using the content of input
features to guide the generation of SIMs, CGA can focus
on the unique part of features in each channel. It is worth
mentioning that CGA as a universal basic block can be plug
into neural networks to improve the performance in various
image restoration tasks.

Besides the improvements mentioned above, we re-
parameterize the learned kernel weights of the parallel con-
volutions to reduce the number of parameters and accelerate
the training the testing process. The five parallel convolutions
are simplified into one vanilla convolution layer with applying
some constrains to the kernel weights and by using the
linear property of convolution layers. Therefore, the proposed
DEConv can extract richful features for improving dehazing
performance while keeping the number of parameters and
computational cost equal to the vanilla convolution. Fig. 1
shows the efficiency and effectiveness of our method.

Following [6], [10], [21], [22], we also adopt a U-net-like
framework to make the major time-consuming convolution
computations in the low-resolution space. Among them, the
fusion of shallow and deep features is widely used. Feature
fusion can enhance the information flow from shallow layers
to deep ones, which is effective for feature preserving and
gradient back-propagation. The information encoded in the
shallow features is tremendously different from the informa-
tion encoded in the deep features, since the diverse receptive
fields. One single pixel in the deep features are originated from
a region of pixels in the shallow features. Simple addition or
concatenation operation is unable to solve the receptive field
mismatch problem. We further propose a CGA-based mixup
scheme to adaptively fuse the low-level features in the encoder
part with corresponding high-level features, by modulating the
features via learned spatial weights.

The diagram of our proposed method are shown in
Fig. 2. We term the proposed single image dehazing model
as DEA-Net by introducing the Detail-Enhanced Attention
block (DEAB) with the Detail-Enhanced convolution and the
content-guided Attention.

To conclude, we have following main contributions:
• We design a detail-enhanced convolution (DEConv),

which contains parallel vanilla and difference convolu-
tions. To the best of our knowledge, it’s the first time
that difference convolutions are introduced to solve the
image dehazing problem. By encoding prior information
into normal convolution layer, the representation and gen-
eralization capacity of DEConv is enhanced for improv-
ing dehazing performance. In addition, we equivalently
convert the DEConv into a normal convolution with NO
extra parameters and computational cost via using re-
parameterization technique.

• We propose a novel attention mechanism called content-
guided attention (CGA) to generate the channel-specific
SIMs in a coarse-to-fine manner. By using input fea-
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tures to guide the generation of SIMs, CGA assigns
unique SIM to every channel, making the model attend
significant regions of each channel. Thus, more useful
information encoded in features can be emphasized to
effectively improve the performance. Moreover, a CGA-
based mixup fusion scheme is presented to effectively
fuse the low-level features in the encoder part with
corresponding high-level features.

• By combining DEConv and CGA, and using CGA-based
mixup fusion scheme, we propose our detail-enhanced
attention network (DEA-Net) for reconstructing high-
quality haze-free images. DEA-Net shows superior per-
formance over the state-of-the-art dehazing methods on
multiple benchmark datasets, achieving more accurate
results with faster inference speed.

The remainder of this paper is organized as follows. We first
review a number of deep learning-based dehazing methods in
Sec. II. Sec. III describes the proposed EDA-Net model in
detail, and Sec. IV shows the experimental results. Finally,
Sec. V concludes this paper.

II. RELATED WORK

A. Single Image Dehazing

For single image dehazing, existing methods can be mainly
divided into two categories. One is to manually generalize the
statistical discrepancy between the hazy and haze-free images
as empirical priors. Another one aims to directly or indirectly
learning the mapping function based on large-scale datasets.
We usually term the former as the prior-based methods and
the latter as the data-driven methods.

The prior-based methods are the pioneers of image dehaz-
ing. They usually rely on atmospheric scattering model (ASM)
[9] and handcraft priors. The widely known priors include
dark channel prior (DCP) [12], [15], non-local prior (NLP)
[13], color attenuation prior (CAP) [14], etc. He et al. [12],
[15] proposed DCP based on a key observation - most local
patches in haze-free outdoor images contain some pixels which
have very low intensities in at least one color channel, which
can help estimate the transmission map. CAP [14] starts from
the HSV color model, and establishes a linear relationship
between depth and the difference of brightness and saturation.
Berman et al. [13] found that pixel clusters of haze-free images
will become haze-lines when haze presents. These prior-based
methods have achieved promising dehazing results. However,
they tend to work well only in specific scenes which happen
to satisfy their assumptions.

Recently, with the rising of deep learning, researchers
focused on data-driven methods, since they can achieve better
performance. Earlier data-driven methods usually perform de-
hazing based on the physical model. For instance, DehazeNet
[2] and MSCNN [7] utilize CNNs to estimate the transmis-
sion map. Then, AOD-Net [3] rewrites the ASM and esti-
mates atmospheric light together with transmission map. Later,
DCPDN [8] estimates the transmission map and atmospheric
light by two different networks. However, the cumulative er-
rors introduced by inaccurate estimations of transmission map
and atmospheric light may cause the performance degradation.

To avoid this, more recent works tend to recover the haze-
free image from the hazy image directly without the help of
the physical model. GFN [23] gates and fuses three enhanced
images from original hazy inputs to generate the haze-free
images. GridDehazeNet [24] utilizes a three-stage attention-
based grid network to recover the haze-free images. MSBDN
[10] utilizes boosting strategy and back-projection technique
to enhance the feature fusion. FFA-Net [5] introduces the
feature attention mechanism (FAM) to dehazing network to
deal with different types of information. AECR-Net [6] reuses
the feature attention block (FAB) [5] and proposes a novel
contrastive regularization, which can benefit from both positive
samples and negative samples. UDN [22] analyzes two types
of uncertainty in image dehazing, and utilizes them to increase
the dehazing performance. PMDNet [11] and Dehamer [17]
adopt transformer to build long-range dependencies and per-
form dehazing with the guidance of haze density. However,
as data-driven methods develop and dehazing performance
improves, the complexity of dehazing networks also increases.
Different from previous works, we rethink the deficiencies
of vanilla convolution in image dehazing and design a novel
convolution operator by combining well-designed priors into
CNN for improving the feature learning capability. We also dig
deeper into the unexploited non-uniformity of haze in feature
level.

B. Difference Convolution

The origin of difference convolutions can be traced back
to the local binary pattern (LBP) [25], which encodes the
pixel differences in the local patch to a decimal number for
texture classification. Since the success of CNNs in com-
puter vision tasks, Xu et al. [26] proposed the local binary
convolution (LBC) which encodes the pixel differences by
using non-linear activation functions and linear convolution
layers. Recently, Yu et al. [27] proposed the central difference
convolution (CDC) to directly encode the pixel differences
with completely learnable weights. Later, various forms of dif-
ference convolutions have been proposed, such as cross central
difference convolution [28] and pixel difference convolution
[29]. Considering the nature of the difference convolution for
capturing gradient-level information, we firstly introduce it to
single image dehazing for improving the performance.

III. METHODOLOGY

As shown in Fig. 2, our DEA-Net consists of three parts:
encoder part, feature transform part, and decoder part. As the
core of our DEA-Net, the feature transform part adopts stacked
detail-enhanced attention blocks (DEABs) to learn haze-free
features. There are three levels in the hierarchical structure,
and we employ different blocks in different levels to extract
corresponding features (level 1&2: DEB, level 3: DEAB).
Given a hazy input image I ∈ R3×H×W , the goal of DEA-Net
is to restore the corresponding haze-free image J ∈ R3×H×W .

A. Detail-enhanced Convolution

In single image dehazing domain, previous methods [5],
[6], [16] usually utilize vanilla convolution (VC) layers for
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Fig. 3. Detail-enhanced convolution (DEConv). It contains five parallel
deployed convolution layers including: a vanilla convolution (VC), a central
difference convolution (CDC), an angular difference convolution (ADC), a
horizontal difference convolution (HDC), and a vertical difference convolution
(VDC).

feature extraction and learning. Normal convolution layers
search the vast solution space without any constrains (even
start from random initialization), restricting the expressive
ability or modeling capacity. Then we notice that the high-
frequency information (e.g., edges and contours) is of great
significance in recovering an image captured under the hazy
scene. Based on this, some researchers [8], [21], [30] adopted
the edge prior in the dehazing model to help restore sharper
contours. Inspired by their works [8], [30], we design a detail-
enhanced convolution (DEConv) layer (see in Fig. 3), which
can integrate well-designed priors into vanilla convolution
layers.

Before elaborating the proposed DEConv in detail, we first
recap the difference convolution (DC). Previous works [27]–
[29], [31] usually describe the difference convolution as the

convolution of pixel differences (the pixel differences are
firstly calculated, and then convolved with the kernel weights
to generate feature maps), which can enhance the representa-
tion and generalization capacity of vanilla convolution. Central
difference convolution (CDC) and angular difference convolu-
tion (ADC) are two kinds of typical DCs, and implemented by
re-arranging learned kernel weights to save computational cost
and memory consumption [29]. It proves to be effective for
edge detection [29] and face anti-spoofing tasks [27], [28],
[31]. To the best of our knowledge, it is the first time
that we introduce DC to solve the single image dehazing
problem.

In our implementation, we employ five convolution layers
(four DCs [18] and one vanilla convolution), which are parallel
deployed for feature extraction. In DCs, the strategy of pixel
pair’s difference calculation can be designed to explicitly en-
code prior information into CNN. For our DEConv, besides the
central difference convolution (CDC) and the angular differ-
ence convolution (ADC), we derive the horizontal difference
convolution (HDC) and the vertical difference convolution
(VDC) to integrate traditional local descriptors (like Sobel
[32], Prewitt [33], or Scharr [34]) into the convolution layer.
As shown in Fig. 4, taking HDC as an example, the horizontal
gradient is firstly calculated by computing the differences of
selected pixel pairs. After training, we re-arrange the learned
kernel weights equivalently, and apply convolution directly
to the untouched input features. Note that, the equivalent
kernel has the similar format of traditional local descriptors
(the sum of horizontal weights equals to zero). Horizontal
kernels of Sobel [32], Prewitt [33], and Scharr [34] can be
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Fig. 4. The derivation of horizontal difference convolution (HDC).

regarded as the special case of the equivalent kernel. VDC
has the similar derivation by changing the horizontal gradient
to corresponding vertical counterpart. Both HDC and VDC
explicitly encode the gradient prior into the convolution layers
to enhance the representation and generalization capacity via
learning beneficial gradient information.

In our design, the vanilla convolution serves to obtain the
intensity-level information while the difference convolutions
are used to enhance gradient-level information. We simply add
the learned features together to obtain the output of DEConv.
We trust more sophisticated designs of the way for calculating
the pixel difference can further benefit image restoration task,
which is not the main direction of this paper.

However, deploying five parallel convolution layers for
feature extraction will undesirably cause the increase of pa-
rameters and inference time. We seek to exploit the additivity
of convolution layers for simplifying the parallel deployed
convolutions into a single standard convolution. We notice
a useful property of the convolution: if several 2D kernels
with the identical size operate on the same input with the
same stride and padding to produce outputs, and their outputs
are summed up to obtain the final output, we can add up
these kernels on the corresponding positions to obtain an
equivalent kernel which will produce the identical final output.
Surprisingly, our DEConv exactly fits this situation. Given the
input features Fin, DEConv can output Fout with identical
computational cost and inference time to a vanilla convolution
layer by utilizing re-parameterization technique. The formula
is as follows (the biases are omitted for simplification):

Fout = DEConv(Fin) =
∑5

i=1
Fin ∗Ki

= Fin ∗ (
∑5

i=1
Ki) = Fin ∗Kcvt,

(1)

where DEConv(·) denotes the operation of our proposed DE-
Conv, Ki=1:5 represent the kernels of VC, CDC, ADC, HDC,
and VDC, respectively, ∗ denotes the convolution operation,
and Kcvt denotes the converted kernel, which combines the
parallel convolutions together.

Fig. 5 visually shows the process of re-parameterization
technique. In the back-propagation phase, the kernel weights
of five parallel convolutions are updated separately using the
chain rule of gradient propagation. In the forward-propagation

Re-Parameterization: = ,

VC:

CDC:

ADC:

HDC:

VDC:

(a) Back-Propagation (b) Forward-Propagation

Fig. 5. The process of the re-parameterization technique.

phase, the kernel weights of the parallel convolutions are fixed
and the converted kernel weights are calculated by adding
up them on the corresponding positions. Note that, the re-
parameterization technique can accelerate the training and
testing process simultaneously, since both of them contain the
forward-propagation phase.

Compare with the vanilla convolution layer, the proposed
DEConv can extract more richful features while maintains the
parameter size, and introduces no extra computational cost
and memory burdens in the inference stage. More discussions
about DEConv can be found in Sec. IV-C1.

B. Content-guided Attention

Feature attention module (FAM) consists of a channel
attention and a spatial attention, which are sequentially placed
to calculate the attention weights in channel and spatial
dimensions. The channel attention calculates a channel-wise
vector, i.e., Wc ∈ RC×1×1, to re-calibrate the features. The
spatial attention calculates a spatial importance map (SIM),
i.e., Ws ∈ RH×W to adaptively indicate the importance levels
of different regions. The FAM treats different channels and
pixels unequally, improving the dehazing performance.

However, the spatial attention inside FAM can only address
the uneven haze distribution in image level, and ignore the
uneven distribution in feature level. The channel attention
inside FAM models the channel-wise differences without
considering the contextual information. With the expanding of
feature channels, the image-level haze distribution information
is encoded into the feature maps. Different channels in the
feature space have different meanings depending on the role
of the filters applied. That means for every channel of features,
the haze information is unevenly spread across the spatial
dimensions. The channel-specific SIMs are desired in this
situation. In addition, another problem of FAM is that there is
no information exchange between these two attention weights.
Wc and Ws are sequentially calculated and separately enhance
the features.

To fully address the problems mentioned above, we propose
a content-guided attention (CGA) to obtain the exclusive SIM
for every single channel of input features in a coarse-to-fine
manner, meanwhile fully mix channel attention weights and
spatial attention weights to guarantee information interaction.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

CGA

C
h

a
n

n
e

l 
a

tt
e

n
ti

o
n

S
p

a
ti

a
l 
a

tt
e

n
ti

o
n GMP GAP GAP

7×7Conv

Channel 

Shuffle

7×7GConv

1×1Conv

1×1Conv

unfold

ReLU

Channel-wise Concatenation

Sigmoid

C

+

C

S

S

C

Fig. 6. The diagram of content-guided attention (CGA). CGA is a coarse-
to-fine process: the coarse version of SIMs (i.e., Wcoa ∈ RC×H×W ) is
generated firstly and then every channel is refined by the guidance of input
features.

The detailed procedures of CGA are illustrated in Fig. 6, let
X ∈ RC×H×W denotes the proceeding input features, the
goal of CGA is to generate channel-specific SIMs (i.e., W ∈
RC×H×W ), which has the identical dimensions with X .

We first compute the corresponding Wc and Ws by follow-
ing [19], [20].

Wc = C1×1(max(0, C1×1(X
c
GAP ))),

Ws = C7×7([X
s
GAP , X

s
GMP ]),

(2)

where max(0, x) denotes the ReLU activation function,
Ck×k(·) denotes a convolution layer with k × k kernel size,
[·] denotes the channel-wise concatenation operation. Xc

GAP ,
Xs

GAP , and Xs
GMP denote the features processed by global

average pooling operation across the spatial dimensions, global
average pooling operation across the channel dimension, and
global max pooling operation across the channel dimension,
respectively. To reduce the number of parameters and limit
the model complexity, the first 1× 1 convolution reduces the
channel dimension from C to C

r (r refers to the reduction
ratio), and the second 1×1 convolution expands it back to C.
In our implementation, we opt to reduce the channel dimension
to a fixed value (i.e., 16) by setting r to C

16 .
Then we fuse Wc and Ws together via a simple addition

operation, which follows broadcasting rules, to obtain the
coarse SIMs Wcoa ∈ RC×H×W . We experimentally find the
product operation can achieve similar results.

Wcoa =Wc +Ws, (3)

In order to obtain the final refined SIMs W , every channel
of Wcoa is adjusted according to corresponding input features.
We utilize the content of input features as the guidance to
generate the final channel-specific SIMs W . In particular,
every channel of Wcoa and X are re-arranged in an alternating
manner via a channel shuffle operation [35].

W = σ(GC7×7(CS([X,Wcoa]))), (4)

where σ denotes the sigmoid operation, CS(·) denotes the
channel shuffle operation, GCk×k(·) denotes a group convolu-
tion layer with k × k kernel size, and in our implementation,
the group number is set to C.

The CGA assigns unique SIM to every channel, guiding
the model to focus on significant regions of each channel.
Therefore, more useful information encoded in features can be
emphasized to effectively improve the dehazing performance.

As shown in the right part of Fig. 2, combining proposed
DEConv with the CGA, we propose the main block of our
DEA-Net, i.e., detail-enhanced attention block (DEAB). By
removing the CGA part, we obtain the detail enhanced block
(DEB).

C. CGA-based Mixup Fusion Scheme

Following [6], [10], [21], [22], we adopt the encoder-
decoder-like (or U-Net-like) architecture for our DEA-Net. We
observe that fusing the features from the encoder part with
that from the decoder part is an effective trick in dehazing
and other low-level vision tasks [6], [10], [36], [37]. Low-
level features (e.g., edges and contours), which have a non-
negligible role for recovering haze-free images, gradually lose
their impact after passing through many intermediate layers.
Feature fusion can enhance the information flow from shallow
layers to deep ones, which is beneficial for feature preserving
and gradient back-propagation. The simplest way for fusion
is element-wise addition, which is adopted in many previous
approaches [10], [11], [21]. Later, Wu et al. [6] applied the
adaptive mixup operation to adjust the fusion proportion via
self-learned weights, which is more flexible than the addition.

However, there exists a receptive field mismatch problem
in above mentioned fusion schemes. The information encoded
in the shallow features is tremendously different from the
information encoded in the deep features, since they have the
totally different receptive fields. One single pixel in the deep
features are originated from a region of pixels in the shallow
features. Simple addition or concatenation operation or mixup
operation fails to address the mismatch before fusion.

To mitigate this problem, we further propose a CGA-based
mixup scheme to adaptively fuse the low-level features in
the encoder part with corresponding high-level features, by
modulating the features via learned spatial weights.

Fig. 2 (d) shows the details of proposed CGA-based mixup
fusion scheme. The core part is that we opt to employ the CGA
to calculate the spatial weights for feature modulation. The
low-level features in the encoder part and corresponding high-
level features are fed into the CGA to calculate the weights,
and then combined by a weighted summation method. We also
add the input features via skip connections to mitigate gradient
vanishing problem and ease the learning process. Finally, the
fused features are projected by a 1 × 1 convolution layer to
obtain the final features (i.e., Ffuse).

Ffuse = C1×1(Flow ·W+Fhigh ·(1−W )+Flow+Fhigh), (5)

More discussions about the CGA-based mixup fusion
scheme can be found in Sec. IV-C3.
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D. Overall Architecture

By combining (1) DEConv, (2) CGA, and (3) CGA-based
mixup fusion scheme together, we propose our DEA-Net with
DEAB and DEB as the basic blocks. As shown in Figure
2, our DEA-Net is a three-level encoder-decoder-like (or U-
Net-like) architecture, which consists of three parts: encoder
part, feature transform part, and decoder part. There are two
down-sampling operations and two up-sampling operations in
our DEA-Net. The down-sampling operation halves the spatial
dimensions and doubles the number of channels. It is realized
through a normal convolution layer by setting the value of
stride to 2 and setting the number of output channels to 2 times
of input channels. The up-sampling operation can be regarded
as the inverse form of the down-sampling operation, which is
realized through a deconvolution layer. The dimensional size
of level 1, level 2, and level 3 are C×H×W , 2C× H

2 ×
W
2 ,

and 4C× H
4 ×

W
4 , respectively. In our implementation, we set

the value of C to 32. Previous methods [6], [22] transform
the features only in the low-resolution space, resulting in
information loss, which is non-trivial for the detail-sensitive
task like dehazing. Differently, we deploy feature extraction
blocks from level 1 to level 3. Specifically, we opt to employ
different blocks in different levels (level 1&2: DEB, level 3:
DEAB). For feature fusion, we fuse the features after the
down-sampling operations and corresponding features before
the up-sampling operations (highlighted with green arrow lines
in Fig. 2). Finally, we simply employ a 3×3 convolution layer
at the end to obtain the dehazing result J .

The DEA-Net is trained by minimizing the pixel-wise
difference between the predicted haze-free image J and the
corresponding ground truth GT . In our implementation, we
choose L1 loss function (i.e., mean absolute error) to drive
the training.

LL1 = ||J −GT ||1, (6)

IV. EXPERIMENT

A. Datasets and Metrics

Datasets. In our implementation, we train and test our
proposed DEA-Net on synthetic and real-captured datasets.
REalistic Single Image DEhazing (RESIDE) [38] is a widely-
used dataset, which contains five subsets: Indoor Training Set
(ITS), Outdoor Training Set (OTS), Synthetic Objective Test-
ing Set (SOTS), Real-world Task-driven Testing Set (RTTS),
and Hybrid Subjective Testing Set (HSTS). We select ITS
and OTS in the training phase and select SOTS in the testing
phase. Note that, the SOTS is divided into two subsets (i.e.,
SOTS-indoor and SOTS-outdoor) for evaluating the models
separately trained on ITS and OTS. ITS contains 1399 indoor
clean images and for every clean image, 10 simulated hazy
images are generated based on the physical scattering model.
As for OTS, we pick around 296K images for the training
process 2. SOTS-indoor and SOTS-outdoor contain 500 indoor
and 500 outdoor testing images, respectively. In addition,
Haze4K dataset [39], which contains 3000 synthetic training

2Following [24], data cleaning is applied since the intersection of training
and testing datasets.

images and 1000 synthetic testing images, is also employed
to evaluate our DEA-Net. Besides, some real-captured hazy
images are utilized to further verify the effectiveness on real
scenes.

Evaluation Metrics. Peak signal-to-noise-ratio (PSNR) and
structural similarity index (SSIM) [40], which are commonly
used to measure the image quality among the computer vision
community, are utilized for dehazing performance evaluation.
For a fair comparison, we calculate the metrics based on the
RGB color images without cropping pixels.

B. Implementation Details

We implement the proposed DEA-Net model on PyTorch
deep learning platform with a single NVIDIA RTX3080Ti
GPU. We deploy DEB, DEB, and DEAB in level 1, level
2, and level 3, respectively. The number of blocks deployed
on different stages [N1, N2, N3, N4, N5] is set to [4, 4, 8, 4, 4].
The DEA-Net is optimized using Adam [41] optimizer and β1,
β2, ε are set to default values, i.e., 0.9, 0.999, 1e−8. Moreover,
the initial learning rate and the batch size are set to 1e−4 and
16, respectively. Cosine annealing strategy [42] is adopted to
adjust the learning rate from the initial value to 1e−6. To train
the model, we randomly crop patches from the original images
with size 256×256, then two data augmentation techniques are
adopted including: 90◦ or 180◦ or 270◦ rotation and vertical
or horizontal flip. In the whole training phase, the model is
trained for 1500K iterations, and it takes roughly 5 days to
train our DEA-Net on ITS.

C. Ablation Study

To demonstrate the effectiveness of our proposed DEA-
Net, we investigate on the designs and effects of (1) Detail-
enhanced convolution (DEConv), (2) Content-guided atten-
tion (CGA), and (3) CGA-based mixup fusion scheme. The
contribution of each components are analyzed via ablation
experiments.

1) DEConv: We first construct the baseline model by
deploying classical residual block (RB) [43] in level 3, and
this model is denoted as Base RB. As a popular basic block
used in dehazing domain, we also employ the feature attention
block (FAB) from [5] in level 3. The hyper-parameters are set
to the default values as described in the original paper. We
term this model as our second baseline, Base FAB.

To extract more effective features, we revise the block by
introducing DEConv into RB and FAB. As illustrated in Fig. 7,
the first vanilla convolution layer is replaced with the proposed
DEConv in both RB and FAB. The blocks deployed in level
3 are indicated as RBw/ DEConv and FABw/ DEConv, respectively.
The corresponding models are denoted as Model RB D and
Model FAB D.

For a fair comparison, all of the four blocks (i.e., RB, FAB,
RBw/ DEConv, and FABw/ DEConv) are cascaded for 6 times in level
3, and the same fusion scheme is used (i.e., Mixup [5]). For
convenience, we omit the blocks in level 1 and level 2, and
train the models for only 500K iterations with initial learning
rate is set to 2e−4 (These settings are with the ablation study).
The experimental results are tested on the same testing dataset
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TABLE I
ABLATION STUDY OF DECONV AND CGA. ALL THE EXPERIMENTS ARE CONDUCTED ON SOTS-INDOOR [38] DATASET.

Model Base RB Base FAB Model RB D Model FAB D Model DEAB Model FAB D CBAM

Setting

Level 1 – – – – – –
Level 2 – – – – – –
Level 3 RB FAB RBw/ DEConv FABw/ DEConv FABw/ DEConv & CGA (DEAB) FABw/ DEConv & CBAM

Attention – FAM – FAM CGA CBAM [19]

PSNR (dB) 30.74 33.07 31.01 33.67 35.17 34.68
SSIM 0.9729 0.9824 0.9739 0.9840 0.9866 0.9857

# Param. (K) 2105 2143 4467 4505 4569 4493

Fig. 7. The schematic diagrams of RB, RBw/ DEConv, FAB, and FABw/ DEConv.
The first vanilla convolution layer in RB/FAB is replaced with the proposed
DEConv to generate the RBw/ DEConv/FABw/ DEConv.

(i.e., SOTS-Indoor [38] dataset). Although metrics are lower
than the completely trained models reported in Table. V, the
trends and values are consistent and meaningful.

The performance of all these aforementioned models is
summarized in Table. I. Replacing the vanilla convolution
layer with the parallel convolution layers (i.e., DEConv) brings
0.27 and 0.6 dB improvement in terms of PSNR on RB
and FAB, respectively. By comparing Model FAB D with
Base FAB, the results indicate that DEConv can definitely
improve the values of metrics (i.e., PSNR and SSIM) at
the cost of around twice number of parameters (4505 K vs.
2143 K). That is very unfriendly and may cause failure under
some memory-limited situations, prohibiting the usage of the
DEConv on mobile or embedded devices.

In order to deal with the problem, we equivalently transform
the DEConv into a standard 3 × 3 convolution by adding
up the learned kernel weights in the same positions (i.e.,
re-parameterization). Table. II shows the comparative results
of the number of parameters (# Param.), the number of
floating-point operations (# FLOPs) and inference time of
Model FAB D before and after the re-parameterization opera-
tion. We can clearly see that the re-parameterization operation
simplifies the parallel structure without triggering performance
drop. In particular, after the simplification, Model FAB D still
achieves 0.6 dB performance improvement when comparing
with Base FAB and no extra overhead is introduced.

In addition, we also explore the designs of parallel convo-
lution layers from only a single vanilla convolution layer (i.e.,
FAB) to two parallel vanilla convolution layers, then to the

TABLE II
THE COMPARATIVE RESULTS OF THE NUMBER OF PARAMETERS (#
PARAMETERS), THE NUMBER OF FLOATING-POINT OPERATIONS (#

FLOPS) AND INFERENCE TIME OF Model FAB D BEFORE AND AFTER THE
RE-PARAMETERIZATION OPERATION. RE-PA. IS SHORT FOR THE

RE-PARAMETERIZATION OPERATION.

Model FAB D Base FAB
w/o Re-Pa. w/ Re-Pa. –

# Param. (K) 4505 2143 2143
# FLOPs (G) 23.72 9.23 9.23

inference time (ms) 4.53 1.76 1.76
PSNR (dB) 33.67 33.67 33.07

complete DEConv (i.e., FABw/ DEConv). As shown in Table. III,
adding a parallel vanilla convolution layer to the FAB causes
a 0.15 dB performance drop. The underlying reason behind
this may be the training difficulty due to redundant features
extracted by the identical layers. On the contrary, adding a
parallel CDC layer to the FAB boosts the performance. The
experimental results verify that by embedding traditional prior
information, difference convolution (DC) layers can effectively
extract more representative features. We also observe that
by adding more parallel DC streams for feature extraction,
the performance gradually improves from 33.07 dB to 33.67
dB in terms of PSNR. Similar trend can be observed in
terms of SSIM. Based on the discussions above, we choose
Model FAB D with basic block FABw/ DEConv for the following
study.

TABLE III
THE EXPERIMENTAL RESULTS ON DESIGNS OF PARALLEL CONVOLUTION

LAYERS.""MEANS THE SAME CONVOLUTION LAYER IS USED TWICE
WITHIN TWO PARALLEL STREAMS. THE METRICS ARE TESTED ON

SOTS-INDOOR [38] DATASET.

Design FAB + vanilla + DC + DC FABw/ DEConv

Vanilla Conv. " "" " " "

+ CDC " " "

+ HDC & VDC " "

+ ADC "

PSNR 33.07 32.92 33.23 33.43 33.67
SSIM 0.9824 0.9820 0.9826 0.9833 0.9840

2) CGA: Further, we investigate the effectiveness of the
proposed two-step coarse-to-fine attention mechanism (i.e.,
CGA). As mentioned in Section I, CGA generates channel-
specific spatial importance maps (SIMs) to indicate the im-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

portant regions of individual channel. We compare the CGA
with the other attention mechanisms such as feature attention
module (FAM) used in many dehazing methods [5], [6],
[16] and the common convolutional block attention module
(CBAM) [19]. Both FAM and CBAM contain sequential
channel attention and spatial attention with slightly different
implementations.

Model FAB D cascades FABw/ DEConv blocks in level 3 and
inside the FABw/ DEConv block, the FAM is adopted. Then, we
combine CGA and CBAM into FABw/ DEConv block to gener-
ate the FABw/ DEConv & CGA (i.e., DEAB) and FABw/ DEConv & CBAM,
respectively, and the corresponding models are denoted as
Model DEAB and Model FAB D CBAM.

The spatial attention used in FAM or CBAM learns the SIM
with only one single channel to indicate the important regions
of the input features with relatively larger number of channels.
Such approaches neglect the specificity of each channel of
features and somehow restrict the powerful representation
ability of CNNs. As shown in the right three columns of
Table. I, Model DEAB outperforms both Model FAB D and
Model FAB D CBAM by 1.5 dB and 1.01 dB in terms of
PSNR. The results indicate that CGA can better re-calibrate
the features via learning channel-specific SIMs to pay attention
to channel-wise haze distribution difference.

Fig. 8 visually illustrates the SIMs learned by CGA and
FAM and the corresponding processing results. As we can see
from Fig. 8e, one-channel SIM obtained by FAM can indicate
the uneven haze distribution (to some extend). However, it is
not accurate enough (e.g., the red chairs region) due to the
mix of some contour patterns. By using the content of input
features to guide the generation of SIMs, CGA can learn more
accurate spatial weights. Fig. 8f shows eight randomly selected
channels of SIMs, and the average map of all SIMs (right
bottom). The channel-specific SIMs treat different channels of
features with different spatial weights, which can better guide
the model to focus on critical regions. Fig. 8c and Fig. 8d
are the corresponding results. We observe that the arched
door region (highlighted by the red rectangle) recovered by
Model FAB D has obvious haze residual.

3) CGA-based Mixup Fusion Scheme: We further perform
ablation study to verify the effectiveness of proposed CGA-
based mixup fusion scheme. We utilize Model DEAB with
mixup fusion scheme from AECR-Net [6] as the baseline,
and then evaluate another two schemes: element-wise addi-
tion [10], [11], [21] and proposed CGA-based mixup. Their
models are referred to Model DEAB A and Model DEAB C.
The comparative results are shown in Table. IV. From these
results, we see that addition achieves very similar performance
with mixup (0.06 dB higher PSNR and 0.002 lower SSIM).
Addition is a special case of mixup with the constant weights,
and we experimentally find that the initial values have a
significant impact on the performance of mixup. Note that,
our proposed CGA-based mixup fusion scheme achieves the
best performance in terms of PSNR and SSIM.

In addition, we deploy feature extraction blocks in level
1 and 2 to further improve the performance. By deploying
residual block (RB) in level 1 and level 2 (we refer this model
to Model MS), the performance improves by a large margin

(a) Hazy (b) GT

(c) Model FAB D (d) Model DEAB

(e) SIM of (c) (f) SIMs of (d)

Fig. 8. Visual comparisons of FAM and our proposed CGA. We show the
learned SIMs and corresponding results.

(2.52 dB in terms of PSNR). It means transforming features
in high-resolution space even full-resolution space can repair
the lost information, which is critical for image regression.
Our final DEA-Net-S achieves 39.16 dB in terms of PSNR
and 0.9921 in terms of SSIM by deploying DEB in level
1 and 2. The suffix ‘-S’ denotes the model is trained with
the settings in ablation study, which is a simplified version.
For Model MS and DEA-Net-S, [N1, N2, N3, N4, N5] is set
to [3, 3, 6, 3, 3]. It is worth mentioning that we omit the CGA
in level 1 and level 2 (simplify DEAB into DEB) by taking the
model complexity into account and to avoid complex hyper-
parameter tuning (e.g., the reduction ratio).

D. Comparisons with SOTA Methods

In this section, we compare our proposed DEA-Net with 4
earlier dehazing approaches including DCP [12], DehazeNet
[2], AOD-Net [3], GFN [23] and 8 recent state-of-the-art
(SOTA) single image dehazing methods including FFA-Net
[5], MSBDN [10], DMT-Net [39], AECR-Net [6], SGID-
PFF [21], UDN [22], PMDNet [11], Dehamer [17] on SOTS-
Indoor, SOTS-Ourdoor, Haze4K datasets. We report three
DEA-Net variants including DEA-Net-S with the settings in
ablation study (i.e., the final model of Table. IV), DEA-Net
with normal settings, and DEA-Net-CR with normal settings
and the contrastive regularization (CR) from AECR-Net [6].
DEA-Net-CR has identical setting of CR with AECR-Net
[6]. Note that CR will not increase additional parameters and
inference time, since it can be directly removed in the testing
phase. For others, we adopt the official released codes or
evaluation results of these methods for fair comparisons if
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TABLE IV
ABLATION STUDY OF CGA-BASED MIXUP FUSION SCHEME. WE COMPARE IT WITH ELEMENT-WISE ADDITION AND MIXUP [6]. ALL THE EXPERIMENTS

ARE CONDUCTED ON SOTS-INDOOR [38] DATASET.

Model Model DEAB A Model DEAB Model DEAB C Model MS DEA-Net-S

Setting

Level 1 – – – RB DEB
Level 2 – – – RB DEB
Level 3 DEAB DEAB DEAB DEAB DEAB

Fusion scheme Addition Mixup CGA-based Mixup CGA-based Mixup CGA-based Mixup

PSNR (dB) 35.23 35.17 35.40 37.92 39.16
SSIM 0.9864 0.9866 0.9875 0.9915 0.9921

(a) Hazy (b) DCP [12] (c) GDN [24] (d) FFA [5] (e) AECR-Net [6] (f) Ours (g) GT

Fig. 9. Visual comparisons of various methods on synthetic SOTS-indoor [38] dataset. Please zoom in on screen for a better view.

(a) Hazy (b) DCP [12] (c) GDN [24] (d) FFA [5] (e) Dehamer [17] (f) Ours (g) GT

Fig. 10. Visual comparisons of various methods on synthetic SOTS-outdoor [38] dataset. Please zoom in on screen for a better view.

(a) Hazy (b) DCP [12] (c) GDN [24] (d) FFA [5] (e) AECR-Net [6] (f) Dehamer [17] (g) Ours

Fig. 11. Dehazing results of various methods on real-world hazy images. Please zoom in on screen for a better view.
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TABLE V
QUANTITATIVE COMPARISONS OF VARIOUS DEHAZING METHODS ON SOTS-INDOOR, SOTS-OURDOOR, AND HAZE4K. WE REPORT PSNR, SSIM,

NUMBER OF PARAMETERS (# PARAM.), NUMBER OF FLOATING-POINT OPERATIONS (# FLOPS), AND RUNTIME TO PERFORM COMPREHENSIVE
COMPARISONS. THE SIGN “-” DENOTES THE DIGIT IS UNAVAILABLE. BOLD AND UNDERLINED INDICATE THE BEST AND THE SECOND BEST RESULTS,

RESPECTIVELY.

Method SOTS-indoor [38] SOTS-outdoor [38] Haze4K [39] Overhead
PSNR SSIM PSNR SSIM PSNR SSIM # Param. (M) # FLOPs (G) Runtime (ms)

(TPAMI’10) DCP [12] 16.61 0.8546 19.14 0.8605 14.01 0.76 - - -
(TIP’16) DehazeNet [2] 19.82 0.8209 27.75 0.9269 19.12 0.84 0.008 0.5409 0.9932
(ICCV’17) AOD-Net [3] 20.51 0.8162 24.14 0.9198 17.15 0.83 0.0018 0.1146 0.3159
(CVPR’18) GFN [23] 22.30 0.8800 21.55 0.8444 - - 0.4990 14.94 -

(AAAI’20) FFA-Net [5] 36.39 0.9886 33.57 0.9840 26.97 0.95 4.456 287.5 47.98
(CVPR’20) MSBDN [10] 32.77 0.9812 34.81 0.9857 22.99 0.85 31.35 24.44 9.826
(ACMMM’21) DMT-Net [39] - - - - 28.53 0.96 51.79 75.56 26.83
(CVPR’21) AECR-Net [6] 37.17 0.9901 - - - - 2.611 52.20 -
(TIP’22) SGID-PFF [21] 38.52 0.9913 30.20 0.9754 - - 13.87 152.8 20.92
(AAAI’22) UDN [22] 38.62 0.9909 34.92 0.9871 - - 4.250 - -
(ECCV’22) PMDNet [11] 38.41 0.9900 34.74 0.9850 33.49 0.98 18.90 - -
(CVPR’22) Dehamer [17] 36.63 0.9881 35.18 0.9860 - - 132.4 48.93 14.12

(Ours) DEA-Net-S 39.16 0.9921 - - - - 2.844 24.88 5.632
(Ours) DEA-Net 40.20 0.9934 36.03 0.9891 33.19 0.99 3.653 32.23 7.093
(Ours) DEA-Net-CR 41.31 0.9945 36.59 0.9897 34.25 0.99 3.653 32.23 7.093

they are publicly available, otherwise we retrain them using
the same training datasets.

Quantitative Analysis. Table. V shows quantitative eval-
uation results (PSNR and SSIM indexes) of our DEA-Nets
and other state-of-the-art methods on SOTS [38] and Haze4K
[39]. As we can see, even our DEA-Net-S achieves the best
performance with 39.16 dB PSNR and 0.9921 SSIM on SOTS-
indoor than the alternatives. Further, our DEA-Net and DEA-
Net-CR improve the performance by a large margin on both
SOTS-indoor and SOTS-outdoor. On Haze4K dataset, our
DEA-Net and DEA-Net-CR achieve the best SSIM (0.9869
and 0.9885). We round the results to two decimals to keep
consistent with [39]. Our DEA-Net-CR ranks first in all
comparisons on SOTS and Haze4K.

In addition, we adopt number of parameters (# Param.),
number of floating-point operations (# FLOPs), and runtime
as the major indicators of computational efficiency. The earlier
dehazing methods contain very small parameters sizes at the
cost of a big performance drop. Compared with recent SOTA
methods, our DEA-Nets run fastest with acceptable # Param.
and # FLOPs. Any one of our DEA-Net variants can rank sec-
ond best in terms of # Param. and # FLOPs. This implies our
DEA-Nets can reach a good trade-off between performance
and model complexity. Note that # FLOPs and runtime are
measured on color images with 256× 256 resolution.

Qualitative Analysis. Fig. 9 shows the visual compar-
isons between our DEA-Net and previous SOTA methods
on synthetic SOTS-indoor dataset. Our proposed DEA-Net
can recover sharper and clearer contours or edges, and the
results obtained by DEA-Net contains less haze residuals.
Fig. 10 shows the visual comparisons on synthetic SOTS-
ourdoor dataset. We observe that in outdoor scenes, the results
of our DEA-Net are closest to the ground truth than the other
alternatives. We also test our DEA-Net on real-world hazy
images, and compare the results with various SOTA methods.
As shown, the other methods either remain haze on the

processed results or produce color deviations and artifacts. On
the contrary, our DEA-Net can output more visually pleasing
dehazing results.

V. CONCLUSION

In this paper, we propose a DEA-Net to deal with the
challenging single image dehazing problem. Specifically, we
design the detail-enhanced convolution (DEConv) by introduc-
ing the difference convolution to integrate local descriptors
into normal convolution layer. Compare with vanilla convo-
lution, DEConv has enhanced representation and generaliza-
tion capacity. In addition, the DEConv can be equivalently
converted into a vanilla convolution without triggering extra
parameters and computational cost. Then, we design a sophis-
ticated attention mechanism termed content-guided attention
(CGA), which assigns unique spatial importance map (SIM) to
every channel. With CGA, more useful information encoded in
features can be emphasized. Based on CGA, we further present
a fusion scheme to effectively fuse low-level features in the
encoder part with corresponding high-level features. Extensive
experiments show that our DEA-Net achieves state-of-the-art
results quantitatively and qualitatively.
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