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NormAUG: Normalization-guided Augmentation for
Domain Generalization

Lei Qi, Hongpeng Yang, Yinghuan Shi, Xin Geng

Abstract—Deep learning has made significant advancements in
supervised learning. However, models trained in this setting often
face challenges due to domain shift between training and test sets,
resulting in a significant drop in performance during testing. To
address this issue, several domain generalization methods have
been developed to learn robust and domain-invariant features
from multiple training domains that can generalize well to unseen
test domains. Data augmentation plays a crucial role in achieving
this goal by enhancing the diversity of the training data. In
this paper, inspired by the observation that normalizing an
image with different statistics generated by different batches
with various domains can perturb its feature, we propose a
simple yet effective method called NormAUG (Normalization-
guided Augmentation). Our method includes two paths: the main
path and the auxiliary (augmented) path. During training, the
auxiliary path includes multiple sub-paths, each corresponding
to batch normalization for a single domain or a random combi-
nation of multiple domains. This introduces diverse information
at the feature level and improves the generalization of the main
path. Moreover, our NormAUG method effectively reduces the
existing upper boundary for generalization based on theoretical
perspectives. During the test stage, we leverage an ensemble
strategy to combine the predictions from the auxiliary path of
our model, further boosting performance. Extensive experiments
are conducted on multiple benchmark datasets to validate the
effectiveness of our proposed method.

Index Terms—Normalization-guided augmentation, domain
generalization, domain-shift.

I. INTRODUCTION

IN the last decade, deep learning has achieved significant
success in various applications, including classification [1],

[2], object detection [3], and semantic segmentation [4], [5].
Most existing methods are based on the assumption of iid (in-
dependent and identically distributed) data, where the training
and test data are assumed to be from the same distribution.
However, in real-world applications, this assumption is often
violated due to domain shift between the training (source)
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and test (target) domains. For instance, a model trained on
photo images may not perform well on sketch images due
to distributional variations, i.e., domain generalization (DG).
In the DG task, the unknown data distribution of the test
data poses a challenge. If the training samples lack diversity,
the trained model may overfit to the training data, hindering
its generalization ability. Enriching the diversity of training
data can be viewed as a way to simulate the distribution of
diverse data, allowing the model to capture the characteristics
of unseen test data during the training stage. It is worth
noting that perturbing features is a technique employed to
enhance the diversity of training data, as demonstrated in
various studies [6], [7], [8].

Recently, several domain generalization methods have been
developed to address this domain generalization issue [9],
[10], [11], [12], [13], including augmentation-based methods,
meta-learning-based methods, and domain alignment-based
methods. For example, Zhang et al. [9] propose a multi-
view regularized meta-learning algorithm that utilizes multiple
optimization trajectories to determine an appropriate direction
for model updating. During testing, this method employs an
ensemble scheme to generate the final prediction. Moreover,
Ding et al. [11] aim to explicitly remove domain-specific
features for domain generalization, effectively achieving do-
main alignment. In contrast, Xu et al. [14] introduce a novel
Fourier-based perspective for domain generalization. They
exploit the fact that Fourier phase information contains high-
level semantics and is less affected by domain shift. Among
these methods, augmentation-based methods can effectively
augment the training samples, mitigating the challenge of
insufficient diversity in the domain generalization task. This
intuitive technique enriches the training data and addresses the
limitations posed by a lack of diverse samples.

In this paper, we propose a novel method for data augmen-
tation in domain generalization, which differs from existing
methods that perform augmentation at the image or feature
level [14], [12], [17] to directly enrich image style information.
Instead, we indirectly conduct data augmentation from a new
perspective using batch normalization (BN). To visualize this
concept, we perform an experiment by combining different
domains, as depicted in Fig. 1. During this experiment, we
keep all model parameters fixed, except for the statistics in
the normalization layers. Specifically, the statistics in each
batch normalization layer are computed using the current
batch. As shown in Fig. 1, each image can be perturbed by
normalizing it with different statistics derived from batches of
different domains. Therefore, we can leverage and explore this
observation in the context of domain generalization to enhance
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Fig. 1. Visualization of image’s features by t-SNE [15]. In this figure, “A”,
“C”, “S”, and “P” represent images from the Art painting, Cartoon, Sketch,
and Photo domains, respectively. For feature extraction, we utilize a ResNet-
18 [1] model pre-trained on the ImageNet dataset [16]. It is important to note
that we dynamically adjust the statistics (µ and σ) in all normalization layers
during the feature extraction process. Each image is placed in different batches
with different domains. For example, “A in ACS” indicates that images from
the Art painting domain are combined with images from the Cartoon and
Sketch domains for normalization during the test stage. As observed, this
process perturbs the original feature representation.

the diversity of training samples.
Inspired by this observation, we propose a novel

normalization-guided augmentation (NormAUG) method to
enhance the model’s generalization. Our method consists of
two paths: the main path and the augmented (or auxiliary)
path. The main path is similar to the baseline method. The
augmented path includes multiple sub-paths during training,
with each sub-path representing batch normalization for a
single domain or a random combination of multiple domains.
This strategy effectively introduces diverse information into
the feature representation. Importantly, these sub-paths in the
auxiliary path can vary at each iteration as we randomly select
sub-paths from a batch normalization (BN) bank. All paths and
sub-paths in our method are implemented using different batch
normalization layers, while other parameters are shared.

Additionally, we incorporate a classifier bank for the aux-
iliary path, where each classifier corresponds to a batch nor-
malization (BN) layer in the BN bank. This method provides
additional diverse information to our method. Leveraging the
properties of our method, we combine the results from the
auxiliary path with those from the main path to further enhance
the model’s generalization. Extensive experiments demonstrate
that our method outperforms state-of-the-art methods on vari-
ous benchmark domain generalization datasets. Ablation anal-
ysis confirms the effectiveness of each module in our method.
Furthermore, we analyze the effectiveness of NormAUG based
on existing domain generalization theory, which reveals that
our method achieves a lower generalization upper bound
compared to the baseline method.

In this paper, our main contributions can be summarized as:

• We develop a novel Normalization-guided Augmentation
(NormAUG) for domain generalization, which can effec-
tively enhance the diversity of training data.

• We devise the BN bank and classifier bank to imple-
ment the proposed normalization-guided augmentation.
This method not only enhances data diversity but also
contributes to an improved ensemble prediction.

• Our method achieves state-of-the-art accuracy on multiple
standard benchmark datasets, demonstrating its superior-
ity over existing methods. We also provide an ablation
study and further analysis to validate the effectiveness of
our proposed method.

The structure of this paper is outlined as follows: Section II
provides a literature review on relevant research. In Section III,
we introduce our normalization-guided augmentation method.
Section IV presents the experimental results and analysis.
Finally, we conclude in Section V.

II. RELATED WORK

In this section, we review the most related domain general-
ization methods to our method, including data augmentation,
ensemble learning and other methods. The following part
presents a detailed investigation.

A. Data Augmentation

Since data augmentation can effectively enhance the diver-
sity of training data, it has been recognized as a valuable
method to improve the model’s generalization ability in unseen
domains. In recent years, several methods have been developed
from this perspective for the domain generalization task.
For instance, Huang et al. [18] propose a simple training
heuristic called Representation Self-Challenging (RSC) that
significantly improves the generalization of convolutional neu-
ral networks (CNN) to out-of-domain data. RSC iteratively
challenges the dominant features activated on the training data
and encourages the network to activate remaining features that
are more correlated with the labels. Another method is intro-
duced by Xu et al. [14], who introduce a novel Fourier-based
perspective for domain generalization. Their method leverages
the assumption that the Fourier phase information contains
high-level semantics and is not easily affected by domain
shift, thus providing a robust representation for generalization
across domains. In addition, Wang et al. [19] develop a
style-complement module to enhance the generalization power
of the model. This module synthesizes images from diverse
distributions that are complementary to the source domain,
thereby enriching the training data and improving the model’s
ability to generalize to unseen domains.

Recently, there has been an increasing interest in augmenta-
tion methods based on Instance Normalization (IN), inspired
by the AdaIN technique proposed by Huang et al. [20]. These
methods aim to enhance the diversity and generalization of
models through instance-level normalization. For example,
Zhang et al. [17] propose a method called Exact Feature
Distribution Matching (EFDM) that matches the empirical
cumulative distribution functions of image features. This is
achieved by applying exact histogram matching in the image
feature space, enabling precise feature distribution alignment.
Another method, introduced by Kang et al. [21], involves syn-
thesizing novel styles continuously during training. They man-
age multiple queues to store observed styles and synthesize
novel styles with distinct distributions compared to the styles
in the queues. This method aims to enrich the style diversity
and improve generalization. Additionally, MixStyle [12] ex-
plores a technique that probabilistically mixes instance-level
feature statistics of training samples across source domains.
By blending feature statistics, MixStyle encourages the model
to learn more robust and domain-invariant representations,
enhancing generalization performance.
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Unlike the methods mentioned above, our method focuses
on data augmentation using Batch Normalization (BN). By
leveraging BN, we aim to effectively explore the diversity
present in the training data. This allows us to enhance the
generalization ability of our model by introducing variations
in the normalization process.

B. Ensemble Learning

In the domain of domain generalization, ensemble learning
has been widely utilized to improve prediction accuracy by
leveraging multiple experts during the test process. For in-
stance, Niu et al. [22] extend the multi-class SVM formulation
to train a classifier for each class and latent domain, effec-
tively integrating multiple classifiers to enhance generalization
capability. Seo et al. [23] propose a simple yet effective
multi-source domain generalization technique based on deep
neural networks, incorporating optimized normalization layers
specific to individual domains. Zhou et al. [10] introduce the
domain adaptive ensemble learning (DAEL) framework, com-
prising a shared CNN feature extractor and multiple classifier
heads trained to specialize in different source domains. Each
classifier acts as an expert for its own domain and a non-
expert for others. Segu et al. [24] train domain-dependent
representations using ad-hoc batch normalization layers to
collect independent domain statistics, enabling mapping of
domains in a shared latent space. At test time, samples from
an unknown domain are projected into this space to infer
domain properties. Besides, Zhang et al. [9] employ a multi-
view meta-learning scheme in the training stage and utilize
an ensemble scheme by producing multiple test images for a
sample to generate the final fused prediction.

In our work, our primary focus is on data augmentation
rather than designing an ensemble scheme. It is important
to note that the ensemble scheme serves as a supplementary
component in the test stage of our method. Furthermore, unlike
the method by Zhang et al. [9], our method does not require
augmenting the test images during testing.

C. Other Methods

Besides the methods mentioned above, domain alignment
or learning domain-invariant features is also crucial in domain
generalization (DG) [25], [26], [27], [28], [29]. For exam-
ple, Li et al. [25] propose learning features with domain-
invariant class conditional distributions. Furthermore, meta-
learning methods simulate training/test domain shift during
training by synthesizing virtual test domains within each mini-
batch [30], [31], [32], [33], [34]. For example, Zhang et al. [9]
develop a multi-view regularized meta-learning algorithm em-
ploying multiple optimization trajectories. These methods aim
to enhance model generalization by aligning features across
all domains or using meta-learning techniques.

III. THE PROPOSED METHOD

In this paper, we are inspired by the observation depicted in
Fig. 1, where the normalization of images from different do-
mains introduces variations in their features. Motivated by this
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Fig. 2. The pipeline of our method in the training stage. In our training
setup, we assume that there are three domains in the training set. The network
architecture consists of two paths: the main path and the auxiliary path.
Specifically, the data augmentation is performed through the auxiliary path.
During each iteration, we randomly select a set of batch normalization (BN)
layers from the BN bank (e.g., AUG-2 in the figure) and the corresponding
classifier from the classifier bank to train the model. The main path and the
auxiliary path share all parameters except for the BN layers. It is worth noting
that BN layers with the same color in the BN bank share parameters, and all
normalization layers in the auxiliary path are replaced by a BN bank. The
corresponding algorithm is shown in Alg. 1.

observation, we propose a novel method called normalization-
guided augmentation (NormAUG) for domain generalization,
as illustrated in Fig. 2. Our method comprises two paths:
the main path and the auxiliary path, which performs data
augmentation using a batch normalization bank. Meanwhile,
we also employ a classifier bank to better train our model. In
the following sections, we will provide a detailed explanation
of the background and our proposed method.

A. Background

Here, we will review the conventional batch normalization
(BN) [35]. First, we define feature maps of an image fk ∈
RC×H×W , where C are the number of channels, and H and
W are the height and the width of feature maps. In general,
BN leverages a global statistics of a batch to normalize all
samples at each iteration, which can be defined as:

BN(fk) = γ
fk − µ

σ
+ β, (1)

where γ, β ∈ RC are learnable affine transformation param-
eters, and µ, σ ∈ RC (i.e., µ = [µ1, · · · , µC ] and σ =
[σ1, · · · , σC ]) represent the channel-wise mean and standard
deviation (i.e., statistics) of BN for feature maps. For statistics
of the i-th channel are presented as:

µi =
1

|B|HW

∑
n∈B

H∑
h=1

W∑
w=1

f [n, i, h, w], (2)

σi =

√√√√ 1

|B|HW

∑
n∈B

H∑
h=1

W∑
w=1

(f [n, i, h, w]− µi)2 + ϵ, (3)

where B is a batch of samples, and |B| is the batch size.
Besides, ϵ is a constant for numerical stability.

According to Eqs. 1 2 3, we can see that the normalized
feature maps of an image are related to the statistics of a
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Fig. 3. The forward process of our method in the training stage. Here, we
assume there are 3 source domains. This figure denotes that we randomly
select the “AUG-2” in Fig. 2 from the BN bank at an iteration.

batch, meanwhile the statistics are decided by all samples of
a batch. Therefore, if we randomly select one or multiple
domain(s) to form a batch to perform the normalization,
the diverse information can be introduced to implement data
augmentation. We can also find this observation in Fig. 1.

B. NormAUG

Based on the analysis above, we propose a novel data
augmentation scheme called NormAUG, which leverages the
batch normalization (BN) perspectively. Our model consists
of two paths during the training stage: the main path and the
auxiliary path. The main path serves as the baseline model,
using ResNet-18 or ResNet-50 [1] in our implementation. The
auxiliary path generates augmented information through the
normalization-guided argumentation.

To be more specific, we randomly select an equal number of
images from N domains to create a batch B = [B1; · · · ;BN ],
where Bi denotes the samples from the i-th domain in a batch.
This batch is fed into both the main path and the auxiliary
path. In the auxiliary path, we generate diverse information
by randomly combining images from different domains and
applying normalization. For instance, if we have 3 source
domains, we can create four types of sub-batch combinations:
{B1,B2,B3}, {B12,B3}, {B1,B23}, and {B2,B13}, for the
auxiliary path. Here, B12 is the sub-batch consisting of the
samples from the first and second domains in a batch.

During the training process, our method employs a BN
bank for each normalization layer in the auxiliary path,
which consists of the corresponding four BN combina-
tions: {BN1,BN2,BN3}, {BN12,BN3}, {BN1,BN23}, and
{BN2,BN13}, as shown in Fig. 2. When we generate the
sub-batch set {B12,B3}, we feed it into the sub-paths using
{BN12,BN3} in each normalization layer. Besides, we feed
B123 into the main path. It is important to note that the main
path and the auxiliary path share the same parameters, except
for the BN layers. Therefore, our method does not introduce
a large of extra parameters.

In this paper, we adopt multiple classifiers to train our
model. The main path consists of an independent classifier,
while in the augmented path, all BNs in the normalization bank
have their respective independent classifiers. For instance, in
the case of 3 source domains, we have the classifier Cm for the
main path, and the classifier set {C1,C2,C3,C12,C13,C23}
for the augmented path. Each classifier corresponds to the BN
set used in the respective sub-paths. The forward process of
our method is illustrated in Fig. 3. The overall training loss
can be defined as follows:

BN1BN2BN3

Auxiliary

Main C!

AVG

Test
Images

AVG

Sub-pathC"

C#

C$

C%

Fig. 4. The pipeline of our method in the test stage. In the test stage, we
fuse the results from sub-paths (i.e., “AUG-1” in Fig. 2) to further improve
the accuracy of the Cm. In this figure, “AVG” denotes the average operation.

L =
∑
x∈B

C∑
c=1

− log(P (c|x)) · I(x ∈ c)

+
1

K

K∑
k=1

∑
x∈Bk

C∑
c=1

− log(Pk(c|x)) · I(x ∈ c),

(4)

where K is the number of random sub-batches. I(x ∈ c) is
equal to 1 if x ∈ c, otherwise 0. The detailed training process
is described in Alg. 1.

C. Discussion

The scheme of the combination. Generally, for N domains,
there are 1 + C2

N + C3
N · · · + CN−1

N types of sub-batch
combinations. Although adding BN layers does not bring
a large of extra parameters, our method requires using the
independent classifier for each BN, which results in the
large classifier bank in the training process. Therefore, when
there are N domains, we produce N + 1 types of sub-batch
combinations. For example, we generate 5 types of sub-
batch combinations: {B1,B2,B3,B4}, {B123,B4}, {B124,B3},
{B134,B2}, and {B234,B1} for 4 domains.

The ensemble prediction. In addition, while our method
aims to improve the accuracy of the main path through the
auxiliary path, we can further enhance the prediction by em-
ploying a fusion scheme. By considering the diversity among
the sub-paths in the auxiliary path, we select only the single-
domain path to obtain an averaged result for the augmented
path. The final prediction is then obtained by averaging the
results from both the main path and the augmented path. This
fusion process is illustrated in Fig. 4, where the combined
result provides an improved prediction. The detailed test
process is described in Alg. 2.

The other tricks. Instance normalization (IN) is known for
its ability to remove domain-specific (style) information and
improve the generalization of models. Therefore, in the main
path of our method, we combine instance normalization (IN)
with batch normalization (BN) to further enhance the model’s
generalization. Specifically, in this paper, we utilize optimized
normalization [23] in the main path of our model.

The benefits of the classifier bank. The advantages of using
the classifier bank in the auxiliary path can be summarized
as follows: 1) Enhanced Data Diversity: By using a single
classifier for each BN in the auxiliary path, we can effectively



5

explore diverse information, as each BN is free to adapt to the
specific domain characteristics. This flexibility allows us to
avoid any underlying constraints during training and improve
the model’s generalization. 2) Improved Ensemble Prediction:
The independent classifiers can also be leveraged for the fused
prediction in the test stage. This ensemble scheme further
enhances the overall performance and will be validated in our
experiments. By employing the classifier bank in the auxiliary
path, our method can capitalize on these benefits, leading to
superior results in domain generalization tasks.

Comparison with the most relevant methods. We compare
our NormAUG method with two closely related methods,
namely MixStyle [12], DSON [23], and BEN [24]. Compared
to MixStyle, there are three key differences: 1) The underlying
technique is different. Our NormAUG method is based on
batch normalization, while MixStyle is based on instance
normalization. 2) Our method employs a BN bank, which
allows for the generation of more diverse samples, whereas
MixStyle always mixes the styles of two images. 3) Our
NormAUG method can produce an ensemble result in the test
stage, thanks to its inherent properties, while MixStyle does
not have this capability. In comparison to DSON, there are two
main differences: 1) While DSON has independent paths for
each domain, our NormAUG method includes multiple sub-
paths in the auxiliary path, such as combinations of different
domains. 2) The goals of the two methods differ. Our method
has a main path, and our objective is to utilize the auxiliary
path to enhance the generalization of the main path. On the
other hand, DSON aims to learn multiple experts to improve
prediction performance in unseen domains. It is worth noting
that our NormAUG method, without the ensemble prediction
in the test stage, can also achieve excellent performance, as
demonstrated in Table VI. This is attributed to the diverse
features obtained from the auxiliary path during training. In
addition, BEN [24] is trained by independently evaluating
domains to obtain feature embeddings of source domains.
It then calculates the distance function between unknown
domain samples and the source domain to linearly weight the
representation of unknown domain samples during testing. Our
method employs the BN bank and classifier bank for indirectly
enhancing the diverse information in the training stage, and
fuses different sub-paths to achieve the final prediction in the
testing stage.

Explanation for NormAUG via existing theory. In this sec-
tion, we use the domain generalization error bound [36] to
demonstrate the effectiveness of our method. Firstly, we review
the domain generalization error bound, and then we analyze
our method based on it.

Theorem 1 [36], [37] (Domain generalization error bound):
Let γ := minπ∈△M

dH(Pt
X ,

∑M
i=1 πiPi

X)1 with minimizer
π∗ being the distance of P t

X from the convex hull Λ. Let
P ∗
X :=

∑M
i=1 π

∗
i P

i
X be the best approximator within Λ. Let

ρ := supP′
X ,P′′

X∈Λ dH(P ′

X ,P ′′

X) be the diameter of Λ. Then it
holds that

1M is the number of source domains.

Algorithm 1: The training process of our NormAUG

Input: Training samples Xtr and labels Y.
Output: The trained model (θ).

1 θ ← Initialize by ResNet pre-trained on ImageNet.
// The number of epochs is T.

2 for epoch ∈ [1, ..., T ] do
// The number of iterations in each epoch is N.

3 for iteration ∈ [1, ..., N ] do
4 Randomly select a combination of the

normalization and classifier for the auxiliary
path as shown in Fig. 2.

5 Feed these input images into the main path and
the auxiliary path, respectively.

6 Compute the whole loss as Eq. 4.
7 Update the model parameter θ.
8 end
9 end

10 return

Algorithm 2: The test process of our NormAUG

Input: Test samples Xte.
Output: The predicted result.

1 θ ← Initialize by the trained model θ.
// The number of iterations in the test set is Nte.

2 for iteration ∈ [1, ..., Nte] do
3 Feed the test images into the main path and the

auxiliary path.
4 Obtain the result from the main path (pm), and the

result set from the auxiliary path (Pa).
5 Compute the average result of sub-paths in the

auxiliary path as p̄a.
6 Compute the average of pm and p̄a as pf .
7 end
8 return

ϵt(h) ⩽
M∑
i=1

π∗
i ϵ

i(h) +
γ + ρ

2
+ λH(Pt

X ,P∗
X)), (5)

where λH(Pt
X ,P∗

X) is the ideal joint risk across the target
domain and the training domain (P ∗

X ) with the most similar
distribution to the target domain. In Theorem 1, the last item
can be treated as a constant because it represents the ideal
joint risk across the target domain and the training domain
(P ∗

X ) with the most similar distribution to the target domain.
Besides, the first item is the empirical risk error of all source
domains. Most of existing methods use the cross-entropy loss
to train the model, thus it can also be viewed as a constant in
the upper bound. Therefore, we primarily focus on analyzing
the second item (which consist of γ and ρ).

• γ represents the discrepancy between the combination of
all training domains and the target domain. In the domain
generalization setting, if the test domain is far from the
training domain in terms of distribution, the model’s gen-
eralization may be poor for all test samples. Particularly,
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Sketch

Art 
painting

Cartoon

Photo

Fig. 5. Examples from PACS. We show some images from Sketch, Art
painting, Cartoon, and Photo. As seen in this figure, the difference is obvious
for these images with the same class from different domains.

our method utilizes the normalization based augmentation
to enrich the diversity, resulting in obtaining the domain-
invariant feature. We compute the divergence between the
source and target domains, as shown in Tab. IX of the
experimental section. From this table, we observe that
the model with our augmentation generates a smaller
domain gap between source and target domains than the
model without our augmentation. Therefore, introducing
our NormAUG can be beneficial in reducing the influence
of the domain-shift between training and test sets and
effectively mitigating the aforementioned risk.

• ρ indicates the maximum distance between different
source domains. In our method, the normalization based
augmentation scheme preserves semantic information
while not introducing additional information. This indi-
cates that indirectly generating diverse style information
in our method does not create a large domain gap between
training samples. Additionally, we can also observe this
fact in Fig. 1. In summary, our method has the advantage
of reducing the generalization error bound from the
second item in Eq. 5.

IV. EXPERIMENTS

In this section, we begin by presenting the experimental
datasets and configurations in Section IV-A. Following that,
we evaluate our proposed method against the current state-of-
the-art domain generalization techniques in Section IV-B. To
verify the impact of different modules in our framework, we
carry out ablation studies in Section IV-C. Finally, we delve
deeper into the properties of our method in Section IV-D.

A. Datasets and Experimental Settings

1) Datasets: In this paper, we conduct the experiments to
validate the effectiveness of our method on five benchmark
DG datasets as follows:

art painting
cartoon
photo
sketch

art painting
cartoon
photo
sketch

(a) Elephant

art painting
cartoon
photo
sketch

art painting
cartoon
photo
sketch

(b) Guitar

art painting
cartoon
photo
sketch

art painting
cartoon
photo
sketch

(c) Horse

art painting
cartoon
photo
sketch

art painting
cartoon
photo
sketch

(d) House

Fig. 6. Visualization of image’s features by t-SNE [15]. In this figure, we
extract the image’s features using ResNet-18 [1] pre-trained on ImageNet to
show the domain gap from the feature representation view. As observed in
this figure, these images from the same class are in different positions, which
can obviously show the domain’s difference as Fig. 5.

• PACS [38] consists of four different domains: Photo, Art
painting, Cartoon and Sketch. It contains 9,991 images
with 7 object categories in total, including Photo (1,670
images), Art (2,048 images), Cartoon (2,344 images), and
Sketch (3,929 images).

• Office-Home [39] contains 15,588 images of 65 cate-
gories of office and home objects. It has four different
domains namely Art (2,427 images), Clipart (4,365 im-
ages), Product (4,439 images) and Real World (4,357
images), which is originally introduced for UDA but is
also applicable in the DG setting.

• DomainNet [40] is an extensive domain generalization
dataset, comprising 596,010 images distributed across
345 categories from 6 distinct domains: Clipart (48,837
images), Infograph (53,201 images), Painting (75,759
images), Quickdraw (172,500 images), Real (175,327
images), and Sketch (70,386 images).

• mini-DomainNet [10] takes a subset of DomainNet [40].
mini-DomainNet includes four domains and 126 classes.
As a result, mini-DomainNet contains 18,703 images of
Clipart, 31,202 images of Painting, 65,609 images of Real
and 24,492 images of Sketch.

• DigitsDG [41] is a digit recognition benchmark con-
sisting of four classical datasets MNIST [42], MNIST-
M [43], SVHN [44], SYN [43]. The four datasets mainly
differ in font style, background and image quality. We use
the original trainvalidation split in [41] with 600 images
per class per dataset.

We show some examples from four different domains on
PACS Fig. 5. As seen, there is an obvious difference among
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different domains. Besides, we also visualize the features of
four categories on PACS by t-SNE [15], as illustrated in
Fig. 6. In this figure, different colors denote different domains.
We observe that different domains appear in different spaces,
validating that there exists the domain shift in the training set.

2) Implementation Details: In this study, we utilize ResNet-
18 [1] and ResNet-50 [1] models pretrained on the ImageNet
[16] dataset as the backbone for our framework. All images
are resized to dimensions of 224 × 224. We randomly sample
16 images from each domain to form a batch of data for
input to our network. During training, we apply data augmen-
tations including horizontal flipping, random cropping, color
jittering.We use the SGD optimizer for both the classifier and
backbone networks. By default, we set the initial learning rate
(lrc) for the classifier as 0.01, and the initial learning rate (lrb)
for the backbone to 0.003. Especially, for the Office-Home
dataset, we use lrc and lrb as 0.005 and 0.001, respectively.
We follow the standard data splits and adopt the leave-one-
domain-out evaluation protocol as used in [45]. For evaluating
the performance on the target domain, we select the model
from the final training epoch. The accuracy on the target
domain is reported and averaged over three runs. We employ
the same settings for experiments on all datasets.

B. Comparison with State-of-the-art Methods

In this section, we compare our NormAUG method with
several state-of-the-art (SOTA) methods on four benchmark
datasets: PACS, Office-Home, mini-DomainNet, Digits-DG,
and DomainNet. The experimental results are reported in
Tabs. I, II, III, IV, and V. In the following part, we will give
the detailed analysis.

Results on PACS. We compare our NormAUG method with
several augmentation-based methods, including EFDMix [17],
FACT [14], RSC [18], and STNP [21]. The experimental
results are shown in Tab. I. As observed, our NormAUG
consistently outperforms these methods on both ResNet-18
and ResNet-50. Additionally, we compare our method with
ensemble methods such as DAEL [10] and DSON [23],
demonstrating the superiority of our method. Furthermore,
we compare our method with other state-of-the-art (SOTA)
methods. For instance, our NormAUG outperforms MVDG by
+0.48% (87.04 vs. 86.56) on ResNet-18. It is worth noting that
MVDG generates multiple images through data augmentation
for each test image and combines all the results for final
prediction, which is also an ensemble scheme in the test stage.

Results on Office-Home. We also present the experimental
results on the Office-Home dataset, as shown in Tab. II. As
observed, our NormAUG method consistently outperforms the
compared augmentation-based methods, including RSC [23],
MixStyle [12], L2A-OT [53], FACT [14], DSU [54], and
STNP [21]. Additionally, we compare our method with the
recent method DCG [34], further highlighting the effectiveness
of our method.

Results on mini-DomainNet. We further evaluate the ef-
fectiveness of our method on the mini-DomainNet dataset,
which has a larger number of categories compared to PACS
and Office-Home. In Tab. III, we report the experimental

TABLE I
DOMAIN GENERALIZATION ACCURACY (%) ON PACS DATASET WITH
RESNET-18 (TOP) AND RESNET-50 (BOTTOM) BACKBONE. THE BEST

PERFORMANCE IS MARKED AS BOLD, AND THE UNDERLINE IS THE
SECOND BEST RESULT.

Methods A C P S Avg.
COMEN [46] 82.60 81.00 94.60 84.50 85.68
CIRL [47] 86.08 80.59 95.93 82.67 86.32
I2-ADR [28] 82.90 80.80 95.00 83.50 85.55
XDED [29] 85.60 84.20 96.50 79.10 86.35
LRDG [11] 81.88 80.20 95.21 84.65 85.48
DAEL [10] 84.60 74.40 95.60 78.90 83.40
DSON [23] 84.67 77.65 95.87 82.23 85.11
BEN [24] 78.80 78.90 94.80 79.70 83.10
MVDG [9] 85.62 79.98 95.54 85.08 86.56
MixStyle [12] 84.10 78.80 96.10 75.90 83.70
EFDMix [17] 83.90 79.40 96.80 75.00 83.78
FACT [14] 85.37 78.38 95.15 79.15 84.51
RSC [18] 83.43 80.31 95.99 80.85 85.15
STNP [21] 84.41 79.25 94.93 83.27 85.47
NormAUG (ours) 85.60 81.85 95.70 85.00 87.04
LRDG [11] 86.57 85.78 95.57 86.59 88.63
Fishr [48] 88.40 78.70 97.00 77.80 85.50
mDSDI [49] 87.70 80.40 98.10 78.40 86.20
GIN [50] 89.00 81.50 98.00 80.20 87.20
CACE-D [51] 89.20 82.10 98.00 80.50 87.50
I2-ADR [28] 88.50 83.20 95.20 85.80 88.18
SWAD [52] 89.30 83.40 97.30 82.50 88.10
DSON [23] 87.04 80.62 95.99 82.90 86.64
MVDG [9] 89.31 84.22 97.43 86.36 89.33
RSC [18] 87.89 82.16 97.92 83.35 87.83
FACT [14] 89.63 81.77 96.75 84.46 88.15
STNP [21] 90.35 84.20 96.73 85.18 89.12
EFDMix [17] 90.60 82.50 98.10 76.40 86.90
NormAUG (ours) 88.95 86.00 97.15 85.95 89.51

TABLE II
DOMAIN GENERALIZATION ACCURACY (%) ON OFFICE-HOME. THE BEST

PERFORMANCE IS MARKED AS BOLD, AND THE UNDERLINE IS THE
SECOND BEST RESULT.

Methods A C P R Avg.
RSC [23] 58.42 47.90 71.63 74.54 63.12
MixStyle [12] 58.70 53.40 74.20 75.90 65.55
L2A-OT [53] 60.60 50.10 74.80 77.00 65.63
FACT [14] 60.34 54.85 74.48 76.55 66.56
DSU [54] 60.20 54.80 74.10 75.10 66.05
STNP [21] 59.55 55.01 73.57 75.52 65.91
DAEL [10] 59.40 55.10 74.00 75.70 66.10
DCG [34] 60.67 55.46 75.26 76.82 67.05
NormAUG (ours) 61.25 58.00 75.25 76.65 67.79

results and compare our method with various methods, includ-
ing meta-learning, domain-invariant, augmentation, and other
methods. As observed, our NormAUG method exhibits a clear
advantage over all the compared methods, demonstrating its
effectiveness on datasets with multiple classes.

Results on Digits-DG. We also evaluate the performance
of our method on the Digits-DG dataset, which is a widely
used benchmark dataset for domain generalization in digit
recognition. The experimental results are presented in Tab. IV.
As observed in the table, our method consistently outperforms
the other methods, highlighting its effectiveness in the do-
main generalization task for digit recognition. The superior
performance of our method on this dataset further validates
its robustness and generalization capability.

Results on DomainNet. We evaluate the performance of
our method on the DomainNet dataset, which has more
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TABLE III
DOMAIN GENERALIZATION ACCURACY (%) ON MINI-DOMAINNET. THE
BEST PERFORMANCE IS MARKED AS BOLD, AND THE UNDERLINE IS THE

SECOND BEST RESULT.

Methods C P R S Avg.
MLDG [32] 65.70 57.00 63.70 58.10 61.12
DAEL [10] 69.95 55.13 66.11 55.72 61.73
MMD [55] 65.00 58.00 63.80 58.40 61.30
Mixup [56] 67.10 59.10 64.30 59.20 62.43
SagNet [57] 65.00 58.10 64.20 58.10 61.35
CORAL [40] 66.50 59.50 66.00 59.50 62.87
MTL [58] 65.30 59.00 65.60 58.50 62.10
DCG [34] 69.38 61.79 66.34 63.21 65.18
NormAUG (ours) 70.20 66.90 71.20 63.40 67.93

TABLE IV
DOMAIN GENERALIZATION ACCURACY (%) ON DIGITS-DG. THE BEST

PERFORMANCE IS MARKED AS BOLD, AND THE UNDERLINE IS THE
SECOND BEST RESULT.

Methods MN MN-M SV SY Avg.
FACT [14] 97.90 65.60 72.40 90.30 81.55
COMEN [46] 97.10 67.60 75.10 91.30 82.78
CIRL [47] 96.08 69.87 76.17 87.68 82.45
STEAM [59] 96.80 67.50 76.00 92.20 83.13
NormAUG (ours) 97.50 67.65 80.10 96.85 85.53

domains compared to the other datasets in our experiment. The
results are reported in Tab. V. We can observe that on large
dataset with multiple source domains, our method exhibits a
remarkably substantial improvement in performance.

C. Ablation Study

We conducted an ablation study on the PACS and mini-
DomainNet datasets to analyze the effectiveness of different
modules. The experimental results are presented in Tab. VI. In
this table, “ON” represents the optimized normalization [23]
module in the main path, “AUG” represents the normalization-
based augmentation module in the training stage, and “EP”
represents the ensemble prediction based on the normalization-
based augmentation module.

As observed in the table, the “ON” module is effective for
the domain generalization task as it incorporates the instance
normalization scheme within the normalization layer. It con-
tributes to improved performance. Furthermore, the addition
of the “AUG” module enhances the diversity of samples and
further boosts the performance. Finally, the combination of the
ensemble prediction (“EP”) in the test stage leads to additional
performance improvement.

Overall, the results demonstrate the effectiveness of each
module and the benefits of combining them for improved
domain generalization performance.

D. Further Analysis

Impact on different numbers of classifiers. As mentioned
in Section III, we explore different configurations for the
classifiers in the training process. Specifically, we consider
two cases: one shared classifier and two classifiers. In the case
of two classifiers, one is assigned to the main path, while the
other is assigned to the auxiliary path (i.e., all sub-paths in the
auxiliary path share a classifier). It is important to note that the

TABLE V
DOMAIN GENERALIZATION ACCURACY (%) ON DOMAINNET WITH

RESNET-18 (TOP) AND RESNET-50 (BOTTOM) BACKBONE. THE BEST
PERFORMANCE IS MARKED AS BOLD, AND THE UNDERLINE IS THE

SECOND BEST RESULT.

Methods C I P Q R S Avg.
MetaReg [31] 53.70 21.10 45.30 10.60 58.50 42.30 38.58
DMG [27] 60.10 18.80 44.50 14.20 54.70 41.70 39.00
I2-ADR [28] 57.30 15.20 44.10 12.10 53.90 46.70 38.22
ITTA [60] 50.70 13.90 39.40 11.90 50.20 43.50 34.90
NormAUG (ours) 57.40 22.70 49.00 14.60 58.30 48.70 41.78
RSC [18] 55.00 18.30 44.40 12.20 55.70 47.80 38.90
DMG [27] 65.20 22.20 50.00 15.70 59.60 49.00 43.62
SagNet [57] 57.70 19.00 45.30 12.70 58.10 48.80 40.27
SelfReg [61] 60.70 21.60 49.40 12.70 60.70 51.70 42.80
I2-ADR [28] 64.40 20.20 49.20 15.00 61.60 53.30 43.95
PTE [62] 62.40 21.00 50.50 13.80 64.60 52.40 44.12
SAGM [63] 64.90 21.10 51.50 14.80 64.10 53.60 45.00
NormAUG (ours) 63.10 27.30 54.30 17.30 62.00 54.80 46.47

TABLE VI
ABLATION STUDIES ON PACS AND MINI-DOMAINNET. IN THIS TABLE,

“DA” DENOTES THE “DEEPALL” MODEL.

Methods ON AUG EP
PACS

A C P S Avg.
DA [34] - - - 77.63 76.77 95.85 69.50 79.94
Model-1 ✓ - - 80.64 81.68 95.30 79.34 84.24
Model-2 ✓ ✓ - 83.85 82.55 94.95 83.85 86.30
Ours ✓ ✓ ✓ 85.60 81.85 95.70 85.00 87.04

Method ON AUG EP
mini-DomainNet

C P R S Avg.
DA [34] - - - 65.30 58.40 64.70 59.00 61.86
Model-1 ✓ - - 67.95 63.10 70.00 57.10 64.54
Model-2 ✓ ✓ - 69.80 65.80 69.90 61.70 66.80
Ours ✓ ✓ ✓ 70.20 66.90 71.20 63.40 67.93

experimental setup and the fused scheme used in the test stage
are consistent across all variant methods. The experimental
results are summarized in Fig. 7. As observed in the figure,
using independent classifiers for each normalization combina-
tion yields the best performance among the variant methods.
This can be attributed to the increased diversity introduced
by the multiple different classifiers. Therefore, our method
adopts the use of independent classifiers for all paths. It is
important to emphasize that all methods in Fig. 7 are evaluated
using the same fused scheme in the test stage. Furthermore,
we investigate the impact of the number of classifiers for the
main path, as reported in Tab. VII. On the PACS dataset, using
one classifier (“1CLS”) and two classifiers (“2CLS”) for the
main path results in a slight performance decrease of −0.22%
and −0.26%, respectively, compared to our method. Similarly,
on the mini-DomainNet dataset, “1CLS” and “2CLS” lead to
a performance decrease of −0.41% and −0.00% compared
to our method in the main path. These results indicate that
employing different classifiers for each BN in the BN bank
can also slightly improve the performance of the main path.

Evaluation on different fusion schemes on prediction. In
the test phase, we combine the results from the main path and
the independent domain paths. In our method, recognizing the
importance of the main path, we adopt a two-step averaging
method. First, we average the results from the independent
domain paths, and then we average this averaged result with
the result from the main path. Additionally, we also evalu-
ate a direct averaging method where we average all results
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Fig. 7. Experimental results of different numbers of classifiers in our method on four datasets. In this figure, “1CLS” denotes that the main path and the
auxiliary path share the same classifier. “2CLS” indicates that the main path and the auxiliary path use different classifiers, and these sub-paths in the auxiliary
path share a classifiers. It is worth noting that all method use the same fused scheme in the test stage.

TABLE VII
EXPERIMENTAL RESULTS OF THE MAIN PATH. THE MODEL USES

DIFFERENT NUMBERS OF CLASSIFIERS, WHICH IS CORRESPONDING WITH
FIG 7 (A) AND (B). “DROP” IN THIS TABLE DENOTES THE VALUE OF

“1CLS OR 2CLS-OURS”.

PACS
Methods A C P S Avg. Drop

Ours 83.85 82.55 94.95 83.85 86.30 -
1CLS 83.25 82.15 95.05 83.85 86.08 -0.22
2CLS 84.20 81.85 95.00 83.10 86.04 -0.26

mini-DomainNet
Methods C P R S Avg. Drop

Ours 69.80 65.80 69.90 61.70 66.80 -
1CLS 69.50 65.45 69.35 61.25 66.39 -0.41
2CLS 70.05 65.70 69.55 61.90 66.80 -0.00

from the main path and the independent domain paths. The
experimental results are presented in Tab. VIII. As observed
in the table, using the two-step averaging scheme leads to
a decrease in performance compared to the direct averaging
method. This suggests that the two-step averaging scheme
reduces the influence of the main path’s result in the final
ensemble result.

TABLE VIII
EXPERIMENTAL RESULTS OF DIFFERENT FUSION SCHEMES ON

PREDICTION.

Methods PACS Office-Home mini-DomainNet Digit DG
MeanAll 86.21 67.70 67.88 85.33
Ours 87.04 67.79 67.93 85.53

Analysis of the divergence. In this section, we evaluate
the effectiveness of our NormAUG method in reducing the
domain gap between source and source (Ds2s) and between
source and target (Ds2t). To compute these divergences, we
calculate the averaged feature of the d-th domain, denoted as
f̄s
d , the averaged feature of the source domains, denoted as
f̄s, and the averaged feature of the target domain, denoted as
f̄ t. By utilizing these features, we can compute the divergence
between source and source as Ds2s =

1
D

∑D
d=1 ∥f̄s− f̄s

d∥ and
the divergence between source and target as Ds2t = ∥f̄s−f̄ t∥,
where D is the number of source domains. The experimental
results are presented in Tab. IX. In this table, “Model-1” is
the same as “Model-1” in Tab. VI. As observed, our Nor-
mAUG method effectively reduces the domain gap between
source and source as well as between source and target. This
demonstrates that our method is capable of learning domain-
invariant features, thus enhancing the generalization capability
across different domains.

Evaluation on “AUG-1” in the BN bank. As discussed

TABLE IX
DATA-DISTRIBUTION DISTANCE BETWEEN SOURCE AND SOURCE (S2S)

AND BETWEEN SOURCE AND TARGET (S2T) ON PACS. HERE, A SMALLER
DOMAIN GAP IS PREFERABLE.

Tasks
S2T S2S

Ours Model-1 Ours Model-1
CPS→A 1.82 2.49 1.83 1.91
APS→C 1.88 2.40 1.79 1.88
ACS→P 3.49 3.76 1.59 1.84
ACP→S 4.62 4.79 1.65 1.67

in Section III, our NormAUG method incorporates a ran-
dom combination scheme for conducting the normalization
operation in the auxiliary at each iteration. To evaluate the
effectiveness of this scheme, we always perform experiments
using a single domain to independently conduct the normal-
ization, which is the same as the test scheme in Fig. 4 or
“AUG-1” in Fig. 2. The experimental results are presented
in Tab. X. From the results, we can observe that the random
combination scheme significantly improves the model’s gener-
alization compared to using a single domain for normalization.
This improvement can be attributed to the increased diversity
introduced by the random combination scheme. The random
combination allows the model to explore different combina-
tions of multiple domains during the normalization process,
leading to a more comprehensive representation of the data and
enhancing the model’s ability to generalize across domains.

TABLE X
COMPARISON BETWEEN THE SINGLE-DOMAIN AUGMENTATION AND

RANDOM COMBINATION AUGMENTATION.

Methods
PACS

A C P S Avg.
Single 85.28 79.54 96.66 83.10 86.15
Ours 85.60 81.85 95.70 85.00 87.04

Methods
Office-Home

A C P R Avg.
Single 60.60 56.40 73.60 76.20 66.70
Ours 61.25 58.00 75.25 76.65 67.79

Methods
mini-DomainNet

C P R S Avg.
Single 68.40 65.90 70.90 61.90 66.78
Ours 70.20 66.90 71.20 63.40 67.93

Methods
Digit DG

MN MN-M SV SY Avg.
Single 97.45 67.10 79.68 96.40 85.16
Ours 97.50 67.65 80.10 96.85 85.53

Result of using all sub-paths in the test stage. We also
conduct experiments using all sub-paths of the auxiliary path
in the test stage. The experimental results are presented in
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Tab. XI. From this table, we observe that using all sub-paths
of the auxiliary path (i.e., “All” in Tab. XI) can slightly
improve the performance compared to using the sub-paths
for the independent domains alone, especially on the PACS
and Office-Home datasets. However, it is important to note
that using all sub-paths requires additional computation cost
in the test stage. In our NormAUG method, we primarily
focus on utilizing the sub-paths for the independent domain,
which has shown significant improvements in performance,
as demonstrated in Tab. VI. This method strikes a balance
between performance improvement and computational effi-
ciency. By utilizing the sub-paths for the independent domain,
we can effectively enhance the model’s generalization while
maintaining a reasonable computational cost in the test stage.

TABLE XI
EXPERIMENTAL RESULTS WITH DIFFERENT SUB-PATHS OF THE

AUXILIARY PATH IN THE TEST STAGE. “ALL” IS USING ALL SUB-PATHS,
AND “INDEPENDENT” IS ONLY USING THESE SUB-PATHS FOR THE

INDEPENDENT DOMAIN IN THE TEST STAGE.

PACS
Methods A C P S Avg.

All 86.05 82.25 95.80 84.80 87.23
Independent (ours) 85.60 81.85 95.70 85.00 87.04

Office-Home
Methods A C P R Avg.

All 61.20 58.15 75.30 76.75 67.85
Independent (ours) 61.25 58.00 75.25 76.65 67.79

mini-DomainNet
Methods C P R S Avg.

All 70.40 66.80 71.20 63.20 67.90
Independent (ours) 70.20 66.90 71.20 63.40 67.93

Stability of the training process. We demonstrate the sta-
bility of our method during the training process, as illustrated
in Fig. 8. From these figures, it is evident that our method
exhibits a consistent improvement in performance over time,
specifically in the unseen target domain. This stability further
emphasizes the effectiveness and robustness of our method
in enhancing the model’s generalization capabilities. Different
from multiple existing methods that select the best model for
evaluation [28], [9], we leverage the model from the last one
epoch for evaluation in all experiments.

Evaluation of the test time. Our method introduces a Batch
Normalization (BN) bank and multiple classifiers to enhance
the generalization performance of features. To ensure a balance
between improved performance and computational efficiency,
we retain only a subset of paths. The time consumption during
testing in the Art Painting domain of the PACS on a single
RTX 3090 is presented in Tab. XII. It is evident that our
method incurs only a slight increase in time compared to
DeepAll [34], while achieving state-of-the-art performance.
Besides, as the classifier is solely a fully-connected layer,
reflected in the results presented in Tab. XII, our method
experiences a slight increment in parameter count.

Further evaluation of the different fusion scheme. We
conduct experiments to investigate the influence of various
prediction’s strategies on generalization performance. We em-
ployed average and maximum fusion strategies for the inde-
pendent domain paths and the main path, respectively. As
shown in Tab. XIII, it is evident that our strategy achieves

TABLE XII
PARAMETER AND TIME RESULTS FOR VARIOUS METHODS TESTED ON

PACS.

Methods Parameters Time per Image (ms/pic) Accuracy
DeepAll [34] 11.18M 1.46 79.94
Mixstyle [12] 11.18M 1.49 83.70
I2-ADR [28] 12.23M 1.44 85.55

Ours 11.21M 1.63 87.04

the highest average performance on four benchmark datasets.
It shows that the averaging fusion strategy can improve gen-
eralization performance.

TABLE XIII
EXPERIMENTAL RESULTS OF DIFFERENT FUSION SCHEMES ON

PREDICTION ON PACS, OFFICE-HOME (OH), MINI-DOMAINNET (MD),
AND DIGIT DG (DD). “M” MEANS THE MAIN PATH AND “I” MEANS THE

INDEPENDENT DOMAIN PATHS.

Fusion Strategy PACS OH mD DD Avg.
M 86.30 65.45 66.80 84.48 75.76
Max(I) 84.40 66.68 65.78 84.45 75.33
Mean(I) 84.02 66.21 67.40 84.38 75.50
Mean(I, M) 86.21 67.70 67.88 85.33 76.78
Max(I, M) 86.45 66.95 66.63 85.31 76.33
Max(Mean(I), M) 86.58 66.45 67.28 85.34 76.41
Mean(Max(I), M) 87.18 67.79 67.25 85.48 76.93
Ours Mean(Mean(I), M) 87.04 67.79 67.93 85.53 77.07

Visualization of the activation map. In this section, we
present the activation maps of our method, as depicted in
Fig. 9. As observed, when compared to the baseline, our
method exhibits a more focused activation on the key regions
of each object. This highlights the effectiveness of our Nor-
mAUG method in improving the model’s generalization in
the target domain by capturing and highlighting the relevant
features and regions.

V. CONCLUSION

In this paper, we introduce a novel data augmentation
method based on the normalization perspective for domain
generalization. Our method consists of two paths during the
training stage: the main path, which serves as the baseline
in the domain generalization task, and the auxiliary path,
which incorporates our proposed augmentation method. Un-
like traditional augmentation schemes, we adopt a random
combination of domains for the normalization operation, thus
enriching the diversity of the training data. Additionally, our
method allows for the fusion of auxiliary results to enhance
the model’s performance in the test stage. Experimental results
on various benchmark datasets demonstrate the effectiveness
of our normalization-guided augmentation.

In our method, the normalization-based augmentation
scheme does not introduce additional information, indicating
that indirectly generating diverse style information in our
method does not create a large domain gap between training
samples, as shown in the theoretical analysis. However, the
generated diverse data from our NormAUG is not the richest
training set for each specific task. Therefore, in future work,
we will explore introducing slight extra information to further
enrich data’s diversity while keeping the semantic information.
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Fig. 8. The stability of the training process on PACS and Office-Home (OH).

(a) Sketch (b) Photo

(c) Cartoon (d) Art painting

Fig. 9. The activation maps of our method (top) and the baseline (bottom) on PACS. In this figure, the redder area indicates the more attention.
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