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Dual-view Curricular Optimal Transport for
Cross-lingual Cross-modal Retrieval

Yabing Wang, Shuhui Wang, Hao Luo, Jianfeng Dong, Fan Wang, Meng Han, Xun Wang, and Meng Wang

Abstract—Current research on cross-modal retrieval is mostly
English-oriented, as the availability of a large number of English-
oriented human-labeled vision-language corpora. In order to
break the limit of non-English labeled data, cross-lingual cross-
modal retrieval (CCR) has attracted increasing attention. Most
CCR methods construct pseudo-parallel vision-language corpora
via Machine Translation (MT) to achieve cross-lingual transfer.
However, the translated sentences from MT are generally imper-
fect in describing the corresponding visual contents. Improperly
assuming the pseudo-parallel data are correctly correlated will
make the networks overfit to the noisy correspondence. Therefore,
we propose Dual-view Curricular Optimal Transport (DCOT) to
learn with noisy correspondence in CCR. In particular, we quan-
tify the confidence of the sample pair correlation with optimal
transport theory from both the cross-lingual and cross-modal
views, and design dual-view curriculum learning to dynamically
model the transportation costs according to the learning stage
of the two views. Extensive experiments are conducted on two
multilingual image-text datasets and one video-text dataset, and
the results demonstrate the effectiveness and robustness of the
proposed method. Besides, our proposed method also shows a
good expansibility to cross-lingual image-text baselines and a
decent generalization on out-of-domain data.

Index Terms—Cross-modal retrieval, Noise correspondence
learning, Cross-lingual transfer, Optimal transport, Machine
translation.

I. INTRODUCTION

CROSS-LINGUAL Cross-modal Retrieval (CCR) retrieves
the visual contents (i.e., videos or images) which are

semantically relevant based on target-language (e.g., non-
English) queries T , but can only be trained on the manually
annotated pairs of visual contents V and source language
(e.g., English) captions S. It aims to alleviate the problem
of the existence of large-scale multilingual vision-language
corpora and the limited development of non-English languages
in the field of cross-modal retrieval [1]–[10].

The key of CCR is how to achieve effective cross-lingual
transfer to facilitate alignment between visual and target-
language features. Recently, a series of breakthroughs have
been proposed [11]–[19]. Instead of relying on the paral-
lel corpus for direct visual-target language alignment, some
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Fig. 1. An example of the P2P-based method and our proposed OT-
based confidence estimation method. The red words represent the incorrectly
translated ones.

works [16], [17] utilize source language as the focal point to
build a bridge between visual content and target language.
However, they fail to break the semantic gap between the
visual and target language and the parallel corpus is still
costly to collect. With the popularity of Machine Translation
(MT), a natural solution [14], [19] is to generate pseudo visual
and target language pairs by MT and directly establish their
correspondences. In specific, [14], [19] pre-train the model
with a large number of pairs of visual data and translated
target-language captions (V+T). However, they still rely on
large-scale vision-language datasets (e.g., CC3M [20] and its
translation) and ignore the noise from translation. As shown in
Fig. 1 (a), even with the most powerful off-the-shelf MT tools,
the translated target-language captions still contain various
noises, such as spelling errors, grammar errors, and even
distorted overall meaning.

Due to the noise introduced during the translation process,
the imperfect target-language captions cannot accurately de-
scribe the corresponding visual contents (i.e., noise corre-
spondence problem). In this case, if we persist in promoting
the alignment between the visual and target-language features
in a common space, the model will overfit to the wrong
supervision and result in degraded performance. A recent
method called Noise-Robust Cross-lingual Cross-modal Re-
trieval (NRCCR) [18] employs multi-view distillation to gener-
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ate soft pseudo-targets as direct supervision for target-language
learning, and achieves comparable results to methods of using
extra pre-training data. Considering the ubiquitousness of
noisy correspondence in various cross-domain matching tasks,
there have been consistent endeavors to alleviate its adversarial
influence. A typical solution is to use Cosine or Euclidean
distance as the point-to-point (P2P) correspondence of sample
pairs [2], [21]. However, similar with NRCCR, these methods
(Fig. 1 (a)) ignore the instance relation in context points in two
sets of data, while the context information between sample
pairs is crucial for reliable correspondence. Some works [22],
[23] utilize the Gaussian Mixture Model (GMM) to divide the
data into clean and noisy partitions. Although GMM considers
the distribution relation between samples, the assumption of
mixture of Gaussian may not capture complex and diverse pat-
terns in real-world data (e.g., long-tail distribution). Moreover,
these methods only address the matching problem between two
sets of instances (V ↔ T or S ↔ T ), which is not well-suited
for CCR with multiple domains (V ↔ T ↔ S).

To tackle the aforementioned limitations, this paper pro-
poses a CCR-specific noise-robust method called Dual-view
Curricular Optimal Transport (DCOT). To obtain reliable cor-
respondence, we formulate the noisy correspondence learning
as an optimal transport (OT) problem. Instead of finding
correspondences between individual points of two sets, our
method aims to find an optimal matching between the two sets
(Fig. 1 (b)). We interpret the optimal matching as a confidence
measure for the correct matching between sample pairs, which
allows us to evaluate the reliability of the correlation score
between sample pairs. Considering the presence of multiple
domains in CCR, we incorporate both cross-lingual and cross-
modal views and use OT from both views to quantify the
confidence of each correlated sample pair. Through theoretical
and empirical analysis, we found that the model fitting is
undertaken quickly on cross-lingual view in the early stage,
and gradually transferred to cross-modal view in the later
stage. Accordingly, we design a dual-view curriculum learn-
ing process, which constructs the transportation costs and
determines the weights of both views dynamically with a
curriculum schedule based on the learning status of the two
views at each time-step during training. Our method is more
flexible to different types of noise in CCR, as we do not make
any assumptions about the underlying data distribution. Our
contributions can be summarized as follows:

• To take into account the instance relation in context, we
formulate the noisy correspondence learning in CCR as
an optimal transport problem.

• The proposed DCOT method dynamically models the
transportation costs according to the learning state of two
views, i.e., cross-lingual and cross-modal views, to avoid
overfitting to the noisy sample pairs.

• Extensive experiments on three image-text and video-
text cross-modal retrieval benchmarks across different
languages demonstrate the effectiveness and robustness
of our method.

II. RELATED WORKS

A. Cross-lingual Cross-modal Retrieval

Cross-lingual transfer learning has become a crucial mech-
anism to battle the unavailability of annotated low-resource
languages. Recently, some works [11]–[18] try to apply cross-
lingual transfer learning to cross-modal retrieval tasks to
alleviate the problem of data scarcity and achieved remark-
able progress. Under the CCR setting, the model trained on
manually annotated pairs of vision and source language is
adapted for evaluations in different target languages. Prior
works [11], [13] aligning different languages into a common
space with non-contextualized multilingual word embeddings
(MUSE [24] and BIVEC [25]) and pre-trained sentence en-
coders(mUSE [26] and LASER [24]), respectively. The major
study can be divided into three groups based on how the
alignment of visual-target language is achieved: 1) rely on
parallel corpus, 2) collect multilingual subtitles from the web,
and 3) resort to MT.

To be specific, methods that rely on parallel corpus [16],
[17] regard English as the focal point to build a bridge
between visual and target languages. For example, the code-
switched training [17] enforces the explicit alignment between
images and non-English languages. However, these methods
indirectly align visual and non-English languages centered
on English, and the process of collecting parallel corpus is
also costly and time-consuming. Huang et al. [15] crawl and
collect the multilingual subtitles from YouTube, and extend
the HowTo100M [27] to the multilingual version. Multilingual
Vision-Language data corpus with MT [14], [18], [19] have
recently emerged as an alternative. An MT-augmented cross-
lingual cross-modal pretraining framework [14] is proposed,
which pivots primarily on images and complementarily on
English for multilingual multi-modal representation learning.
Further, a noise-robust learning framework [18] is proposed
to deal with the noise in MT results. However, they do not
explicitly evaluate the confidence of the samples but filter the
noise in the target language implicitly by introducing a cross-
attention module. This may lead to a suboptimal solution for
solving the model overfitting in the presence of noisy labels.

B. Learning with Noisy Correspondence

The issue of noisy labels has been well studied in the
visual classification task [28]–[30]. For multi-modal learn-
ing, a new paradigm [22] is developed, which considers
the alignment errors in paired data instead of the errors in
category annotations in the classification task. Recently, some
research focused on noise correspondence, such as [?], [2],
[22], [31] in cross-modal retrieval task, and [18] in cross-
lingual cross-modal retrieval task. Among them, some works
resort to robust architecture design [2], [18], [21], [32]. For
example, [18] employs multi-view self-distillation to generate
soft pseudo-targets to provide direct supervision for noise-
robust target-language representation learning. Other works
attempted to evaluate the confidence of sample pairs and
design noise-robust losses [22], [23], [31]. For example, in
[22], [23], the annotation confidence among the samples is
evaluated by introducing the GMM and the soft margin of
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Fig. 2. Illustration of our proposed DCOT method for CCR. The images, source-language captions and target-language captions are first encoded to
representations. Then the confidence of the correctly correlated for (V, T ) pairs is estimated by OT-based confidence estimation from both the cross-lingual
view and cross-modal views. For confidence estimation, we design a dual-view curriculum learning, by which the transportation costs modeling is tied to the
learning state of the two views. Finally, DCOT adjusts the contribution of each pair dynamically according to the estimated confidence during training.

sample pairs adjusted in the triplet loss. Different from these
methods, our method is more generalized and does not rely
on any prior information on the input data distribution. It can
flexibly combine the cross-lingual and the cross-modal view
to estimate the confidence of the correlated sample pairs.

III. METHOD

A. Preliminaries

Let D = {(Vi, Si)}Ni=1 be a dataset of annotated paired
images/videos and source-language captions with data size N .
As the access to human-labeled vision and target language
sample pairs during training is unavailable, some external tools
can be utilized, e.g., , MT or parallel corpus. Following [18],
we extend the training data D to D̂ = {(Vi, Si, Ti)}Ni=1

with MT, where Ti is the translated target-language caption
corresponding to Si. We define fv(.), fs(.) and ft(.) as the
image/video, source-language and target-language encoder, re-
spectively, and denote the embedded fixed-dimensional vectors
of an image/video as Vi, a source-language caption as Si,
and a target-language caption as Ti. Note that we use the
human-input target-language sentences as queries for retrieval
during inference. The framework is illustrated in Fig. 2. In
what follows, we will first introduce our proposed OT-based
confidence estimation (Sec. III-B), then describe the dual-view
optimal transportation costs modeling strategy (Sec. III-C),
and finally introduce the noise-aware alignment objective
(Sec. III-D).

B. OT-based Confidence Estimation

Supposing we have a mini-batch with M image/video-
caption pairs, denotes D = (V, S, T ). Current methods usually
utilize the Cosine distance or Euclidean distance to calculate
the point-to-point correspondence between individual (Vi, Ti)

pair without confidence estimation, which can be expressed
as:

E = dist(fv(V ), ft(T )) ∈ RM×M (1)

where dist(·) is the distance function, e.g., , cosine distance,
and Eij denotes the correlation score between the i-th visual
feature and j-th translated caption feature.

As illustrated in Fig. 3 (a), the pairwise correlation score of
(Vi, Ti) is computed individually without context. Since the
network parameters change dynamically during the training
process, the Cosine distance (or Euclidean distance) of the
same feature pair at different time steps turns out to be
different. Such a point-to-point correspondence calculation
scheme fails to consider the semantic context, and thus it can
hardly provide reliable supervision signals, especially under
the situation of high noise in the translated sentences. There-
fore, to alleviate the noise effect, a better noisy correspondence
learning strategy is to consider the mutual relation between
features in a data batch to seek for a more reliable contextual
correspondence solution.

To address this issue, we propose a solution by formulating
noisy correspondence learning as an OT problem and finding
the optimal match between data points from two sets. This
enables us to capture the correspondence between the sets
from a contextual perspective (Fig. 3 (b)), and to estimate
the confidence of the correlated sample pairs. Specifically,
when the transportation cost between a sample pair is relatively
small, their matching degree is higher, indicating that they are
highly correlated. Therefore, we can treat the similarity score
of the optimal match as a confidence measure for the correct
matching between sample pairs. If the similarity score of the
optimal match is high, we can consider the matching between
sample pairs to be reliable.
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Fig. 3. An example of different correspondence calculation methods. The
Point-to-Point method (e.g., Cosine distance) does not take into account the
contextual relationship between pairs of data. The Single-view OT method
estimates the confidence based only on the cross-modal view. In contrast,
our proposed method, DCOT, estimates confidence collaboratively from two
views.

Optimal transport problem. The Optimal Transport aims
to search the most efficient transport plan of transforming
one mass distribution to another whilst minimizing the cost.
Specifically, given two discrete point sets, X = {xi}ni=1 and
Y = {yj}mj=1, xi, yi ∈ Rd. The amount of mass on these
points is given by a and b, defined on probability space
X,Y ∈ Ω, respectively.

a =
∑n

i=1 p
x
i δ(xi), b =

∑m
j=1 p

y
j δ(yj) (2)

where δ(·) denotes the Dirac function, pxi and pyj are the
probability mass to the i-th and j-th sample, belonging to
the probability simplex, i.e., ,

∑n
i=1 p

x
i =

∑m
j=1 p

y
j = 1. The

unit transportation cost from point xi to yj is denoted by Cij .
Under such a setting, we aim to search the optimal transport
plan P ∗ to transport the mass in probability measure a to b
with the minimum costs by solving the following problem:

P ∗ = argmin
P∈Rn×m

∑
i,j PijCij

s.t. P1m = a, PT
1n = b

(3)

where P is the transport plan containing all non-negative n×m
elements with row and column sums to a and b, respectively.

We define E as the transportation costs denoting trans-
porting one unit of translated caption Ti to image/video Vi.
Besides, we add an entropic regularization to control the
smoothness of the transport plan following [33]. Our goal is
to maximize the total correlation to get an optimal estimated
confidence on this batch. The corresponding optimization
problem can be formulated as follows:

min
P∈RM×M

∑
i,j PijEij +

1
λreg

Pij logPij

s.t. P1M = 1
M 1M , PT

1M = 1
M 1M

(4)

where λreg > 0 is the regularization parameter, a larger λreg

leads to “softer" distribution for P , and vice versa. Note that
the constraint condition ensures that the solution satisfies that
all instances in the batch are equally important and should
be matched with equal probabilities. The optimal estimated
confidence P ∗ ∈ RM×M of Eq. (4) is:

P ∗ = diag(µ)Kdiag(v)

K = exp(−λregE)
(5)

where u and v are some non-negative vectors, solved with
Sinkhorn’s fixed point iteration:
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Fig. 4. (a) We train a baseline model without noise-robust learning (use
Eq. (12)) and plot the losses and loss differences ∆ incurred by cross-lingual
alignment (red and green) and cross-modal alignment (blue and orange) during
training. (b) Performance curves during the training on Multi30K. Confidence
estimation based on El (red) vs. confidence estimation based on Em (blue).

u(t+1) = 1M

Kv(t) , v(t+1) = 1M

KTu(t+1) (6)

Finally, we take the diagonal element wi of P ∗ as the
confidence of each (Vi, Ti) pair:

w = diag(P ∗) (7)

C. Dual-view Transportation Cost

As we know, transportation cost is a crucial factor in
computing the optimal transport plan. In this section, we intro-
duce a dual-view curriculum learning approach to dynamically
model the transportation costs based on the learning state of
two views.

Specifically, in CCR, given a (Vi, Si, Ti) triplet, (Vi, Si)
represents the ground-truth corresponded pair. The correspon-
dence between (Vi, Ti) pair can also be inferred from the
correspondence between (Si, Ti) pair. To obtain more accu-
rate transportation costs, we calculate them from two views,
namely the cross-lingual view (S ↔ T ) and the cross-modal
view (V ↔ T ), respectively:

El = dist(ft(S), ft(T )) ∈ RM×M

Em = dist(fv(V ), ft(T )) ∈ RM×M
(8)

As shown in Fig. 4 (a), the cross-lingual gap is much
smaller than the cross-modal one, and the convergence rate of
networks in the cross-lingual alignment is faster than that in
cross-modal alignment during training. Therefore, confidence
estimation based on El is more accurate at the beginning of
training. Based on this empirical finding, the transportation
costs from the cross-lingual view should play a dominant
role in transportation cost modeling at the preliminary stage.
Besides, considering the impact of memorization effect [34],
deep networks tend to first fit the clean sample pairs during an
early learning stage before eventually memorizing the wrong
sample pairs. Therefore, the networks will gradually memorize
noisy (S, T ) pairs after quickly learning cross-lingual align-
ment on clean data pairs. This would affect the accuracy of
the confidence estimation based on El. On the other hand, the
accuracy of the confidence estimation based on Em increases
as the cross-modal alignment improves progressively in the
learning process. Therefore, the networks should gradually
emphasize the transportation costs from the cross-modal view
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in the later stage. To validate this idea, we conducted exper-
iments to explore the influence of the transportation costs of
different views on the performance. As Fig. 4 (b) makes clear,
the results confirm that the confidence estimation based on El

achieves better results at the early stage, while that based on
Em tends to perform better at later stage. This is consistent
with our assumptions.

Based on this observation, we propose a dual-view curricu-
lum learning strategy to dynamically model the transporta-
tion costs from two views collaboratively, as illustrated in
Fig. 3 (c). This strategy provides an essential dynamic cur-
riculum where the optimization of transport costs is naturally
determined by the learning state of two views. The strategy is
formulated as follows:

E = σ(t)Em + (1− σ(t))El (9)

where σ(t) ∈ [0, 1] represents the importance of Em at time
step t. At the beginning of training, the transportation costs
would focus on El, and then gradually decrease its weight
until the transportation costs are dominant by Em:

σ(t) = 1(t ≤ τ)h(t · τ) + 1(t > τ) (10)

where τ < 1 is an empirically-set hyper-parameter that
controls the extent of El. The function h(·) is a non-linear
curriculum to adjust the importance of each view, which can
be formulated as:

h(z) = γ · z
2−z (11)

where γ is a hyper-parameter to control the magnitude of
change. The curriculum schedule of σ(t) ensures that the
importance of Em gradually increases, and equals to 1 when
t > τ , which means only Em is used when t > τ .

Overall, the complete procedure of confidence estimation is
presented in Algorithm 1.

D. Noise-aware Alignment Objective

To promote the alignment of cross-lingual and cross-
modal, we introduce pairwise alignment loss for given
{(Vi, Si, Ti)}Mi=1 pairs in a mini-batch:

Lvs =
∑M

i=1 L(fv(Vi), ft(Si))

Lvt =
∑M

i=1 L(fv(Vi), ft(Ti))

Lst =
∑M

i=1 L(fv(Si), ft(Ti))

(12)

where alignment loss function L(, ) can be implemented by
any contrastive loss. Here, we use the triplet ranking loss,
which is the major loss objective for cross-modal matching
tasks. It enforces the similarity score of the matched visual-text
pairs to be larger than the similarity score of the unmatched
ones by a margin, formulated as:

L(l1, l2) = max(0, r + s(l1, l
−
2 )− s(l1, l2))

+max(0, r + s(l2, l
−
1 )− s(l2, l1))

(13)

where l1 and l2 denote the input feature vectors, r indicates
a margin constant and s(·) denotes the similarity function,
e.g., cosine similarity, and l−2 (or l−1 ) denotes a hardest negative
pair for l1 (or l2) in the mini-batch.

Algorithm 1 Confidence Estimation Algorithm
Input: Noisy training dataset D = {(Vi, Si, Ti)}Ni=1, max

epochs Tmax, iteration Imax, maximum iteration number
of Sinkhorn algorithm max_iter

Output: w is the optimal estimated confidence of each
(Vi, Si, Ti) pair.

1: for t = 0, 1, ..., Tmax do
2: Shuffle training set
3: for n = 1, ..., Imax do
4: Fetch mini-batch D from D
5: Calculate transportation cost matrices Em and El

from two views using Eq.(8)
6: Calculate dual-view transportation costs E using

Eq.(9) with dual-view curriculum learning
7: Initialize µ(0), v(0) as one.
8: while k < max_iter do
9: Calculate µ(k+1), v(k+1) using Eq.(6)

10: end while
11: Calculate optimal estimation confidence P ∗ using

Eq.(12)
12: end for
13: w = diag(P ∗)
14: end for
15: return w

Given the existence of noisy correspondences in the (V, T )
pairs, directly aligning them would result in the model mem-
orizing the noisy correspondence, which would severely de-
grade its generalizability. Hence, we introduce a noise-aware
alignment objective, which adaptively adjusts the contribution
of sample pairs based on the estimated confidence score w.
This objective function penalizes the noisy sample pairs less,
allowing the model to focus on the more reliable samples.

L̂vt =
∑M

i=1 wiL(fv(Vi), ft(Ti)) (14)

In addition, since the main focus of our task is cross-modal
retrieval, we aim to address the noisy correspondence problem
in (V, T ) pairs. To achieve this, we introduce cross-lingual
alignment to assist the target-language encoder in learning
the correct semantics from the corresponding source-language
captions S. This helps to consistently improve the accuracy
of confidence estimation based on El. However, we also
need to prevent the network from overfitting to noisy (S, T )
pairs later in the training process. Therefore, we design a
function G(·) that dynamically adjusts the weight of the cross-
lingual objective function Lst, with the value of G(·) gradually
decreasing in the later training stages.

L̂st = G(t)Lst

G(t) = 1

1+ke(ϵ·t−
1
τ

)

(15)

where k and ϵ are hyper-parameters. Finally, our objectiveness
can be formulated as the combination of the above three
alignment losses:

L = L̂vt + L̂st + λLvs (16)

where λ determines the weight on the alignment task of
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images/videos and source-language captions.

IV. EXPERIMENTS

A. Experimental Settings

Datasets. We conduct experiments on two public multi-
lingual image-text retrieval datasets: Multi30K [35] and
Multi-MSCOCO, which are the multi-lingual version of
Flickr30K [36] and MSCOCO [37], respectively, and a public
multi-lingual video-text retrieval dataset VATEX [38]. Noting
that all non-English captions used in our training are produced
by MT instead of human annotations, but human annotations
are used as queries during inference.

Multi30K is built by extending Flickr30K [36] from English
to German, French and Czech. It contains 31,783 images and
provides five captions per image in English and German and
one caption per image in French and Czech. The human-
labeled test data is provided.

Multi-MSCOCO is extended by MSCOCO [37], and we
name it Multi-MSCOCO for ease of reference. It contains
123,287 images, and each image has 5 captions. We translate
the training set from English into Japanese and Chinese by
resorting to MT, and follow the data split as in [14].

VATEX is a large-scale multi-lingual video dataset. Each
video has 10 English captions and 10 Chinese captions to
describe the video content. Note that we only use human-
labeled English captions for training. Following [39], we split
the data into 25,991/1,500/1,500 as train/dev/test.

Evaluation metrics. Following [18], for cross-lingual
image-text retrieval, we compute the sum of all R@K (K =
1, 5, 10) for both image-to-text and text-to-image retrieval, and
use it (sumR) for performance comparison. For cross-lingual
video-text retrieval, we measure rank-based performance by
R@K (K = 1, 5, 10) and sumR for both video-to-text and
text-to-video retrieval.

Implementation Details. For image encoder, we use the
CLIP (ViT-B/32) [40], a pre-trained language-image model,
to extract image representations. For video encoder, we adopt
1,024-dimensional I3D [41] video features and use multi-layer
perceptron followed by mean-pooling. For text encoder, we use
the pre-trained mBERT-base [42], and take the outputs of the
[CLS] token from 9-th layer as the sentence representations.

For model training, we utilize an Adam optimizer and a
mini-batch size of 128. The initial learning rate is set to 2.5e−
5. We take an adjustment schedule similar to [43]. For some
hyper-parameters during training, we set the ϵ, k and λ as
10, 1 and 0.5 respectively. For multi30K, we set the scaling
parameters of dual-view curriculum learning τ and γ as 0.1
and 0.2 respectively. For Multi-MSCOCO, we set them as
0.065 and 0.6 respectively. For VATEX, we set them as 0.065
and 0.1 respectively. We use the same similarity calculation
method with NRCCL during inference

B. Ablation Studies

We perform ablation studies on Multi30K to demonstrate
the effectiveness of our proposed method.

Effectiveness of dual-view collaboration. As shown
in Tab. I, the first row reports the performance of the baseline

TABLE I
ABLATION STUDY OF CONFIDENCE ESTIMATION BASED ON DIFFERENT

VIEWS ON MULTI30K. THE METHODS WITH THE CHECKMARK (✓)
INTRODUCE NOISE-ROBUST LEARNING. THE METRIC IS THE SUM OF
RECALLS (SUMR). “EN", “DE", “FR" AND “CS" INDICATE ENGLISH,

GERMAN, FRENCH AND CZECH, RESPECTIVELY.

Cross-lingual Cross-modal en2de en2fr en2cs
✗ ✗ 476.6 480.7 470.1
✓ ✗ 481.2 483.3 475.5
✗ ✓ 482.6 484.0 475.6
✓ ✓ 487.4 490.2 478.1

en2de en2fr en2cs
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DCOT

Fig. 5. Performance comparison of P2P-based methods, GMM-based method
and our proposed OT-based confidence estimation method on Multi30K. “Euc"
and “Cos" denote the Euclidean and Cosine distance, respectively. The symbol
“+" denotes that a softmax operation is applied after the distance calculation.

method, which is trained only using the loss of Eq. (12). It
assumes that all sample pairs are correctly correlated without
any noise-robust designs. Compared with the baseline, other
methods with noise-robust learning have achieved performance
improvement, which suggests that directly promoting the
alignment of (V, T ) pairs will cause the neural networks to
overfit the wrong supervision and degrade the performance.
In addition, the performance is significantly improved when
we combine the two views, proving the effectiveness and
complementarity of our proposed dual-view collaboration.

Effectiveness of OT-based confidence estimation. To
validate the effectiveness of the confidence estimation using
OT, we compare it with the counterparts using P2P calcu-
lation without context (i.e., Euc, Cos, Euc+, and Cos+) and
GMM in confidence estimation. As shown in Fig. 5, the OT-
based methods achieve significant advantages in all languages.
The P2P-based methods suffer from the lack of contextual
information, which cannot provide accurate confidence esti-
mation. In contrast, our OT-based algorithm could estimate
confidence based on the principle of minimum global costs, by
taking the mutual relation between the samples into account.
Moreover, the performance of the GMM-based method is
severely degraded when the noise distribution deviates from
the Gaussian distribution, given that the method has strong
constraints on the data distribution. Compared with it, our OT-
based method does not require any assumptions about the data
distribution, making it more versatile. Additionally, DCOT
beats the other methods by a large margin, demonstrating
the importance of collaborative effort between the two views,
especially in the low-resource languages (e.g., Czech in en2cs).
The promising results validate that our proposed confidence
estimation algorithm can achieve more accurate confidence
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Fig. 6. (a) Examples of various curriculum schedules. We only show the
curve in the cross-modal view for ease of representation. The curve in the
cross-lingual view corresponds to 1 − w(t). (b) Performance comparison of
various curriculum schedules on Multi30K.

TABLE II
PERFORMANCE COMPARISON OF CROSS-LINGUAL IMAGE-TEXT

RETRIEVAL ON MULTI30K (THE SOURCE LANGUAGE IS ENGLISH AND
THE TARGET LANGUAGE IS NON-ENGLISH). THE SCORES ARE THE SUM OF

ALL RECALLS (SUMR). THE SYMBOL ASTERISK (*) INDICATES THAT
MODEL WAS PRE-TRAINED ON LARGE-SCALE DATASETS, E.G., CC3M AND

ITS MT VERSION.

Method Backbone (#parameters) en2de en2fr en2cs
M3P [17]* XLMR-large (560M) 351.0 276.0 220.8
UC2 [14]* XLMR-base (278M) 449.4 444.0 407.4
CCLM [19]* XLMR-large (560M) 503.4 490.6 481.6
NRCCR [18] mBERT (170M) 480.6 482.1 467.1
DCOT(ours) mBERT (170M) 494.9 495.3 481.8
CCLM+ours* XLMR-large (560M) 515.2 518.7 512.1

and greatly enhance the robustness of the model to noise.
Influence of curriculum schedule. To perform an in-depth

study on dual-view curriculum learning, we conduct experi-
ments with various curriculum schedules shown in Fig. 6 (a)
and the results are displayed in Fig. 6 (b). As we can see, the
reverse schedule performs the worst. The reason lies in that
the collaboration process of two views exactly deviates from
the relative accuracy of the confidence estimation based on
the two views, leading to a significant performance drop. For
plain schedules, the importance of each view remains fixed
throughout the training. In contrast, our proposed dynamic
schedule adjusts the importance of each view according to
their learning state, which has a significant superiority. Thus,
designing the appropriate schedule is crucial in improving the
accuracy of the confidence estimation.

C. Comparison with State-of-the-Arts

1) Cross-lingual Image-Text Retrieval: For cross-lingual
image-text retrieval, we compare four state-of-the-art (SOTA)
methods, including M3P [17], UC2 [14], CCLM [19], and
NRCCR [18]. Among them, M3P, UC2, and CCLM are all
pre-trained on the large-scale vision-language corpus, while
NRCCR is the robust learning method against noisy correspon-
dence. For a fair comparison, we compare DCOT to CCLM
with the dual-stream structure, as the dual-stream models are
more suitable for large-scale retrieval.

Comparisons on Multi30K. Tab. II summarizes the per-
formance comparison on Multi30K. Without pre-training and
using a more lightweight backbone, DCOT outperforms the
large-scale pre-trained model M3P and UC2 by a large margin,

TABLE III
PERFORMANCE COMPARISON OF CROSS-LINGUAL IMAGE-TEXT

RETRIEVAL ON MULTI-MSCOCO. “ZH" AND “JA" INDICATE THE
CHINESE AND JAPANESE, RESPECTIVELY.

Method Backbone (#parameters) en2zh en2ja
M3P [17]* XLMR-large (560M) 322.8 336.0
UC2 [14]* XLMR-base (278M) 492.0 430.2
CCLM [19]* XLMR-large (560M) 511.2 496.4
NRCCR [18] mBERT (170M) 512.4 507.0
DCOT(ours) mBERT (170M) 521.5 515.3
CCLM+ours* XLMR-large (560M) 535.6 536.2

and achieves comparable performance to CCLM. Moreover,
the sumR scores of DCOT is 2.2%, 2.7% and 3.1% higher than
noise-robust learning baseline NRCCR on three languages,
respectively. As NRCCR obtains pseudo supervision signals
by calculating point-to-point correspondence of (V, T ) pairs,
it does not take the mutual relation between features into
account. By contrast, our DCOT models the confidence esti-
mation from a contextual perspective. The results demonstrate
that our proposed contextual modeling is more beneficial for
noisy correspondence learning.

Recall that our proposed dual-view curricular optimal trans-
port is orthogonal to cross-lingual image-text similarity learn-
ing. In this experiment, we evaluate its expansibility to cross-
lingual image-text baselines. Specifically, we employ our dual-
view curricular optimal transport on the recent state-of-the-art
cross-lingual image-text method CCLM [19] during finetun-
ing. As shown in Tab. II, applying our proposed dual-view
curricular optimal transport for noise correspondence learning
consistently brings improvement in all languages. Note that
CCLM does not consider the noise of training data. These
results not only demonstrate the good expansibility of our
method to cross-lingual image-text similarity learning, but also
further verify the effectiveness of our noise correspondence
learning.

Comparisons on Multi-MSCOCO. Tab. III reports the
experimental results on Multi-MSCOCO. DCOT significantly
outperforms large-scale pre-trained models that do not con-
sider the noisy correspondence problem. Compared to NR-
CCR, DCOT still has a huge advantage, with a 1.7% and
1.6% improvement in terms of sumR. Notably, compared
to German and French in Multi30K, Chinese and Japanese
in Multi-MSCOCO exhibit significant structural differences
from English, making them more susceptible to noise dur-
ing the translation process. Thus, Multi-MSCOCO is more
challenging than Multi30K. The better performance of DCOT
on Multi-MSCOCO than on Multi30K further demonstrates
its superior robustness against noise. Besides, applying our
method to CCLM also achieves a significant performance
gain, showing that our method is compatible with popular pre-
training models.

2) Cross-lingual Video-Text Retrieval: For cross-lingual
video-text retrieval, we compare our model with two SOTA
methods, MMP [15] and NRCCR [18]. Among them, MMP
is pre-trained on Multi-HowTo100M (the multi-lingual version
of HowTo100M [44]), and NRCCR is the robust learning
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Fig. 7. Performance comparison with different noise ratios on Multi30K. The noise is injected by switching the correspondence of (V, T ) pairs artificially,
where “0%" means no noise is added artificially.

TABLE IV
PERFORMANCE COMPARISON OF CROSS-LINGUAL VIDEO-TEXT

RETRIEVAL ON VATEX (THE SOURCE LANGUAGE IS ENGLISH AND THE
TARGET LANGUAGE IS CHINESE). SYMBOL ASTERISK (*) INDICATES THE

MODEL IS PRE-TRAINED ON MULTI-HOWTO100M [15].

Method Text → Video Video → Text sumR
R@1 R@5 R@10 R@1 R@5 R@1

MMP [15] 23.9 55.1 67.8 - - - -
MMP [15] * 29.7 63.2 75.5 - - - -
NRCCR [18] 30.4 65.0 75.1 40.6 72.7 80.9 364.7
DCOT 31.4 66.3 76.8 46.0 76.3 84.8 381.8

TABLE V
ZERO-SHOT RESULTS ON MULTI30K. “-MT" INDICATES THE

MULTI-LINGUAL VERSION. NOTE THAT CC3M AND CC3M-MT BOTH
CONTAIN 3,346,732 IMAGE-TEXT PAIRS, WHILE MULTI-MSCOCO ONLY

CONTAINS 616,435 IMAGE-TEXT PAIRS. THE RESULTS SUGGEST THAT
NOISE-ROBUST LEARNING CAN ALLEVIATE THE DEPENDENCE ON

LARGE-SCALE TRAINING DATA.

Method Training Data en2de en2fr en2cs
M3P [17] CC3M + Wikipedia 220.8 162.6 122.4
UC2 [14] CC3M-MT 375.0 362.4 330.6
CCLM [19] CC3M-MT 409.5 384.4 375.3
NRCCR [18] Multi-MSCOCO 448.7 433.8 411.2
DCOT Multi-MSCOCO 458.9 445.3 424.2

method against noise introduced by MT. As shown in Tab. IV,
DCOT demonstrates superior performance compared to large-
scale pre-trained model MMP, which verifies the benefit of
mitigating the noisy correspondence problem. Compared to
the best baseline NRCCR, DCOT outperforms it by 4.7%
in terms of sumR. From the results, one could see that our
DCOT achieves excellent results, with the best results for
cross-lingual video-text retrieval.

D. Generalization Analysis on Out-of-domain Data

In this section, we evaluate the generalization capability
on out-of-domain data of our proposed method. In Tab. V,
we report results on cross-lingual image-text retrieval under
the zero-shot setting, where training data and testing data
are from different domains. Compared with large-scale pre-
trained model M3P and CCLM, DCOT and NRCCR obtain
superior results with fewer training data. Recall that both
DCOT and NRCCR are trained in noise-robust manners.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
confidence w

0

10000

20000

30000

#s
am

pl
es

(a) origin

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
confidence w

0

10000

20000

#s
am

pl
es

(b) 20% noise

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
confidence w

0

5000

10000

15000
#s

am
pl

es

(c) 40% noise

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
confidence w

0

5000

10000

15000

#s
am

pl
es

(d) 60% noise

Fig. 8. Distribution of estimated confidence w under different noise ratios
on French of Multi30K.

The results suggest that noise-robust learning can alleviate
the dependence on large-scale training data and verifies the
essential of noise-robust learning. In addition, with the same
training data, our method consistently outperforms the noise-
robust learning method NRCCR by a significant margin. This
result verifies our proposed method DCOT has better cross-
lingual transfer ability under the noisy scenario.

E. Robustness Analysis

To investigate the robustness of our proposed model,
we conduct experiments with four different noise ratios on
Multi30K. We compare our method with NRCCR which is
the only noise-robust learning method for CCR. Specifically,
we corrupt the training data by switching the correspondence
of (V, T ) pairs of some random instances based on a noise
rate parameter. The higher the noise rates, the more serious
the noisy correspondence problems become. The performance
curves on two languages with the artificial noise ratios
[0, 0.2, 0.4, 0.6] are shown in Fig. 7. Our DCOT consistently
performs better than NRCCR, and the performance gap be-
tween DCOT and NRCCR becomes larger as the noise rate
increases. The results clearly show that DCOT performs more
stability than NRCCR.
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一个男人弹吉他和拉小提琴的女人正在
人行道上播放音乐（a man playing a 
guitar and a woman playing a violin 
are playing music on a sidewalk）

a man playing a guitar and a woman 
playing a violin are playing music on 
a sidewalk

a person diving and looking at the 
water in the ocean during the day

在白天潜水和看海洋中的水 (diving 
and looking at the water in the 
ocean during the day)

Cosine-sim: (0.29)
DCOT: (0.88)

Cosine-sim: (0.26)
DCOT: (0.90)

a man is surrounded by a court on an 
outdoor basketball court and dunking 
a basketball

一个男人被室外篮球场上的法院包围，
扣篮篮球 (a man is surrounded by a 
court of justice on an outdoor 
basketball court, dunking basketball)

Cosine-sim: (0.49)
DCOT: (0.39)

a person is demonstrating how to 
thread a wide eyed needle with yarn

一个人正在展示如何用纱线向睁大
眼睛针线 (a man is showing how
to sew with yarn to open eyes )

Cosine-sim: (0.54)
DCOT: (0.36)

Video

English

Translation
(Chinese)

一个幼儿在厨房里，在桌子下推凳 (a
young child is in a kitchen, he is
under the table and pushes a stool.

Cosine-sim: (0.34)
DCOT: (0.80)

a boy is at his track meet participating 
in the triple jump

一个男孩在他的轨道上迎接三跳 (a 
boy greets three jumps on his rail)

一个幼儿在购物车后面，正在推动它
(a young child is behind a
shopping cart, pushing it)

Cosine-sim: (0.38)
DCOT: (0.66)

Result

Video

English

Translation
(Chinese)

Result

a young child is behind a 
shopping cart and is pushing it

Cosine-sim: (0.43)
DCOT: (0.39)

a young child sits on a floor and 
carefully folds a piece of clothing

一个幼儿坐在地板上，小心翼翼地
折叠一件衣服 (a young child sits 
on a floor and carefully folds a 
piece of clothing)

Cosine-sim: (0.30)
DCOT: (0.89)

a young child is in a kitchen and 
pushes a stool under a table

一件黑色衬衫的男孩有他的手臂，然
后他降低了他们 (a boy with a black
shirt has arms, then lowers them)

Cosine-sim: (0.28)
DCOT: (0.87)

a boy in a black shirt has his arms 
raised and then he lowers them

一个人在肚子上躺着颈部按摩
(a man lying on a belly for a neck 
massage)

Cosine-sim: (0.39)
DCOT: (0.40)

Video

English

Translation
(Chinese)

Result

a person receives a neck massage 
while they are lying on their stomach

Cosine-sim: (0.49)
DCOT: (0.30)

a young boy holds a chocolate donut 
before taking a bite out of it

一个年轻的男孩拿着巧克力甜甜圈，
然后咬一口 (a young boy holds a 
chocolate donut before taking a 
bite out of it)

Cosine-sim: (0.31)
DCOT: (0.94)

as the vehicle is up on a jack 
somebody is inspecting one of the 
tires and they see some damage

随着车辆上的车辆上，有人在检查一
个轮胎，他们看到一些伤害 (with the 
vehicle on the vehicle, someone 
was checking a tire and they saw 
some injuries)

(a)

(b)

(c)

Fig. 9. Qualitative results of noisy correspondence learning on VATEX. We compare our proposed DCOT to the cosine similarity that is a point-to-point
correspondence calculation method without considering the context. Our DCOT with context modeling achieves more reasonable confidence estimation results.

F. Visualization Analysis

1) Confidence Visualization: To further investigate the ef-
fectiveness of confidence estimation in our method, we carry
out experiments by visualizing the per-sample confidence
distribution under the different noise ratios. Specifically, we
corrupt the training data by randomly switching the correspon-
dence of (V, T ) pairs of some instances using a specific noise
rate. As the noise rates increased, the noisy correspondence
problems became more severe. From Fig. 8, we can observe
that the number of low-confidence samples increases with the
noise ratio, which verifies the estimated confidence can reflect
the magnitude of the noise.

2) Retrieval Visualization: In Fig. 9, we present the quali-
tative results on VATEX. From the results, we could observe
that our DCOT could provide a more reasonable confidence
estimation between sample pairs than the point-to-point coun-
terpart that directly utilizes the cosine similarity to measure
the correspondence without considering the context. Take
Fig. 9 (a) as an example. The translation of the first example
is significantly more accurate than the last one, and our DCOT

accordingly gives the highest score to the first one. In contrast,
the cosine similarity based counterpart outputs the lowest
score for this example. Moreover, we also observe that the
cosine similarity scores vary in a very small range, which
hardly reflects the quality of video-target language caption
pairs. For the second example in Fig. 9 (c), our method
fails to estimate confidence accurately. We assume that this
is because the confidence estimation of our approach is based
on global features, which capture the semantic information of
a neck massage. However, it still has limitations in fine-grained
information confidence estimation (e.g., lying on a belly).

V. CONCLUSION

In this paper, we focus on the noisy correspondence prob-
lem in CCR. We propose a novel method, called dual-view
curricular optimal transport (DCOT), which formulates the
noisy correspondence learning in CCR as an optimal transport
problem. We estimate the confidence of the correlated sample
pair from both the cross-lingual and cross-modal views and
design a dual-view collaborative curriculum learning strategy
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to model the transportation costs dynamically according to
the learning state of the two views. Additionally, we adjust
the contribution of each data pair based on the estimated
confidence to avoid network overfitting to the noisy sample
pairs. Extensive experiments demonstrate the robustness and
effectiveness of our method against noise introduced by MT.
In future work, we plan to conduct an in-depth study of the
impact of different levels of noise introduced by MT and
explore how to adaptively adjust the curriculum schedule for
different languages.
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