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Exploring the Application of Large-scale
Pre-trained Models on Adverse Weather Removal

Zhentao Tan, Yue WuT, Qiankun Liu, Qi Chu, Le Lu, Jieping Ye, Nenghai Yu

Abstract—Image restoration under adverse weather conditions
(e.g., rain, snow and haze) is a fundamental computer vision
problem and has important indications for various downstream
applications. Different from early methods that are specially
designed for specific type of weather, most recent works tend to
remove various adverse weather effects simultaneously through
either spatial feature representation learning or semantic in-
formation embedding. Inspired by the various successful ap-
plications of large-scale pre-trained models (e.g, CLIP), in this
paper, we explore the potential benefits of them for this task
through both spatial feature representation learning and semantic
information embedding aspects: 1) for spatial feature represen-
tation learning, we design a Spatially-Adaptive Residual (SAR)
Encoder to extract degraded areas adaptively. To facilitate its
training, we propose a Soft Residual Distillation (CLIP-SRD)
strategy to transfer the spatial knowledge from CLIP between
clean and adverse weather images; 2) for semantic information
embedding, we propose a CLIP Weather Prior (CWP) embedding
module to make the network handle different weather conditions
adaptively. This module integrates the sample specific weather
prior extracted by CLIP image encoder together with the
distribution specific information learned by a set of parameters,
and embeds them through a cross attention mechanism. Extensive
experiments demonstrate that our proposed method can achieve
state-of-the-art performance under different and challenging
adverse weather conditions. Code will be made available.

Index Terms—Adverse Weather Removal, Image Restoration,
Multi-modal Pre-trained Model,

I. INTRODUCTION

Images captured in daily life are commonly affected by bad
weather such as rain, snow and haze, which may degrade
the visual clarity of images and seriously deteriorate the
performance of high-level visual applications (e.g. objection
detection [1]], [2], semantic segmentation [3], [4]). Hence,
removing adverse weather effects from images is essential
and has been widely researched as a specific type of image
restoration task [S]], [6]], [[71, [8], [9l, [[LO].

Early methods, no matter weather prior based [L1], [12]
or deep learning based [Sl], [9]], [13l], are usually designed
specifically to handle one type of weather condition. Recently,
removing various adverse weather in an unified framework has
attracted great attention. To handle various adverse weather
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Fig. 1. Overall framework of the proposed method. It tries to take advantage
of CLIP image encoder from knowledge transfer for spatial feature learning
and semantic information embedding.

conditions, they either mine the spatial feature representation
through encoder designs and learning [14]], [15], or embed
semantic information of weather type via embedding modules
with learnable parameters and additional extractors [[16], [17].
However, almost all these methods only partially demonstrate
the effectiveness of specially designed encoders and embed-
ding modules. In this paper, we explore for better feature
representation and semantic embedding simultaneously with
the advance of large-scale pre-trained models (e.g., the image
encoder of CLIP).

Large-scale vision or vision-language models have shown
amazing semantic representation and generalization ability in
various tasks. For example, CLIP [18] has been successfully
applied on various downstream tasks [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28]] due to its amazing semantic
alignment ability between vision and language. Different from
these successful practices, the multi-weather removal task
depends on not only global semantic understanding but also
local spatial feature representation, which is rarely explored
before. Accordingly, we explore the utilization of large-scale
models from both two aspects with the image encoder of CLIP
in this paper, as shown in Figure [I] Considering that our task
only involves adverse weather image inputs without text, we
mainly study how to apply the image encoding capabilities of
CLIP in this paper.

To learn distinguishable features that can effectively restore
the different degraded areas in weather images, we propose
a Spatially-Adaptive Residual (SAR) Encoder to highlight
the degraded areas, along with a Soft Residual Distillation
(CLIP-SRD) strategy to guide its training. Accurately locating
degraded areas can benefit image restoration, so we regard the
residual feature from CLIP image encoder between adverse



weather and clean images as the teacher knowledge and
transfer them into the proposed SAR encoder during training.
Specifically, in terms of architecture design, the proposed SAR
encoder consists of a stack of SAR Transformer blocks, which
can adaptively extract the potential degraded areas through
spatially-adaptive residual convolutions. In terms of training
strategy, due to the different optimization objectives between
CLIP and our weather removal task, we carefully design a
soft feature matching mechanism to transfer the knowledge
from the intermediate features of CLIP image encoder into
the corresponding blocks of SAR encoder.

Semantic information such as weather type prior facilitates
the model to handle different weather conditions adaptively.
Thus, we propose a CLIP Weather Prior (CWP) Embedding
Module to take full advantage of the sample specific prior
information extracted by CLIP image encoder and also the
distribution specific prior learned during training. Regarding
them as the key and value, as well as features from the SAR
encoder as query, we embed weather type prior through the
cross attention mechanism. We also design a text-based cross-
entropy classification loss to supervise the training.

Following the previous works [14], [16]], [29], we conduct
extensive experiments on various adverse weather removal
datasets, including heavy rain [30], rain drop [6] and snow [9].
We also discuss some simple and effective ways covering
data augmentation and optimization objectives to improve the
performance. Experimental results demonstrate the superior
performance of our proposed method on multi-weather re-
moval task. Experiments indicate that CLIP can enhance the
performance of adverse weather removal through both local
spatial representation and global semantic understanding. Fur-
thermore, we observe that the CLIP weather prior contributes
more significantly to this improvement than CLIP knowledge
transfer. This could be attributed to the fact that the default
training objective of CLIP is to align global semantics between
images and text, rather than spatial representation.

II. RELATED WORK
A. Adverse Weather Removal

Adverse weather removal has been extensively explored in
the literature, including deraining [31]], [S], [30], [32], [33],
(341, [35], desnow [9], [10], [36], [37], [38], dehazing [39],
[40], [41]], [42], [43] and rain drop removal [6], [44]], [45],
[46[, [471, [48l.

Single Weather Removal: Different types of weather phe-
nomenons have always been modelled theoretically in lit-
erature. For example, rain drop [6] is always modelled as:
Lpeather = (1 — M) ® Igean + R, where M is the mask
and R is the rain drop residual map. Heavy rain effected
by rain streaks and haze [30] is modelled as: lycqther =
TOgean+Y.; Ri)+(1-T)®A, where T is the transmission
map, R; is the rain streaks at the i-th layer and A is the global
atmospheric light of the scene. Snow [9] is generally modelled
as: Lyeather = (1 = M) ® Icjean + M © S, where S is the
snow flakes. Thus, most methods focus on the restoration of
specific adverse weather based on these physical formulations.
For rain streak removal, Deep learning based methods make

great progress through recurrent network [33], conditional
GANSs [37], spatial attention [49]], or conditional VAEs [50].
For dehazing, attention based network [S1], GANs [52] and
dense network [53l], [54] are widely adopted. These technolo-
gies are also explored in rain drop removal [6]], [45] and
desnowing [9l], [55], [53], [36l]. Although excellent perfor-
mance has been achieved for specific weather removal, these
methods can not be directly applied to other types of adverse
weather removal tasks.

Multiple Weather Removal: Recently, restoring images un-
der multiple degradation with single deep learning frame-
work [56], [57], [S8), [S9] has attracted growing attention.
As for weather removal task, Zou et al. [60] propose an
unified framework to separate superimposed images. Zamir
et al [61] propose a multi-stage image restoration strategy to
refine the features during image restoration process. Although
these methods support various weather types within an unified
network, they require individual pre-trained weights for each
condition. Later, Li et al. [[14] propose an All-in-one frame-
work which consists of multiple task-specific encoders and
a common decoder to handle various tasks under an unified
framework and pre-trained weights. Valanarasu et al. [[16]] build
a Transformer-based [62]] framework and learn a set of weather
queries during training to understand and adjust the weather
degradation type in the image. Chen et al. [15] propose to
transfer the knowledge from several well pre-trained teacher
models to one student network through a two-stage knowledge
learning mechanism. Ozdenizci et al. [29] model the process
of image restoration through denoising diffusion models [63],
[64] and design a patch-based sampling strategy for arbitrary
sized image processing. Different from these methods which
only focus on either spatial feature representation or semantic
embedding, we integrate them into an unified structure with
the advance of existing large-scale models.

B. Applications of Large-scale Models

Recently, large-scale models, especially vision-language
pre-trained models have been explored to facilitate various
downstream tasks [63], [66], [67], [68], 1691, [70l, [Z1]], [IL8]].
Patashnik et al. [19] propose a text-driven image manipulation
method based on the powerful representation of CLIP [18].
Wei et al. [20] use CLIP to guide the hairstyle generation.
Gu et al. [23] and Kamath et al. [24] combine CLIP with
object detection to find the specified objects through texts.
Further more, CLIP is used for dense prediction tasks like
segmentation [25[], [26], [27], [28]. These works demonstrate
that CLIP can be applied to image generation tasks or high-
level image understanding tasks. However, there is no suc-
cessful experience showing that it can be applied to low-level
image processing tasks. Here, we mainly explore the potential
application of CLIP image encoder in weather removal task.

C. Knowledge Distillation

Knowledge distillation transfers the knowledge of a teacher
model to a student network to improve the performance of
student network [72]]. It is adopted in image classification
firstly by using the class probabilities produced from the



Conv Projection SAR Encoder | (CWP Embedding Module ) | &
3
o B =
: - : = E
= =1 bl ©n
Z 9 o Z = &2 8% onv Projection &
.2 =2 £ =) .2 @ X z X g
r——— 2 o g ) =) » 2 8 3 § o =
! A 2 z||% ~ =] =l &
! % s < ‘[ % % 3:4 m % m 3}
v
© © 2 i CWP Cross
R Attention
|

Encoder

Convolution Block

Convolution
Deconvolution

Convolution Block
Convolution Block
Convolution

O—

FFN Block

CWP Transformer
Block xN4

Convolution Block
Convolution Block

Convolution Decoder

—===> Only for training (CLIP-SRD strategy)

Conv Projection: a convolution layer which is used to adjust the resolution and channels of features.

Fig. 2. Architecture of the proposed method. It consists of a Spatially-Adaptive Residual Encoder (SAR encoder), a CLIP Weather Prior Embedding Module
(CWP embedding module) and a convolution decoder. CLIP SRD strategy is only used during training.

teacher model as soft targets to train the student network [73]],
[74]. Later, transferring the intermediate features rather than
only the final predictions has been proposed by [75] and
further improves the effect of knowledge distillation. This
idea is also applied to various tasks [76], [77], [78], [79],
[15]. However, the knowledge from CLIP image encoder may
not be suitable for direct distillation since it is not optimized
for the same objective as the student network. Hence, we
propose the soft residual matching mechanism to transfer
spatial degradation information from CLIP.

III. METHOD

Given an image under different adverse weather conditions
I, € REXW we aim to restore its corresponding clean
version I.. Our proposed method follows the similar encoder-
decoder framework in [16]. As shown in Figure @ SAR
encoder extracts degradation spatially-adaptive features from
input images and is trained via CLIP-SRD strategy. CWP em-
bedding module embeds the weather type prior into features.
Finally, convolution decoder takes the output of CWP em-
bedding module and progressively restores clean images with
the help of four multi-scale intermediate features from SAR
encoder. To take advantage of CLIP, we transfer the spatial rep-
resentation of CLIP to SAR encoder during training and embed
the weather prior from CLIP to CWP embedding module. In
the subsequent sections, we will introduce the architecture
of SAR encoder (Section [II-A), the CLIP-SRD strategy
(Section [[T-B), CWP embedding module (Section and
the training of the whole network (Section [[II-D).

A. Spatially-Adaptive Residual Encoder

Encoder plays an important role for various visual tasks
to project original discrete RGB signal to high-dimensional
feature space while filtering out interference information. To
enhance its ability, most of recent methods focus on well de-
signed network modules and training strategy. For architecture

design, All-in-one [14] searches specific encoder architecture
for each weather type. TransWeather [16] proposes Intra-
Patch Transformer Block to extract more details. As for
training strategy, Chen et al. [15] propose to transfer the
knowledge from multiple teacher models into student network
during training, while each teacher model is trained for a
single weather type. To enable the encoder to distinguish
different degraded areas, we propose the Spatially-Adaptive
Residual Transformer Block which extracts residual features
through spatially-adaptive convolutions, and guide its training
with the large-scale pre-trained CLIP image encoder (see
Section |l1I-B).

Figure [2] shows the detailed architecture of our SAR en-
coder. It is stacked with m hierarchical stages (m = 4).
We build skip connection between two adjacent stages. Each
stage consists of several SAR Transformer blocks. A single
convolution layer (defined as Comnv Projection) is used to
reduce the resolution and increase the number of channels
of features. The SAR Transformer block follows the classical
architecture [62] with a specially designed SARFFN, which
can be formulated as:

F, = MSA(Norm(F;_1)) + Fy_1,
F, = SARFFN(Norm(F))) + F,,

where F;_, and F; denote the input and output of the i-th
block. M S A is the multi-head self attention. Inspired by [16],
[801, [81], we use the efficient self-attention mechanism which
reduces the resolution of key and value through convolution.

SARFFN is the Spatially-Adaptive Residual FFN which
can extract degraded areas adaptively. We show the details
of SARFFN in Figure [3| Inspired by recent work [83], [84],
[L6], we use convolutions to introduce local and positional
information into Transformers. Let Fi/ and Fi// define the input
features and the output features, the overall operation can be
summarized as:

(D

/

F! = Reshape(Linear(F})), 2
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Fig. 3. (a) Architecture of the proposed SARFFN. DW is the Depth-Wise
Separable Convolution [82]. (b) Details of Spatially-Adaptive Residual (SAR).
Activation layers are ignored for convenience.
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Linear(Reshape(DW (F}) + SAR(F}))), (3)

where SAR is the proposed Spatially-Adaptive Residual mod-
ule, DW is the Depth-Wise Separable Convolution, Fj is the
input of SAR module, Reshape changes the shape of features
to match the subsequent operations.

Considering the spatial variations of degraded areas, we
specially design a spatially-adaptive dynamic convolution to
extract residual features in our SAR module. Different from
the normal convolution which freezes the filters after train-
ing, dynamic convolutions [85], [86], [87] generate dynamic
weights conditioned on the input, and have been applied to
many visual tasks [88]], [89]], [90], [91], [92]], [93]. Among
them, Condconv [87] produces dynamic weights by combining
a set of normal convolution filters conditionally, which makes
the inference efficient. Here, we extend it to support spatially-
adaptive modulation and apply Depth-wise filters [82] for
efficiency (similar design is also used in [93]). As shown
in Figure [3] (b), we define a 3 x 3 Depth-Wise Separable
Convolution with Ny, kernels, and predict the weights of
these kernels in each location through several efficient con-
volutions. Let w; € RNawxHixWi define the weights map
for F! € RExHixWi \where Ny, is the pre-defined number
of kernels, H; and W; are the height and width of current
features, and C; is the number of channels. w; can be obtained
as follows:

w; = Sigmoid(Conv(DW (F}))). 4)
In Figure [3| (b), we set Ny, to 3 as an example. Then, the
spatially-adaptive kernel at location (z,y) is calculated as:

Ndw
ki(z,y) = Z w; j(x,y) ® ki j, (5)
=1

where ® is the element-wise multiplication. Finally, we use
ki(x,y) to calculate the values at location (x,y) in residual
features F;.

B. CLIP Soft Residual Distillation

To guide the learning of F;°, we propose to transfer the
knowledge from CLIP during training. Since the original CLIP
is not trained for adverse weather removal, we do not directly
use the CLIP features extracted from weather images I,,.
Instead, we calculate the residual features between weather
images [, and clean images .. Specifically, let F jC(Iw) and
ch(lc) be the features of the j-th stage in CLIP image encoder
for weather images and clean images respectively. we propose
to use the soft feature matching mechanism with normalized
L1 distance to transfer the knowledge to all residual maps in
the j-th stage:

N;
£? = Z |lnorm(F;;) — norm(FjC(Ic) - ch(lw))||1, (6)
i=1

where norm(-) is the normalization operation, N JS is the
number of Transformer blocks in the j-th stage. We use a
channel-wise adaptive pooling layer to match the channels of
these features if necessary. The final distillation loss £ is as
follows:

1 m
d __ d
L4 = §§ LS. @)
j=1

J

C. CLIP Weather Prior Embedding Module

To process various weather types in an unified way, some
methods [16], [58]] learn a set of parameters to adapt to
weather. However, these parameters only learn weather distri-
butions in training datasets which cannot distinguish the exact
weather type of images. AirNet [17]] designs an encoder to
extract the degradation prior directly, but needs to be trained
carefully through contrastive learning. Differently, we propose
to use the weather prior from well pre-trained CLIP image
encoder together with distribution-based weather prior from a
set of learnable parameters.

As shown in Figure [2] the proposed CLIP Weather Prior
Embedding Module consists of N d CWP Transformer blocks,
which have the similar architecture with that of SAR Trans-
former blocks. The differences are two fold: 1) F'F'N is the
classical version without S AR architecture; 2) the multi-head
attention is replaced by the proposed CWP cross attention to
modulate features adaptively.

Figure [] shows the cross attention mechanism proposed to
embed dual weather prior. Specifically, we obtain the input
specific weather prior embedding 6. via CLIP image encoder
along with two linear layers. let 0;; € RLoxCi denote the
learnable weather prior embedding in the ¢-th CWP cross
attention, where Ly = 48 is the pre-defined hyper-parameter.
The key and value for multi-head attention are calculated as:

K, Vi = Linear (05 + w; 0.), ®)

where w; . is a learnable weight which is initialized as 0.
Following the definition of equation |1} let F;_; and F;_l be
the input and output features in the i-th CWP cross attention
respectively. We use the feature tokens from F;_; as query
Q; = Linear(F;_1) to fuse with the key and value. After
that, we can get the output FiLl through multi-head cross
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are ignored for convenience. CLIP text encoder is only used during training.

attention which is similar with the original version [62] along
with a linear layer:

QKT
VG,

To match the number of channels of original CLIP image
encoder output with C; and project it to the same feature
space as 0;;, we add two linear layers at the end of CLIP
image encoder and train them along with the whole network.
In addition, we propose a text-based classification loss L€ to
facilitate their training. According to the weather types we
want to handle, we firstly design the text prompting 1" for
each weather type and use the pre-trained CLIP text encoder
to get the corresponding feature representations Fr. Then,
we calculate the cosine distance between the text features
and image features, and get the similarity tensor that can be
regarded as the potential probability of which weather each
image belongs to. Finally, a Cross Entropy function is used to
get loss £ for training. Sine the text selection is not the focus
in this paper, we simply use the prompt template of “An image
with XXX, where “XXX” is the type of adverse weather.

Vi) €))

Fi/_1 = Linear(softmax(

D. Training Strategy

Except the proposed modules mentioned before, we also
explore some simple and effective ways to train our network,
including data augmentation and loss function.

Data Augmentation. To ensure the consistent performance of
various weather removal, we use Cut-Mix [94] to combine
arbitrary adverse weather images, which allows the network
learn to restore these types of degradation at the same time.
The ratio of it is defined as p,,;,. Other data augmentation
ways are explored in supplementary material. Notely, the
text features are only used to calculate the similarity of
classification. Thus, we only need to change the original one-
hot label into the soft one when using Cut-Mix.

Loss Function. Following the previous work [16], we use
smooth L1 loss £° and perceptual loss [95] LP to train our
proposed method. In addition, we use structural similarity

(SSIM) loss £° and Peak Signal to Noise Ratio (PSNR) loss
L which are calculated as follows:

£%5 =1 - ssim(I,, 1), (10)
L£P =1 - psnr(l,,1.)/100,

where [, is the output of network, ssim(-) and psnr(-) are

the functions to calculate SSIM and PSNR scores.

The final loss function L is as follows:

L= L5+ XNLP + As L5 + ApLP + XL+ ML, (11)
where A, As, Ap, Ac and g are the weights of corresponding
losses. Please note that we add knowledge distillation loss £%
after training N4 epochs.

IV. EXPERIMENTS

A. Implementation Details

We train our network via Adam Optimizer [96] (5, = 0.9,
B2 = 0.999) for total 250 epochs with a batch size of 32. The
learning rate is set to 2e~* and is reduced by half after every
100 epochs. We empirically set A,, As, Ap, Ac and Mg to
0.04, 0.1, 0.02, 0.08 and 0.1. Ny is set to 200. We set p,;, to
0.7 through experiments. We use the class token of ViT-B/32
based CLIP image encoder (CLIPy) as the weather prior
in CWP embedding module, and the intermediate features of
ResNet50x4 based CLIP image encoder (C' LI Pg) to transfer
the knowledge. Among the 5 stages in the CLIP image
encoder, we use the output of the first, third, fourth and fifth
stages to transfer knowledge. {N;7, N5, N5, N} are set to
3,3,3,2, while N is set to 3. The number of kernels N,
in SAR module is set to 3 by default. All experiments are
implemented in PyTorch [97] and conducted on Tesla V100
GPUs.

B. Datasets and Metrics

Following the previous work [14], [L16], [29], we con-
duct experiments on three adverse weather conditions: snow,
heavy rain with haze and raindrops. The training dataset
consists of 18,069 images: 9,001 synthetic snow images from
Snow100K [9], 818 raindrops images from RainDrop [6] and
8,250 heavy rain images with rain streaks and haze from
Outdoor [30]] (denoted as Testl). Accordingly, the test dataset
consists of 16,801 images from Snowl00K-L test set [9],
58 images from RainDrop test set [6] and 750 images from
Testl dataset [30]]. For fair comparison, we directly use the
training and test set provided by [16]. The training images
are randomly cropped with the resolution of 256 x 256, while
the test images keep their original resolution unchanged. We
calculate the structural similarity (SSIM) and Peak Signal
to Noise Ratio (PSNR) via the code released by [16] for
quantitive comparison. When comparing our method to others,
we save the results as PNG images and then calculate the
metrics. Otherwise, we directly use the output of model in
our ablation study for convenience.



TABLE I
COMPARISON WITH SOTA WEATHER SPECIFIC METHODS AND MULTI-WEATHER REMOVAL METHODS. f MEANS THE SCORES ARE PROVIDED BY THE
PAPER. * MEANS THE METHOD WITHOUT ADDITIONAL PSNR/SSIM LOSS AND DATA AUGMENTATION. WEATHER SPECIFIC METHODS ARE ONLY
TRAINED ON THEIR OWN WEATHER DATASET (THE CORRESPONDING RESULTS ARE MARKED IN ifalics), AND ARE ALSO DIRECTLY TESTED ON OTHER
WEATHER REMOVAL SETS IF POSSIBLE. MULTI-WEATHER METHODS ARE TRAINED ON THE SAME MULTI-WEATHER DATASETS MENTIONED IN

SECTIONIV-BI
Weather Methods Snow100K-L [9] Testl [30] RainDrop [6] Mean

Type PSNRT | SSIMT | PSNRT [ SSIMT | PSNRT [ SSIMT | PSNRT | SSIMT

DesnowNet' [9] 27.17 | 0.8983 - - - - - -

Snow

DDMSNett 1371 28.85 0.8772 - - - - - -

rain streak HRGANT [30] - - 21.56 0.8550 - - - -
&. haze MPRNet [61] 18.99 0.7320 28.49 0.9337 19.43 0.8689 22.30 0.8448
Raindro AttentiveGAN [6] 18.36 0.6659 14.05 0.6469 31.47 0.9582 21.29 0.7570

P CCN' [44) ; - ; . 3134 | 0.9500 : ;
MPRNet [61] 27.92 0.9108 28.08 0.9306 29.45 0.9416 28.48 0.9277
Multi-weather: Restormer [59] 27.76 0.9067 27.24 0.9206 29.29 0.9371 28.10 0.9214
Uformer [58] 26.60 0.8872 25.40 0.8886 27.38 0.9193 26.46 0.8984
Snow &. All-in-one’ [14] 28.33 0.8820 24.71 0.8980 31.12 0.9288 28.05 0.9029
Rain streak TransWeather [16] 28.14 0.9136 27.64 0.9285 29.53 0.9466 28.44 0.9296
&. Haze &. Chen et al. [13]] 2696 | 0.8967 | 2420 | 0.9037 | 30.47 | 0.9541 27.21 0.9182
Raindrop Weatherdiff [29] 27.95 0.9155 27.42 0.9434 28.62 0.9483 28.00 0.9357
Ours 28.54 0.9221 28.68 0.9400 30.40 0.9558 29.21 0.9393
Ours* 28.45 09178 28.70 0.9362 29.98 0.9491 29.04 0.9343

TABLE II removal methods, our method achieves the best performance

QUANTITATIVE COMPARISON OF MAIN DESIGNS.

| Methods | PSNR 1 | SSIM ¢
| Baseline [16] | 2889 | 09458
A | +PSNR and SSIM Loss | 2004 | 09498
B | A + Data Augmentation | 2923 | 09514
C | B + CWP Embedding Module | 2943 | 09523
D | C+ SAR Encoder and CLIP SRD | 29.71 | 0.9544

C. Comparison with SOTA Methods

In Table [, we compare the proposed method with re-
cent SOTA methods, including weather specific methods and
multi-weather removal methods. For weather specific methods,
we select DesnowNet [9] and DDMSNet [37] for image
desnowing, HRNet [30] and MPRNet [61] for image derain-
ing and hazing, and AttentiveGAN [6] and CCN [44] for
removing raindrops. For multi-weather removal, we select
image restoration methods (MPRNet [61], Restormer [59] and
Uformer [358]) and adverse weather removal metods (All-in-
one [14], TransWeather [16], Weatherdiff [29] and the method
proposed by [15]). If the official training code or pre-trained
models are provided, we calculate the metrics by ourselves.
Otherwise we directly report the scores in their original paper.

Weather specific methods always achieve promising perfor-
mance in the specific weather, sometimes even better than
all of the multi-weather methods (e.g. CCN and Attentive-
GAN achieve the best performance in terms of PSNR on
RainDrop dataset). However, if these methods are directly
applied to other weather removal tasks, their performance will
degrade significantly. As a contrast, multi-weather removal
methods can achieve consistent performance on various ad-
verse weather removal tasks. Compared to these multi-weather

in almost all metrics and all test datasets with the successful
application of powerful CLIP. Specifically, compared to recent
SOTA methods, like TransWeather and MPRNet, the proposed
method improve the average PSNR and SSIM scores by more
than 0.73 and 0.0097. We further provide the score that without
additional PSNR/SSIM loss and data augmentation (defined as
Ours*) to demonstrate that it still achieves SOTA performance
with the proposed two modules. We find the scores reported
in All-in-one [14] are unreasonably higher than that of some
methods [29], [15] and give analysis in the supplementary
material.

The qualitative comparisons are shown in Figure [5] Com-
pared to other multi-weather methods, the proposed mehtod
can handle various adverse weather conditions caused by
raindrop, snow particles or a combination of rain streak and
haze. Others can not completely restore some patches under
serious degraded conditions.

We compare the model size and computational complexity
in Table Although the additional CLIP encoder causes the
parameters of our proposed method to be larger than that of
other methods, the FLOPs only increases 13.4G compared to
TransWeather due to the fixed short input length (49) of CLIP
image encoder and is still less than other methods. In terms of
inference memory and times, our method is still efficient than
most other methods, especially when compared to MPRNet
and Weatherdiff.

D. Performance on Real-world Dataset

We further compare the performance of different methods
on a real-world dataset. Specifically, we test the derain perfor-
mance on SPA-dataset [49]. All methods are only trained on
the synthesized multi-weather data [16]]. As shown in Table
our proposed method still achieves the best performance.
Notely, all the methods are not trained on the rain conditions
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Fig. 5. Visual comparison of different multi-weather methods on RainDrop [[6]], Test1 [30] and Snow100K-L [9]] datasets. The patches highlighted in red box

are zoom-in for better comparison.

TABLE III
COMPARISON OF MODEL PARAMETERS AND FLOPS. THE FLOPS OF WEATHERDIFF [[29] CONTAINS THE NUMBER OF PATCHES (999) AND THE NUMBER
OF SAMPLING STEPS (25) WITH THE INPUT PATCH SIZE OF 64 X 64.

Methods | Parameters | Resolution | FLOPs | Inference Memory | Inference Times
MPRNet 16M 480 x 640 6.534T 3.6G 0.53s
Uformer [58] 51IM 512 x 512 357.8G 2.9G 0.33s

TransWeather 38M 480 x 640 38.1G 1.4G 0.06s
Chen et al. [[15] 29M 480 x 640 115.1G 1.3G 0.38s
Weatherdiff 83M 480 x 640 | 29.7Gx999x25 10.0G >1s

Ours ‘ 126M ‘ 480 x 640 ‘ 51.5G ‘ 1.7G ‘ 0.09s
TABLE IV E. Main Ablation Study

COMPARISON ON REAL-WORLD DATASET. ALL COMPARED METHODS ARE
TRAINED ON SYNTHESIZED DATA AND THEN DIRECTLY TESTED ON
SPA-DATA [49].

Methods | PSNR 1 | SSIM 1
Uformer 28.60 0.9224
TransWeather 30.65 0.9337
Chen et al. [15] 31.30 0.9371
Weatherdiff 3143 0.9339
Ours ‘ 31.78 ‘ 0.9419

(heavy rain data contains rain and haze). It may result in
the scores of methods being lower than some derain methods
reported in [49].

We show the derain qualitative comparisons on the top of
Figure[f] Although almost all methods can remove rain streaks
to a certain extent, our proposed method performs the best. On
the bottom of Figure [6] we also show some real-world snow
removal results which comes from the Internet to demonstrate
the performance of our proposed method.

We conduct extensive ablation experiments to demonstrate
the effectiveness of each proposed module and to find the
appropriate hyper-parameters.

Effectiveness of Main Designs. We first summarize the results
in Table [[I| to show the effectiveness of the main designs
and how we build our method based on the recent SOTA
baseline [16]. It is clear that each design can improve the
quality of restored images. Specifically, PSNR loss, SSIM
loss and data augmentation are simple and effective ways to
improve the performance to be a stronger baseline (defined as
B). The proposed CWP embedding module and SAR encoder
with CLIP SRD can further improve the score of PSNR
by 0.20 and 0.28 respectively, verifying that both weather
prior embedding and spatially-adaptive residual architecture
trained by knowledge transfer can improve the quality of
images restored from adverse weather condition. The visual
comparison of these versions is shown in Figure It is
obvious that with the addition of the proposed module, the
quality of image restoration is gradually improved, especially
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Fig. 6. Top: visual comparison of different methods for real-world rain images (SPA-dataset [49])); Bottom: visual results of our proposed method for real-world
snow images.
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Fig. 7. Visual comparison of different versions under heavy rain with haze, raindrop and snow weather conditions. B, C, D are defined in Table



TABLE V
COMPARISON OF DIFFERENT DESIGNS FOR CWP EMBEDDING MODULE.
THE BASELINE IS THE SETTING OF B IN TABLE[l

Encoder Type | £¢ | PSNR 1 | SSIM 1

B | None | | 2923 | 09514
learnable 29.27 0.9518
learnable yes 29.34 0.9819

ResNet 29.28 0.9511

ResNet yes 29.34 0.9518

ViT yes 29.31 0.9522

CLIPy 29.37 0.9521

| BLIPy | yes | 2941 | 09519

C| CLIPy | yes | 2943 | 09523
TABLE VI

COMPARISON OF MAIN DESIGNS FOR SAR ENCODER AND CLIP SRD. Ty
DENOTES THE TEACHER NETWORK, Ny MEANS THAT THE DISTILLATION
LOSS £% IS INTRODUCED FROM N4 EPOCH. all MEANS WHETHER TO USE
ALL FEATURES WITHIN EACH STAGE OF SAR ENCODER TO CALCULATE
THE LOSS OR ONLY THE LAST ONE. THE BASELINE IS THE SETTING OF C'

IN TABLE[]

| SAR | Ty | Ng | all | PSNR 7T | SSIM 1

C | | | | | 2943 | 09523
yes 29.64 0.9542

yes ResNet 0 no 29.61 0.9541

yes ResNet 0 yes 29.64 0.9539

yes | CLIPR 0 no 29.62 0.9536

yes | CLIPy 0 yes 29.60 0.9539

D1 yes | CLIPg 0 yes 29.68 0.9540
D yes CLIPgr | 200 | yes 29.71 0.9544

as shown in the red rectangle.

CWP Embedding Module. We study the impact of using
different encoders to extract the weather prior for CWP
embedding module. In Table [Vl we compare our CLIP based
encoder to two other encoders: 1) the learnable encoder which
is built with several convolutions and optimized along with
the whole network; 2) the ResNet/ViT encoder which consists
of a ImageNet pre-trained ResNet50/ViT-B/32 and two linear
layers. The results show that large-scale datasets based CLIP
image encoder can improve the PSNR score by 0.14, while
the other encoders achieve marginal improvement (only 0.04).
With the proposed L€ loss, all encoders can further improve
the performance by about 0.06 in terms of PSNR. Except
CLIP, we also apply another large-scale model, BLIP [9§]]
as the encoder. The performance of BLIP is close to CLIP
and better than other types of encoders. Among all settings,
our CLIP based encoder achieves the best scores. The above
observations demonstrate the advantage of large-scale vision-
language models for weather prior embedding.

SAR Encoder. In Table we compare the results with
different settings for the proposed SAR encoder. With the
proposed SAR architecture, we find that the performance of
C is significantly improved (e.g. 0.21 in terms of PSNR). It
means that spatially-adaptive residual mechanism can effec-
tively help to restore areas in different spatial locations. In
Figure |8] we study the number of kernels in SAR. Considering
the number of weather is three in our experiments, we compare

——Average RainDrop ——Average RainDrop
——Snowtest]1 00k-L—Test1 ——Snowtest]100k-L—Test1
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3 6 9 12 15 18 36 9 12 15 18

Number of Kernels Number of Kernels

Fig. 8. Comparison of different number of kernels in SAR. The baseline is
the setting of D in Table [T}

TABLE VII
COMPARISON OF DIFFERENT SETTINGS OF KNOWLEDGE TRANSFER. THE
BASELINE IS THE SETTING OF D1 IN TABLE[VI]

Methods | PSNR 1 | SSIM 1
DI | 2968 | 0.9540
without residual architecture | 28.67 | 0.9463
L% without normalization ‘ 29.32 ‘ 0.9516
use projection layer | 29.65 | 0.9541

the settings of Ny, = {3,6,9,12,15,18}. The results show
that 3 kernels are enough for SAR to learn spatially-adaptive
residual information. When NV is larger than 12, it seems that
the learning becomes difficult, resulting in the degradation of
performance.

CLIP SRD Strategy. When CLIP is used to transfer knowl-
edge during training, the PSNR score will be further improved
to 29.68 (denoted as D1). We also use a ResNet50 pre-
trained on ImageNet as the teacher model for comparison, and
find that the knowledge seems to have no obvious help. This
proves that CLIP can indeed guide the learning. Compared
to C'LIPy which directly reduces the resolution of features
at the beginning, CLIPg gradually reduces that of features
during encoding. Its spatial representation of intermediate
features is expected to be better, resulting in the improvement
on knowledge transfer. In addition, we find that transferring
knowledge to all features within each stage is more effective
than only to the last one of each stage. It may be caused
by the soft residual matching mechanism, which makes the
transferred information beneficial to all residual features.

We further discuss some necessary designs for distillation in
Table If we do not use residual architecture in F'F'N and
directly distill the features of CLIP extracted from weather
images, the performance will drop sharply (28.67 vs. 29.68
in terms of PSNR). This is because the training objectives
of CLIP are different from ours, resulting in a large gap
between features. Thus, transferring knowledge directly will
seriously hinder the learning of our model. It also explains the
importance of normalization in £?. Removing normalization
will significantly reduce performance. Besides, it explains why
it is more effective to introduce the knowledge of CLIP after
several epochs (e.g. 200 epoch) rather than at the beginning
of training. Besides, we design a convolution based projection



TABLE VIII

COMPARISON OF MAE AS THE TEACHER MODELS FOR RESIDUAL KNOWLEDGE TRANSFER. OTHER SETTINGS ARE THE SAME TO D1 IN TABLE[II}

Teacher models Snow100KL 9 |

Testl [30]

| RainDrop [6] | Mean

["PSNRT | SSIMT | PSNRT | SSIMT | PSNRT | SSIMT | PSNRT | SSIMT

CLIPy | 29.04 | 09396 | 29.28 | 0.9600 | 30.44 | 09619 | 29.59 | 0.9538
MAE | 2920 | 09396 | 29.24 | 09595 | 30.53 | 09620 | 29.65 | 0.9537
layer to project features into the same space as previous REFERENCES

methods, and find that a simple pooling layer is enough to
match residual features.

F. Discussion about CLIP

Although with the well designed CLIP SRD strategy (e.g.
residual knowledge transfer and soft feature matching), the
improvement brought by CLIP knowledge transfer is still
lower than CWP embedding module. It is reasonable since
the training objective of CLIP is to align semantics between
images and texts. Even though, the promising results in our
experiments show that CLIP can still transfer more valuable
low-level supervision compared with learnable or ImageNet
based models. This observation inspires us to considering
building a pretrained model with not only vision-language
semantic representation ability but also low level feature
distinctiveness. Such kind of pretrained models may further
promote tasks like multi-weather removal that require both se-
mantic and low-level representation. To partially demonstrate
it, we use the MAE pretrained model [99] as the teacher for
local spatial feature representation. MAE trains the encoder
via the masked image modeling method, which makes the
encoder pay more attention to local spatial representation to
reconstruct the image. We use the same ViT-Base network as
CLIPy for fair comparison. As summarized in Table
MAE performs better than C'LI Py in terms of PSNR, even
though the pretrained dataset of MAE is much smaller than
that of CLIP. It may prove our thinking that a pretrained model
focuses on both semantic representation and low level feature
distinctiveness can further promote tasks like multi-weather
removal.

V. CONCLUSIONS

In this paper, we focus on the task of removing var-
ious adverse weather from images via an unified model.
We explore from the aspects of feature representation and
semantic embedding under the potential application of large-
scale vision-language models (CLIP). First, we propose SAR
encoder to enhance features through spatially-adaptive residual
architecture and guide the training of these residual features
via the knowledge from CLIP between clean and weather
images with the proposed CLIP SRD strategy. Then, we embed
CLIP weather prior together with a learnable weather prior
through the proposed CWP embedding module. Experiments
demonstrate the effectiveness of our method.
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