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Learning Temporal Distribution and Spatial
Correlation Towards Universal Moving Object

Segmentation
Guanfang Dong*, Chenqiu Zhao*, Xichen Pan and Anup Basu

Abstract—The goal of moving object segmentation is separat-
ing moving objects from stationary backgrounds in videos. One
major challenge in this problem is how to develop a universal
model for videos from various natural scenes since previous
methods are often effective only in specific scenes. In this paper,
we propose a method called Learning Temporal Distribution
and Spatial Correlation (LTS) that has the potential to be a
general solution for universal moving object segmentation. In
the proposed approach, the distribution from temporal pixels
is first learned by our Defect Iterative Distribution Learning
(DIDL) network for a scene-independent segmentation. Notably,
the DIDL network incorporates the use of an improved product
distribution layer that we have newly derived. Then, the Stochas-
tic Bayesian Refinement (SBR) Network, which learns the spatial
correlation, is proposed to improve the binary mask generated
by the DIDL network. Benefiting from the scene independence
of the temporal distribution and the accuracy improvement
resulting from the spatial correlation, the proposed approach
performs well for almost all videos from diverse and complex
natural scenes with fixed parameters. Comprehensive experi-
ments on standard datasets including LASIESTA, CDNet2014,
BMC, SBMI2015 and 128 real world videos demonstrate the
superiority of proposed approach compared to state-of-the-art
methods with or without the use of deep learning networks. To
the best of our knowledge, this work has high potential to be
a general solution for moving object segmentation in real world
environments. The code and real-world videos can be found on
GitHub https://github.com/guanfangdong/LTS-UniverisalMOS.

Index Terms—Moving Object Segmentation, Distribution
Learning, Bayesian Probabilistic Model, Machine Learning

I. INTRODUCTION

Moving object segmentation for stationary cameras is a
fundamental problem in computer vision, given the increasing
importance of security [1]–[3], traffic analysis [4]–[6], and
human-computer interaction [7]–[9], as well as its technical
complexity, which arises from factors such as the diversity
and complexity of natural scenes. While recent work based
on deep learning networks [10] have achieved impressive
results on standard datasets, these models often require a
tuning processes, such as data augmentation [11] or network
retraining [12], to perform well on new data. In practice,
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Fig. 1. Illustration of the possibility of proposing a universal method for
videos from diverse scenes. Although the scene information from different
videos is completely different, the distributions of temporal pixels belonging
to foreground or background are similar.

given the computational cost and uncertainty about the re-
sulting performance, it is often difficult for users to obtain
ground-truth frames for network retraining or follow complex
instructions for data augmentation. Thus, proposing a uni-
versal deep learning method, which is directly applicable for
moving object segmentation remains a challenging problem.
On the other hand, non-deep learning approaches based on
hand-crafted features or rule-based algorithms can achieve
some level of universality, but their performance is generally
suboptimal, especially when faced with challenging scenarios
such as varying lighting conditions, occlusion, or complex
backgrounds. Moreover, these methods might require extensive
manual tuning and domain-specific knowledge to be tailored
to specific situations, leading to high labor costs and limited
scalability. The lack of universality in most existing deep
learning methods and the inferior performance of non-deep
learning methods motivated us to propose a new method.
In this work, we propose a novel method called Learning
Temporal distribution and Spatial correlation (LTS), which we
believe shows promise as a potential solution to address the
challenge of being directly applicable to natural scenes.

The proposed approach is different from previous scene-
based networks. Our first focus is on learning distribution
information, which is relatively less diverse due to the simi-
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larity of temporal pixel distributions across different videos,
as shown in Figure 1. Although the scene information in
different videos may be completely different, the distribution
information from temporal pixels is similar. This inspired
us to propose a single network for learning distribution in-
formation from diverse videos, namely the Defect Iterative
Distribution Learning (DIDL) network. Furthermore, temporal
distributions can be sensitive to noise due to the independence
in the spatial domain. To address this issue, we propose the
Stochastic Bayesian Refinement (SBR) network to learn the
spatial correlation for refining the generated binary mask. With
temporal distribution learned by the DIDL network and spatial
correlation learned by the SBR network, the proposed LTS
model may offer a promising avenue for exploring universal
moving object segmentation.

The DIDL network and the SBR network are designed to
address three key challenges. The first challenge is the very
large number of temporal distributions, which leads to high
computational cost during network training. To address this
problem, we propose a defect iterative distribution learning
strategy that uses parameters learned from a subset of the
training set to approximate the parameters learned if the entire
training set were used. In particular, these parameters are
used to describe the temporal distributions. With the help of
DIDL, the training of the proposed approach can be done
within 48 hours based on over one billion training instances,
using an Nvidia RTX A4000 GPU. The second challenge
is the misleading back-propagation equation in the product
distribution layer, which inevitably causes a “zero division
error [13].” In our improved product distribution layer, we
derive an analysis of the product distribution layer, which
alleviates the “divide by zero” problem. This analysis largely
unleashes the potential of the arithmetic distribution layer. The
third challenge is the sensitivity of temporal distributions to
noise. In order to improve the accuracy, spatial correlation
is helpful, but training the network with spatial information
often results in overfitting to specific scenes, thereby reducing
the universality. To address this issue, we propose the SBR
network in which spatial pixels are stochastically sampled
at multiple scales to prevent network overfitting. The main
contributions of this paper are:

• We propose the Defect Iterative Distribution Learning
(DIDL) network, which learns the distributions of tem-
poral pixels for universal moving object segmentation.
The DIDL network enables more efficient and effective
learning for temporal pixel distributions.

• We alleviate the challenge of the misleading back-
propagation equation in the product distribution layer, a
common issue that causes a “zero division error [13],”
substantially enhancing the arithmetic distribution layer’s
potential, enabling more robust and accurate implemen-
tation.

• We propose the Stochastic Bayesian Refinement (SBR)
network, which learns the correlation between spatial
pixels to improve the segmentation results. The SBR
network removes noise while maintaining universality,
making it a valuable contribution to the field of universal

moving object segmentation.
• We conduct comprehensive experiments on several stan-

dard datasets to demonstrate the superiority of our pro-
posed approach compared to state-of-the-art methods,
including both deep learning and non-deep learning meth-
ods. In addition, the proposed approach is also tested on
128 videos of real life scenes, demonstrating the effi-
ciency of the proposed approach in real applications. The
code and newly captured videos can be found on GitHub
https://github.com/guanfangdong/LTS-UniverisalMOS.

II. RELATED WORK

A. Non-Deep-Learning Methods
Essentially, Moving Object Segmentation (MOS) involves

the classification of temporal pixels and has been a sub-
ject of study for decades. Numerous methods in this field
have been proposed [4], [14]–[43], which can be broadly
categorized into two types: statistical methods and sample
based methods. Statistical methods primarily focus on pixel
classification using sophisticated statistical models [44]. For
instance, Zivkovic et al. [18] modeled temporal pixels with
multiple Gaussian functions, and several extensions to this
model have been proposed [44], [45]. Lee et al. [46] introduce
an adaptive Gaussian Mixture Model (GMM) for dynamic
distributions, while Haines and Xiang [15] present a GMM
utilizing a Dirichlet process. Beyond modeling the background
with Gaussian functions, low-rank decomposition methods
treat the background as the low-rank component in videos.
Specifically, Robust Principal Component Analysis (RPCA)
stands out as one of the most popular methods for background
subtraction, as highlighted in the comprehensive reviews in
[47]–[49]. In RPCA, the data matrix composed of a video is
decomposed into two matrices: a low-rank matrix representing
the background scenes, and a sparse matrix considered to be
the foreground objects [50], [51]. Javed et al. [23] present
SLMC, a method that integrates spatial and temporal informa-
tion using low-rank matrix modeling, thereby enhancing the
accuracy and robustness of background estimation in complex
scenes. Furthermore, Javed et al. [24] integrate spatial and tem-
poral sparse subspace clustering into the RPCA framework,
proposing a method called MSCL-FL. They also improve
accuracy by utilizing graph Laplacians in a spatiotemporally
structured-sparse RPCA approach [25]. Additionally, a similar
improvement involving regularized tensor sparsity has been
proposed [52].

Another approach, sample-based methods treat temporal
pixels as samples extracted from videos. Foreground seg-
mentation is based on the historical or spatial counterparts
surrounding these samples. Thus, Chen et al. [14] learn
models where adjacent pixels in different frames share models
dynamically, while Berjon [41] propose a non-parametric
model using kernel density estimation and auxiliary tracking.
Bianco et al. [42] propose IUTIS-5, which selects the best-
performing algorithm by genetic programming. Unfortunately,
due to the complexity and diversity of natural scenes, these
traditional methods only perform well in certain types of
scenes. To overcome this limitation, several researchers [35]–
[37], [53] have attempted to propose universal methods that
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are directly applicable, valid for all scenes, have low hardware
requirements, and are highly accurate. For example, Pierre-Luc
et al. [36] use LBSP and RGB values to model pixel-level
representations. Sajid and Cheung [35] employ a background
model bank comprising of multiple background models of the
scene. Huaiye et al. [37] create a word consensus model called
PAWCS by leveraging LBSP and color intensity, and Barnich
et al. [53] propose ViBe, which initializes the background
model by assuming neighboring pixels share similar temporal
distribution.

The proposed LTS method can be categorized as both a
statistical and a sample-based method. This is due to our
focus on learning the statistical distribution of temporal pixels
to classify each pixel sample independently within a time
sequence. Additionally, unlike previous methods, our model
learns distribution information through the Defect Iterative
Distribution Learning (DIDL) network, which is the main
difference between our work and these earlier approaches.

B. Deep Learning Methods

Deep neural networks have demonstrated excellent per-
formance in scene understanding and analysis [54]. For a
brief discussion, we categorize deep learning methods into
the following groups based on their underlying architectures:
methods based on Convolutional Neural Networks (CNN)
[10]–[12], [55]–[67], methods based on Generative Adversar-
ial Networks (GAN) [68]–[74], methods based on Recurrent
Neural Networks (RNN) [75], [76], and methods based on
Graph Neural Networks (GNN) [77]–[80]. More comprehen-
sive reviews are available in [81], [82].

The success of deep learning networks demonstrates that
they are excellent tools for moving object segmentation. For
instance, Cascade CNN [61] uses image frames as input and
outputs binary masks during network training. FgSegNet [58]
incorporates a feature pyramid module to learn scene infor-
mation, while MU-Net [62] leverages semantic segmentation
to detect moving objects based on appearance cues. These
methods have achieved near-perfect results (with over 98%
Fm values) on videos from standard datasets. However, their
performance decrease significantly when applied to unseen
videos due to their dependence on scene information. To
improve the performance on unseen videos, the BSUV [11],
[83] network employs content-modifying data augmentations
during training, while 3DCD [59] estimates the background
through a gradual reduction block. However, the uncertainty
and computational cost associated with data augmentation still
limit the use of such networks in real applications. In order
to propose a universal network, GraphMOS [77] uses Graph
neural network for moving object segmentation. GraphMOD-
Net [80] formulates the challenge of moving object seg-
mentation as a node classification problem, leveraging Graph
Convolutional Neural Networks. GraphIMOS [79] has devel-
oped a universal model that is capable of making predictions
on new data frames by existing pre-trained model. AE-NE
[12] employs a reconstruction loss function with background
bootstrapping. Additionally, ADNN [13] learns the distribution
of temporal information and achieves good results for both

seen and unseen videos from various datasets, suggesting that
distribution information may be a potential solution for uni-
versal moving object segmentation. Inspired by these excellent
prior works, we propose learning temporal distributions and
spatial correlations for moving object segmentation.

Our proposed LTS method has several important differences
compared to ADNN [13], which result in over 15% improve-
ment in accuracy. First, ADNN did not consider the possibility
of learning spatial correlation to improve the binary mask,
while LTS incorporates a Stochastic Bayesian Refinement net-
work to learn spatial correlation. Second, LTS utilizes a defect
iterative training strategy that allows the network to learn a
better and globally optimized distribution information. Third,
we also propose an updated analysis of the product distribution
layer that alleviates the “divide by zero” issue, as described in
ADNN [13], Equation 4. With a new implementation based on
this updated derivation, the revised product distribution layer
offers more robust and accurate results. By reproducing the
experiment in ADNN and substituting only the new product
distribution layer, we achieve an improvement of over 5% in
F-measure accuracy.

III. METHODOLOGY

A. Defect Iterative Distribution Learning

Compared to scene information, distribution information is
less diverse. Thus, we assume that the distributions of temporal
pixels in videos exhibit traceable patterns, making it possible
to propose a single model to learn all distribution information
from videos for moving object segmentation. However, even
based on this assumption, the amount of distribution infor-
mation is still enormous, making it prohibitively expensive
to learn network parameters from all videos. To address this
challenge, we propose the Defect Iterative Distribution Learn-
ing (DIDL) network. Instead of learning network parameters
from the entire training set, we want to find a limited number
of representative instances for training, thereby reducing the
computational cost. The training process of the proposed
network is thus described as the process of using the network
parameters θ̂i learned from a subset Hi sampled from the
entire training set H, to approximate the parameters θ learned
from H. Mathematically:

θ = argmax
θ̂

L(θ̂,H) ≃ EHi∼H(argmax
θ̂i

L(θ̂i, Hi)), (1)

where, L is a maximum likelihood estimation used to describe
the process of learning network parameters. In particular, the
number of training instances in H is much greater than the
one for Hi, which means ||Hi||0 ≪ ||H||0. θ̂i is the network
parameters learned from Hi which is sampled from H. The
reason for the significantly lower Hi compared to H is based
on the assumption mentioned at the beginning of this section,
which posits that the temporal distribution of pixels has less
diversity compared to the scene information. As demonstrated
in the Section V, H is 1,157,286,920, while Hi is only
62,630,630.

During the training of the DIDL network, an initial subset
H1 is sampled from the training set H and used for initial
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𝑁 × 3 × 201

𝑁 × 3 × 201 × 8

𝑁 × 3 × 201 × 8

Product Layer
Filters=8

Sum Layer
Filters=8

Conv
Kernel=(1,8)
in=3,out=1

𝑁 × 201

FC1:201 → 512
FC2:512 → 3

𝑎𝑟𝑔𝑚𝑎𝑥
(𝑁 × 3)

Fig. 2. The model structure of the DIDL network. N: batch size, Filters:
number of learned kernels, Conv: convolutional layers, in: number of input
channels, out: number of output channels, FC: fully connected layers. As
some of the training data contain shadows and boundaries, the final output of
the model is N × 3, where black, white, and gray represent the background
label, foreground label, and other labels, respectively.

TABLE I
DETAILS OF THE PROPOSED DIDL NETWORK.

Type Filters Layer size Data size

Input B×3× 201× 1
ProdDis 8 8× 202× 1 B×3× 201× 2
SumDis 8 8× 202× 1 B×3× 201× 2
Conv 1 3× 1× 8 B×10× 201× 1
Conv 512 1× 202× 1 B×512× 1× 1
ReLU
Conv 2 512× 3× 1 B×3× 1× 1

ProdDis: Product distribution layer. SumDis: Sum distribution layer.
B: Batch size. Conv: Convolutional layer.

training. After the network is trained into a local optimal
by H1, a DIDL network with the estimated parameters θ̂1
is used to validate the instances from the entire training set
H. During the validation, several instances are incorrectly
classified and are used as the defective samples Hd. Next, the
defective samples Hd from the validation process are merged
into the subset H1 to create a new subset, H2 = H1 ∪ Hd,
which is used for the next training iteration. With the proposed
defect iterative training strategy, only the validation process
involves the computation of H, which saves a significant
amount of computational resources. During experiments with
the proposed approach, an NVIDIA RTX A4000 GPU with
16GB memory is sufficient for learning parameters from the
training data with size of 3TB within 48 hours.

The learning strategy of the DIDL network requires the
sampling of training data prior to training. To ensure that the
distribution histograms are representative, we adopt a heuristic
approach based on Euclidean distance to search for meaningful
histograms. Mathematically:

∀Hi ∈ H,H−Hj if d(Hi, Hj) < τ

d(Hi, Hj) =

n∑
k=1

(Hi(k)−Hj(k))
2,

(2)

where H is all training histogram instances, Hi and Hj are
two histograms, d is the Euclidean distance between two his-
tograms, τ is the threshold value. Using this sampling method,
distributions similar to the current distribution are removed,

while more representative distributions are retained. This ap-
proach significantly reduces the amount of training data and
accurately selects representative distributions, particularly for
moving object segmentation with stationary cameras, where
the pixel distribution over time is actually very limited. Note
that this sampling method inherently has a time complexity
of O(n2). However, in practice, as many training instances
are removed, the sampling time becomes much smaller than
O(n2). We set the threshold to τ = 0.7.

Then, DIDL utilizes histograms of the differences between
current pixels and their historical counterparts as the input.
Mathematically:

H = {Hx,y(n)} = { 1
T

T∑
i=0

|Ii(x, y)− It(x, y)| ∩ n}x,y∈G,

(3)
where, It(x, y) is the value of the pixel located at (x, y)
and time t. T is the total number of frames. Hx,y(n) is the
histogram captured from pixel (x, y), n is the index of the
entries in the histograms. H is the set of histograms which
are used as the training set. The histograms obtained from
the previous step are used as input for the product and sum
distribution layers, where they are used to learn distribution
information. A classification block consisting of ReLU and
a fully connected layer is then attached to the output of the
distribution layers.

During the training process, the logistic loss on the final
output node is minimized. Both input, learning kernels and
outputs for sum and product distribution layers are histograms,
making it suitable for processing distributions. In particular,
the product distribution layer is used to compute product of
histograms in the input and learning kernels. Similarly, the sum
distribution layer is used to compute the sum of histograms
in the input and learning kernels. With the help of these two
distribution layers, the proposed DIDL network can learn the
distribution for moving object segmentation, with input of
histograms of subtraction between the current frame and the
historical frames. The output is the label of pixels, which can
be mathematically shown as:

M(x, y) = C(Ari(Ht(x, y))) (4)

where, Ht(x, y) is the histogram extracted from pixel (x, y)
at time t. Ari is the arithmetic distribution layer. C is the
classification block.

B. Improved Product Distribution Layer

Given the focus of our method on pixel distribution learning,
we adopt an arithmetic distribution layer which was proposed
in our previous work [13]. For completeness of this paper,
we briefly introduce the arithmetic distribution layer including
a sum distribution layer and a product distribution layer,
as shown in Table I and Figure 2. The learning kernels of
these two distribution layers are represented as distribution
histograms. Specifically, the input histogram dimension is
B × 3 × 201 × 1, while each distribution layer consisted of
8 learning kernels with dimensions of 202 × 1. The reason
for the histogram length being 201 is that we discretized the
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distribution between -1 to 1 with a step size of 0.01. The
reason for the learning kernel length being 202 is that we used
an extra position to record all values outside of the distribution
range of -1 to 1. The forward and backward propagation
equations for these two distribution layers are as follows:

Product distribution layer:

fZ(z) =

∫ ∞

−∞
fW (w)fX(

z

w
)
1

|w|
dw, forward

∇wi =

∞∑
j=−∞

∇zjfX(
zj
i
)
1

|i|
, backward

(5)

In this equation, w is an entry of the histogram for learning
kernels. fW (w) defines the probability density function with
respect to the specific entry w, describing the distribution
of these entries. z is an entry for histogram input. fX(x)
is the probability density function with respect to entry x.
fZ(z) is the output of the layer which is also described by
a histogram z. ∇wi is the gradient of wi, which is used for
backpropagation.

Sum distribution layer:

fZ(z) =

∫ ∞

−∞
fB(b)fX(z − b)db forward

∇bk =

∞∑
j=−∞

∇zjfX(zj − k), backward
(6)

Similarly, b is an entry of the learning histogram kernel. z
is the entry of the input histogram. fZ and fB can find
corresponding values.

For the product distribution layer, there is a very serious
problem. In Equation 5, w is the entry of the learning kernel.
If we want to find the integral value with respect to w, we
must calculate a value that is w → 0. This will result in
uncontrollable and severe problems. If w approaches 0, then
z
w becomes infinitely large. In this case, the value of fX will
be infinitely small. In contrast, 1

|w| will result in an infinitely
large value. This problem was simply ignored in our previous
work [13] by skipping the propagation process. But in this
paper, we propose an improved product distribution layer in
which the problem when w → 0 is addressed. When z → 0,
we have

fZ(0) = lim
z→0

(∫ ∞

−∞
fW (w)fX(

z

w
)
1

|w|
dw

)
, (7)

where fX is a function that gets the value for a given entry
of the input distribution. Since the purpose of the product
distribution layer is to find the probability density of fZ(z)
from the multiplication of two distributions X and W , we have
the prerequisite that the relationship of distributions X , W and
Z must meet Z = XW . Thus, Z = XW implies that when
x → 0, z → 0. Also, Z = XW leads to X = Z

W . z → 0 yields
three distinct cases, which are w = 0, x ̸= 0, w ̸= 0, x = 0 and
w = 0, x = 0. We will discuss about the three cases separately.
For the first two cases, we validate fZ(0) = fW (0)E( 1

|x| ). For
the third case, we validate fZ(0) = ∞.

The first and the second cases: Given that Z = XW =
WX , in Equation 5, we can interchange fW and fX based on
the commutative property of multiplication.

fZ(z) =

∫ ∞

−∞
fW (w)fX(

z

w
)
1

|w|
dw

=

∫ ∞

−∞
fX(x)fW (

z

x
)
1

|x|
dx

(8)

This demonstrates that the argument for the case of w = 0 and
x ̸= 0 for the result of fZ(0) is equivalent to the argument for
the case of w ̸= 0 and x = 0. When w → 0, we can transform
Equation 7 to Equation 9.

fZ(0) = lim
z,w→0

(∫ ∞

−∞
fW (w)fX(

z

w
)
1

|w|
dw

)
= lim

z,w→0

(∫ ∞

−∞
fX(x)fW (

z

x
)
1

|x|
dx

) (9)

Since, Z = XW implies w = z
x . When w → 0, z

x → 0.
We substitute z

x → 0 to Equation 9.

fZ(0) = lim
z, zx→0

(∫ ∞

−∞
fX(x)fW (0)

1

|x|
dx

)
= fW (0)

(∫ ∞

−∞
fX(x)

1

|x|
dx

)
= fW (0)E(

1

|x|
)

(10)

The third case: Z = XW can be expanded as Z = Z
W W

where X = Z
W . We know x → 0 yields z

w → 0. Therefore,
in this scenario, Equation 7 can be transformed into Equation
11, based on the prerequisite that both x and w approach zero.

fZ(0) = lim
z,w,x→0

(∫ ∞

−∞
fW (w)fX(

z

w
)
1

|w|
dw

)
= lim

z,w, z
w→0

(∫ ∞

−∞
fW (0)fX(0)

1

|w|
dw

)
= fW (0)fX(0) lim

z,w, z
w→0

(∫ ∞

−∞

1

|w|
dw

)
= fW (0)fX(0) · ∞
= ∞

(11)

TABLE II
COMPARISION OF F-MEASURE RESULTS ON CDNET2014 [84] OVER

PRODUCT DISTRIBUTION IMPLEMENTATION WITH AND WITHOUT
SOLVING ISSUE OF m → 0.

Method Baseline Dyn. Bg. Cam. Jitt. Int. Mit. Shadow Ther.

w/o Fixed 0.8879 0.7254 0.7170 0.5616 0.8065 0.7352
Fixed 0.8962 0.7651 0.7270 0.6641 0.8577 0.7923

Bad Wea. Low Fr. Nig. Vid. PTZ Turbul. Average

w/o Fixed 0.8081 0.5522 0.4817 0.1874 0.5537 0.6378
Fixed 0.8327 0.6270 0.5390 0.1605 0.7175 0.6890

Performance: As we have solved this issue, using the
new version of the distribution layer has resulted in a certain
degree of accuracy improvement. We conducted a comparative
experiment where we used a network architecture and training
data that were exactly the same as ADNN. Under completely
fair comparison conditions, using the new product distribution
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layer resulted in a 0.05 increase in Fm accuracy. Details are
shown in Table II.

Verification: After our derivations, we conclude the results
as fZ(0) = fW (0)E( 1

|x| ) when w → 0 and x ̸= 0 as well as
fZ(0) = ∞ when w → 0 and x → 0.

1) To visualize and verify the correction of the results for
the third case, we randomly sample two 10,000,000
datasets from a Gaussian distribution, assigned it as X
and W . Then, Z is derived as Z = XW , which means
we take dot product between X and W to generate Z.
Then, we compute the histogram to generate the discrete
representation of distribution X , W and Z, as shown in
Figure 3. We can clearly see that the histogram tends to
reach ∞.

Fig. 3. Histogram of Z. We can see fZ(0) tends to ∞.

2) To visualize and verify the correction of the results for
the first two cases, we randomly sample one 10,000,000
dataset from a Gaussian distribution, assigned it as X .
Then, we randomly sample 5,000,000 points from the
Gaussian distribution N(−4, 1) and another 5,000,000
points from the Gaussian distribution N(4, 1). W is
generated by concatenating two datasets. We generate
W in this way to avoid fW (0) having a value. Then,
Z is derived by Z = XW , which means that we
take the dot product between X and W to generate
Z. Then, we compute the histogram to generate the
discrete representation of distributions X , W and Z, as
shown in Figure 4. According to the given relationship
fZ(0) = fW (0) · E

(
1
|x|

)
, we can infer that fZ(0) is

equal to fX(0) ≈ 32, 000 times the expected value
E
(

1
|x|

)
= 1

4 . Therefore, fZ(0) = 32, 000 · 1
4 = 8, 000.

This result is very close to our empirical observations,
verifying the accuracy of our derivation.

C. Stochastic Bayesian Refinement Network

The DIDL network completely ignores spatial correlation,
which could be beneficial for moving object segmentation, as
neighboring pixels are expected to have similar labels. In order
to improve segmentation accuracy, we propose the Stochastic

Fig. 4. Histogram of Z. We can see that fZ(0) has an approximate value of
8,000. The observed value matches our formula fZ(0) = fW (0)E( 1

|x| ) =

32, 000 · 1
|4| = 8, 000.

Bayesian Refinement (SBR) network. The SBR network is a
Bayesian inference process to re-label a pixel based on the
information from its neighbourhood. Mathematically:

M̂(x, y) = argmax
ai∈{0,1}

P (ai|I(x, y))

= argmax
ai

P (I(x, y)|ai)P (ai)

P (I(x, y))

= argmax
ai

∫
g∈G

P (I(x, y)|g)P (g|ai)P (ai)

P (I(x, y))
dg

(12)

where, M̂(x, y) is the inferred label of a pixel located at
(x, y). ai ∈ {0, 1} denotes the label of a pixel belonging to
the background or foreground. I(x, y) is the value of a pixel
located at (x, y). g ∈ G is the set of neighbouring pixels
around (x, y), and g is a single pixel inside G. Note that the
size of G varies with respect to the resolution of images as
well as object sizes. Unfortunately, the integral in Equation
12 includes the similarity P (I(x, y)|g) between two pixels,
which depends strongly on diverse spatial correlations among
neighbouring pixels G. For instance, the Euclidean distance
between two pixels is more appropriate for grayscale scenes.
However, such advantages do not extend to thermal images,
indicating that manually defined distance functions may not
be universally applicable. Thus, it is reasonable to employ
a network to approximate distance functions for inference.
Mathematically:

f(I(x, y), ai, G|θ)=argmax
ai

∫
g∈G

P (I(x, y)|g)P (g|ai)P (ai)

P (I(x, y))
dg

=argmax
ai

P (ai)

∫
g∈G

P (I(x, y)|g)P (g|ai)dg

(13)
where, f(I(x, y), ai, G|θ) is our Stochastic Bayesian Network,
and θ denotes the network parameters.

In order to capture the globally optimized spatial correlation
in a binary mask with the respect to an image, M̂ is compared
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Fig. 5. The framework of the Stochastic Bayesian Refinement network. To generate a refined foreground, the DIDL foreground output is merged with
the corresponding image to a 4 × H × W tensor. The tensor is then sampled n times at varying scales to produce refined foreground patches, which are
subsequently stacked to generate a heatmap. A threshold applied to this heatmap determines the refinement outcome.

with the groundtruth M for mathematical optimization:

θ̂ = argmin
θ

∫ ∫ (
M̂(x, y)−M(x, y)

)2

dxdy,

= argmin
θ

∫ ∫
(f(I(x, y), ai, G|θ)−M(x, y))

2
dxdy,

(14)

where, (x, y) is the location of a pixel in an image. As shown
in Equation 14, there is an overlap between the domain of the
integral and G. Thus, we can simplify Equation 14 as follows:

θ̂ = argmin
θ

∫ ∫
(f(I(x, y), ai, G|θ)−M(x, y))

2
dxdy,

= argmin
θ

1

N

∫
x1,y1∈G1

(f(I(x1, y1), ai, G1|θ)−M(x1, y1))
2dx1dy1

+
1

N

∫
x2,y2∈G2

(f(I(x2, y2), ai, G2|θ)−M(x2, y2))
2dx2dy2 · · ·

+
1

N

∫
xN ,yN∈GN

(f(I(xN , yN ), ai, GN |θ)−M(xN , yN ))2dxNdyN

= argmin
θ

1

N

N∑
n=1

∫
x,y∈Gn

(f(I(x, y), ai, Gn|θ)−M(x, y))2dxdy

= argmin
θ

N∑
n=1

∫
x,y∈Gn

(f(I(xn, yn), ai, Gn|θ)−M(x, y))2dxdy

(15)
where, θ̂ denotes the estimated parameters of the SBR net-
work. As shown in Equation 15, in order to get a globally
optimized solution, (x, y) is sampled from Gn, and Gn is
sample from the entire image. In particular, Gn is the group
of neighbouring pixels around pixel (xn, yn). (xn, yn) covers
all the pixels in the image. Besides, the size of Gn also varies,
which leads to an unacceptable computational cost. Thus, a
stochastic solution such as the Monte-Carlo sampling [85] is
suitable in this condition, which leads to the final optimal
function of the proposed Stochastic Bayesian Refinement

Network. Mathematically:

θ̂ ≃ argmin
θ

∑
Gn∈G

∑
x,y∈Gn

(f(I(x, y), ai, Gn|θ)−M(x, y))2

where f=argmax
ai

P (ai)

∫
g∈G

P (I(x, y)|g)P (g|ai)dg

(16)
where, (x, y) is the pixel that is sampled from Gn, which is
sampled from the entire training image G. The flowchart of
our framework is demonstrated in Figure 5. In particular, the
refinement block is an encoder-decoder architecture. To reduce
the computational cost, a simplified U-net is utilized. With
the motivation of finding the global optimal from Equation
16, the patches must be randomly sampled at multiple scales
because of the uncertainties of location (x, y) and the size
of G. Without these considerations, the accuracy of our SBR
network is reduced. To illustrate the aforementioned point, we
present an ablation study in Section V-C.

IV. ARCHITECTURE OF THE SBR NETWORK

During training, we adopt patch sizes of 64× 64, 32× 32,
and 16 × 16, and to maintain an equitable distribution of
varying scales, we crop 64, 256 (calculated as 64 × 4), and
1024 (calculated as 64 × 42) patches per image for these
sizes. Following the sampling procedure, we randomly shuffle
the patches and select training batches of the same size.
Specifically, for patch sizes of 64× 64, 32× 32, and 16× 16,
the training batch sizes are 512, 2048, and 8192, respectively.
We utilize the CrossEntropyLoss, with a gradient ratio of 0.2
for the background and 0.8 for the foreground. The RMSprop
optimizer is used, with a learning rate of 0.00001.

To accelerate inference speed and enable multi-scale model
training, a simplified version of U-Net is adopted as the Refine
Block, as illustrated in Figure 6. Specifically, a patch of size
64 × 64 is used as an example in the figure, while in actual
training and testing, the U-Net can handle patches of any
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Fig. 6. The structure of the Refine Block in the SBR network. We use a 64 × 64 patch as an example, which can actually be used for patch sizes larger
than 8× 8. DoubleConv represents a block consisting of two convolutional layers and an Relu activation layer combined. The numbers on the left and right
of the arrows → represent the number of input and output channels, respectively. Concat represents concatenation.

size larger than 8 × 8. The simplified U-Net comprises three
downsampling and three upsampling stages, with MaxPool
and transpose convolution with stride 2 employed for down-
sampling and upsampling, respectively. Direct concatenation
is utilized between the downsampled and upsampled parts.
Eventually, a four-channel input is transformed into a two-
channel output, where Channel 0 and Channel 1 represent the
probabilities of background and foreground, respectively.

During testing, since the sizes of test images are different,
it is necessary to adaptively adjust the number of samples. We
use a simple formula to adaptively determine the number of
samples.

n = ⌈H ×W

s2
⌉ × l, (17)

where H and W are height and width for input image. s is the
size of patch. l is the sampling rate. Ideally, the refining out-
come improves as l increases. In fact, due to the employment
of multiscale, even a sampling rate with l = 1 inherents certain
degree of randomness (each scale has one layer in this case).
When l = 4, LTS-A can achieve an accuracy of 0.9393 on
CDNet2014. Considering that the U-Net refine block itself has
relatively few parameters (only 0.23M learnable parameters),
its inference speed does not increase significantly compared
to uniform cropping. The result of 0.9431 mentioned in the
main text is obtained with l = 32. After obtaining all refined
foreground patches, we stack them at their relative positions
and sum them up. Since the number of times each pixel
position is stacked is different, we cannot simply divide by the
maximum value for normalization. Instead, we normalize by
dividing the number of pixels that are considered foreground
by the number of times it is stacked. The normalized result can
be viewed as a heatmap. The heatmap provides interpretability
while visualizing the possibility of spatial correlation between

the current pixel and its neighboring pixels. Ultimately, we
employ a threshold of 0.5 to partition the foreground and
background and obtain the final refined foreground mask1.

V. EXPERIMENTAL RESULTS

During the training of the proposed approach, 100 ground-
truth frames from each video in CDNet2014 [84] are randomly
selected. In addition, 5% of the total frames are sampled from
videos in other datasets. Note that the number of training sets
is less than or close to those for the most popular methods
based on deep learning networks [10], [61], [62], [77]. In
particular, one benefit of the proposed DIDL is reducing
the computational cost, and not all instances are involved in
training. For LTS-A, there are 1,157,286,920 (3,767 images if
resolution is 480×640) histogram instances in total. However,
only 62,630,630 (203 images) are involved for parameters
optimization, constituting a mere 5% of the entire training
set, which is less than 1% of all the datasets.

We conduct four iterations for LTS-D (CDNet2014), with
the actual amount of training data increasing only slightly from
28,422,113 → 29,037,462 → 29,209,145 → 29,226,356. The
four iterations result in an improvement in validation accuracy
on the entire training set from 0.7123 to 0.8438. Specifically,
we use 120 epochs for the first training and 30 epochs for the
remaining three iterations. We use the Adam optimizer, with
a learning rate of 0.0001 and NLLLoss as the loss function.
Batch size is 3,000. To accelerate the training process, we use
half-precision (float16) training. Further details can be found
in the public code.

To show the superiority of the proposed approach, we
compare our method to several state-of-the-art methods, in-
cluding ones that do not employ deep learning networks,

1Please check the video demo in our supplementary materiel.
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TABLE III
COMPARISION OF F-MEASURE RESULTS FOR VIDEOS IN THE LASIESTA DATASET [86].

Video LTS-
A

LTS-
D

LTS-
U

ADNN
[13]

D-DP
DL [87]

ADNN*
[13]

BSUV
2.0 [11]

AE-
NE [12]

3DCD-
55 [59]

MSFS-
55 [58]

FgSeg
Net [10]

PAW
CS [37]

SuBSE
NSE [36]

CueV2
[41]

Hai
[15]

Venue Our Our Our TIP-22 ICME-18 TIP-22 Access-21 WACV-23 TIP-20 PAA-20 PRL-18 TIP-16 TIP-15 PR-18 PAMI-14

Fix.
√ √ √

× ×
√ √ √

× × ×
√ √ √ √

I SI 0.9836 0.9869 0.9229 0.9536 0.9142 0.9335 0.9200 0.9100 0.8700 0.3900 0.5600 0.9000 0.9000 0.8806 0.8876
I CA 0.9406 0.9310 0.7851 0.9504 0.9080 0.7316 0.6800 0.8800 0.8200 0.4000 0.5500 0.8800 0.8900 0.8444 0.8938
I OC 0.9844 0.9895 0.9447 0.9759 0.9694 0.9481 0.9600 0.9100 0.9100 0.3700 0.6500 0.9000 0.9500 0.7806 0.9223
I IL 0.9821 0.9888 0.5460 0.7661 0.8066 0.4869 0.8800 0.8100 0.9200 0.3500 0.4200 0.7900 0.6500 0.6488 0.8491
I MB 0.9863 0.9921 0.9400 0.9802 0.9447 0.9262 0.8100 0.9200 0.8900 0.6400 0.5600 0.8100 0.7700 0.9374 0.8440
I BS 0.9796 0.9861 0.8898 0.9707 0.7275 0.8884 0.7700 0.7900 0.7200 0.3600 0.1900 0.7900 0.7300 0.6644 0.6809
O CL 0.9870 0.9901 0.9435 0.9814 0.9796 0.9534 0.9300 0.9400 0.8700 0.4100 0.2800 0.9600 0.9200 0.9276 0.8267
O RA 0.9734 0.9870 0.9356 0.9868 0.9437 0.8744 0.9400 0.8000 0.9000 0.3500 0.1800 0.9300 0.9000 0.8669 0.8908
O SN 0.9772 0.9891 0.8451 0.9647 0.9516 0.8327 0.8400 0.8200 0.6900 0.3100 0.0100 0.6900 0.8100 0.7786 0.1740
O SU 0.9558 0.9773 0.8949 0.9300 0.9226 0.8829 0.7900 0.9100 0.8500 0.3700 0.3300 0.8200 0.7900 0.7221 0.8568

Average 0.9750 0.9806 0.8648 0.9460 0.9068 0.8459 0.8500 0.8690 0.8400 0.4000 0.3700 0.8470 0.8327 0.8051 0.7826

ADNN: Networks are trained and tested on individual videos. ADNN* : Network is trained on CDNet and test on LASIESTA. Fix. : Fixed parameters

such as PAWCS [37], SuBSENSE [36], CueV2 [41], Hai
[15], IUTIS-5 [42], MBS [35], ShareM [14], WeSamBE [30],
GMM [18], 3PDM [33], HMAO [88], B-SSSR [89], cDMD
[22], SRPCA [23], DPGMM [15], TVRPCA [31], ViBe [53],
RPCA [90], MSCL [24], MSCL-FL [24], STRPCA [52] and
methods based on deep learning networks ADNN [13], D-
DPDL [87], BSUV-Net [83], BSUV2.0 [11], 3DCD-55 [59],
AE-NE [12], DeepBS [55], CNN-SFC [56], DVTN [57],
Cascade-CNN [61], FgSegNet [10], MU-NET [62], EDS-
CNN [91], GraphMOS [77], GraphMOD [80], GraphIMOS
[79], MfaFBS [70], RC-SAFE [63], ZBS [92], MSF-NET
[67], DCP [93], MOD-GAN [69], EVBS [94]. Comparing
different models can be challenging due to variability in the
experimental setup. To ensure a fair comparison, we train our
models using three distinct settings: LTS-A (trained by all
dataset), LTS-D (trained by target dataset), and LTS-U (trained
by CDNet2014 [84] test on LASIESTA [86]). All three models
have fixed parameters for testing, making them universal for
moving object segmentation.

A. Unseen Video Results

A universal approach should be applicable to all videos,
including those that are unseen. We train the LTS-U model
on CDNet2014 [84] and evaluate it directly on LASIESTA
[86], as shown in Table III. We can see that the observed
performance of FgSegNet [10], demonstrates a substantial
capability in handling known videos, achieving commendable
results (0.9864) as detailed in Table IV. However, there is a
significant drop in performance to a score of 0.37 for unseen
videos. This reveals an inherent challenge in using unmodified
deep neural networks for real-world applications, where data
can be complex and varying. Without specific adaptations
or enhancements, such conventional neural networks may
struggle to generalize to new and diverse data, rendering
them unsuitable for direct use in real-world scenarios where
adaptability to unfamiliar data is crucial. While models such
as BSUV [11] and AE-NE [12] are specifically tailored for
unseen videos, they come with their own set of challenges
that may limit their practicality. Specifically, AE-NE requires
training on unseen scenes before being deployed, and BSUV

involves a data augmentation process for unseen videos,
enabling parameter tuning to fit the tested scenes. These
training and tuning processes can be both time-consuming
and complex. Although they may yield good performance in
unseen videos, these pre-usage requirements might hinder their
immediate applicability and efficiency in real-world scenarios.
In comparison, our method, while slightly trailing AE-NE,
presents promising results for unseen videos without the need
for such extensive pre-deployment preparation, potentially
offering a more adaptable and expedient solution.

Our goal is to introduce a universally applicable model that
can be directly employed, focusing on practical needs rather
than the distinction between seen and unseen videos. With
access to training data, our results are top-tier, outperform-
ing the state-of-the-art solutions. Even without training data,
our method exhibits comparable performance to the leading
approaches for handling videos never seen before. We also
highlight the outcomes of LTS-A and LTS-D, both of which
achieve promising results. But what sets our approach apart is
its ability for immediate use, without burdening the user with
complicated retraining or tuning requirements. This reflects
our focus on offering a truly practical and versatile solution,
designed not just for theoretical excellence but for real-world
applicability, serving users who need a model that works “out
of the box.”

B. Universal Moving Object Segmentation Results

Despite the lack of a gold standard definition for universal
moving object segmentation methods, prior studies [13], [35]–
[37], [53] suggest that a universal model should not only ex-
hibit high performance on diverse test videos, but it should also
be directly applicable. Most traditional methods [18], [35]–
[37] are considered universal because they can be used directly
with fixed or adaptive parameters. In contrast, our method
also has fixed parameters and significantly outperforms them
in terms of accuracy. Our comparisons adhere to a sound
analytical framework, taking into account that the results of
traditional methods are often influenced by human expertise.
For instance, the parameters of the Gaussian Mixture Model
(GMM), such as the number of Gaussian functions, had been
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TABLE IV
COMPARISION OF F-MEASURE RESULTS OVER THE VIDEOS OF CDNET2014 DATASET [84].

Method Venue Fix. Baseline Dyn. Bg. Cam. Jitt. Int. Mit. Shadow Ther. Bad Wea. Low Fr. Nig. Vid. PTZ Turbul. Average

GMM [18] ICPR-04
√

0.8245 0.6330 0.5969 0.5207 0.7370 0.6621 0.7380 0.5373 0.4097 0.1522 0.4663 0.5707
ShareM [14] ICME-15

√
0.9522 0.8222 0.8141 0.6727 0.8898 0.8319 0.8480 0.7286 0.5419 0.3860 0.7339 0.7474

SuBSENSE [36] TIP-15
√

0.9503 0.8177 0.8152 0.6569 0.8986 0.8171 0.8619 0.6445 0.5599 0.3476 0.7792 0.7408
PAWCS [37] TIP-16

√
0.9397 0.8938 0.8137 0.7764 0.8913 0.8324 0.8152 0.6588 0.4152 0.4615 0.6450 0.7403

IUTIS-5 [42] ICIAP-17
√

0.9567 0.8902 0.8332 0.7296 0.9084 0.8303 0.8248 0.7743 0.5290 0.4282 0.7836 0.7717
MBS [35] TIP-17

√
0.9287 0.7915 0.8367 0.7568 0.7968 0.8194 0.7980 0.6350 0.5158 0.5520 0.5858 0.7288

MSCL-FL [24] TIP-17
√

0.9400 0.9000 0.8600 0.8400 0.8600 0.8600 0.8800 N/A N/A N/A N/A 0.8800†
WeSamBE [30] CSVT-17

√
0.9413 0.7440 0.7976 0.7392 0.8999 0.7962 0.8608 0.6602 0.5929 0.3844 0.7737 0.7446

HMAO [88] TIP-19
√

0.8200 N/A 0.6300 0.7200 0.8600 0.8400 0.7900 0.6000 0.3600 N/A 0.4600 0.6800†

B-SSSR [89] TIP-19
√

0.9700 0.9500 0.9300 0.7400 0.9300 0.8600 0.9200 N/A N/A N/A 0.8700 0.8900†
3PDM [33] TITS-20

√
0.8820 0.8990 0.7270 0.6860 0.8650 0.8410 0.8280 0.5350 0.4210 0.5010 0.7930 0.7253

STRPCA [52] Preprint-23
√

0.9810 0.9550 0.9440 0.8360 0.8920 0.8950 0.9020 0.8420 0.8530 N/A 0.8710 0.8980†

Cas.CNN [61] PRL-17 × 0.9700 0.9500 0.9700 0.8700 0.9500 0.8900 0.7900 0.7400 0.8700 0.8800 0.8400 0.8836
EDS-CNN [91] AVSS-17 × 0.9586 0.9112 0.8990 0.8780 0.8565 0.8048 0.8757 0.9321 0.7715 N/A 0.7573 0.8644
DeepBS [55] PR-18 × 0.9580 0.8761 0.8990 0.6098 0.9304 0.7583 0.8301 0.6002 0.5835 0.3133 0.8455 0.7548
DPDL-40 [87] ICME-18 × 0.9692 0.8692 0.8661 0.8759 0.9361 0.8379 0.8688 0.7078 0.6110 0.6087 0.7636 0.8106
FgSegNet [10] PRL-18 × 0.9975 0.9939 0.9945 0.9933 0.9954 0.9923 0.9838 0.9558 0.9779 0.9893 0.9776 0.9864
CNN-SFC [56] JEI-19 × 0.9497 0.9035 0.8035 0.7499 0.9127 0.8494 0.9084 0.7808 0.6527 0.7280 0.8288 0.8243
BSUV-Net [83] WACV-20 × 0.9640 0.8176 0.7788 0.7601 0.9664 0.8455 0.8730 0.6788 0.6815 0.6562 0.7631 0.7986
DVTN [57] CSVT-20 × 0.9811 0.9329 0.9014 0.9595 0.9467 0.9479 0.8780 0.7818 0.7737 0.5957 0.9034 0.8789
BSUV-Net2 [11] Access-21 × 0.9620 0.9057 0.9004 0.8263 0.9562 0.8932 0.8844 0.7902 0.5857 0.7037 0.8174 0.8387
MU-NET [62] ICPR-21

√
0.9875 0.9836 0.9802 0.9872 0.9825 0.9825 0.9319 0.7237 0.8575 0.7946 0.8499 0.9146

GraphMOD [80] ICCVW-21
√

0.9550 0.8510 0.7200 0.5540 0.9420 0.6820 0.8390 0.5210 N/A 0.7700 N/A 0.7593†
GraphMOS [77] PAMI-22

√
0.9710 0.8922 0.9233 0.6455 0.9901 0.9010 0.9411 0.6910 0.8211 0.8511 0.8233 0.8592

ADNN [13] TIP-22 × 0.9797 0.9454 0.9411 0.9114 0.9537 0.9411 0.9038 0.8123 0.6940 0.7424 0.8806 0.8826
MfaFBS [70] PR-22 × 0.9560 0.9450 0.9320 N/A 0.9530 0.9510 0.9240 N/A N/A N/A 0.9390 0.9430†
ADNN* [13] TIP-22

√
0.9562 0.8748 0.8532 0.8742 0.9347 0.8568 0.8764 0.7983 0.6161 0.2409 0.7826 0.7876

RC-SAFE [63] TRR-23
√

0.9567 0.8219 0.8045 0.8235 0.9379 0.8247 0.7924 0.8214 0.6453 0.3208 0.7747 0.7749
GraphIMOS [79] Preprint-23

√
0.7003 0.5868 0.6700 0.5284 0.6807 0.6453 0.6377 0.5478 N/A 0.5932 N/A 0.6211†

AE-NE [12] WACV-23
√

0.8959 0.6225 0.9230 0.8231 0.8947 0.7999 0.8337 0.6771 0.5172 0.8000 0.8382 0.7841
ZBS [92] CVPR-23

√
0.9653 0.9290 0.9545 0.8758 0.9765 0.8698 0.9229 0.7433 0.6800 0.8133 0.6358 0.8515

LTS-A Our
√

0.9906 0.9710 0.9767 0.9787 0.9889 0.9790 0.9759 0.8382 0.8637 0.8302 0.9567 0.9431
LTS-D Our

√
0.9898 0.9690 0.9758 0.9821 0.9881 0.9818 0.9767 0.8576 0.8725 0.8630 0.9590 0.9484

Dyn. Bg. : Dynamic Background, Cam. Jitt. : Camera Jitter, Int. Mit. : Intermittent Object Motion, Ther. : Thermal, Bad Wea. : Bad Weather, Low Fr. : Low Framerate, Nig.
Vid. : Night Videos, and Turbul. : Turbulence. Fix. : Fixed Parameters, ADNN* : ADNN fixed parameters version. †: Result is based on reported categories, which is not
exhaustive.

fine-tuned by Zivkovic et al. [18] with reference to ground-
truth frames. By contrast, in methods based on deep leaning
networks, ground-truth is directly input into networks for
learning. In addition, some networks are difficult to consider as
universal methods, given their dependence on scene informa-
tion. For example, although FgSegNet [10], [95] achieves near-
perfect performance on CDNet2014 [84], it utilizes a distinct
network for each video and changes the parameters based
on the groundtruth frames. This results in a significant drop
in performance on LASIESTA [86]. Similar issues also exist
in MU-Net [62], Cascade-CNN [61], DVTN [57]. Although
unsupervised or semi-supervised learning solutions [12], [77]
are suitable for various scenarios, they face challenges in
becoming universal methods due to network setup, prolonged
training processes, and performance reduction for diverse
videos. Compared to these methods, the proposed approach
achieves better results and is directly applicable.

One might encounter difficulties when attempting to deploy
video segmentation models on embedded devices or personal
computers, hindered by the time required for network training.
Thus, it is crucial to have a universal network that can be
applied without additional parameter tuning, as suggested
in ADNN [13]. We employ the same strategy, where the

TABLE V
COMPARISION OF F-MEASURE RESULTS FOR VIDEOS IN THE BMC

DATASET [96].

Method Fix. 1 2 3 4 5 6 7 8 9 Ave.

SuBSENSE [36]
√

0.70 0.62 0.83 0.69 0.21 0.76 0.53 0.68 0.83 0.65
PAWCS [37]

√
0.70 0.58 0.85 0.72 0.27 0.79 0.58 0.74 0.80 0.67

cDMD [22]
√

0.56 0.68 0.77 0.73 0.57 0.64 0.76 0.51 0.57 0.64
SRPCA [23]

√
0.79 0.74 0.83 0.81 0.80 0.69 0.70 0.84 0.86 0.78

DPGMM [15]
√

0.72 0.69 0.75 0.80 0.71 0.68 0.65 0.78 0.79 0.73
TVRPCA [31]

√
0.76 0.67 0.68 0.82 0.77 0.69 0.71 0.79 0.88 0.75

MSCL [24]
√

0.80 0.78 0.96 0.86 0.79 0.74 0.76 0.89 0.86 0.82
MSCL-FL [24]

√
0.84 0.84 0.88 0.90 0.83 0.80 0.78 0.85 0.94 0.86

DCP [93]
√

0.58 0.62 0.59 0.71 0.67 0.69 0.65 0.70 0.70 0.66
AE-NE [12]

√
0.81 0.72 0.78 0.78 0.60 0.73 0.32 0.84 0.77 0.71

MOD-GAN [69]
√

0.80 0.75 0.69 0.70 0.87 0.66 0.71 0.75 0.80 0.75
MOS-GAN [71]

√
0.88 0.81 0.79 0.79 0.97 0.74 0.76 0.77 0.88 0.82

LTS-A (our)
√

0.82 0.90 0.83 0.86 0.76 0.84 0.87 0.80 0.79 0.83

Fix. : Fixed Parameters. Ave. : Average.

parameters are kept constant for all tested videos, as presented
in Tables III, IV, V and VI, to provide a universal solution.
Our approach achieves favorable results with fixed parameters
across all four datasets, as shown qualitatively in Figure 8.

Specifically, on CDNet2014 [84], our approach performs
well compared to the other methods with fixed parameters.
Despite our inspiration being drawn from ADNN [13], we
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TABLE VI
COMPARISON OF F-MEASURE RESULTS FOR VIDEOS IN THE SBMI2015 DATASET [97].

Method Venue Fix. Board Cand. CAVI.1 CAVI.2 CaVig. Foliage HallA. High.I High.II Hum.B. IBM.2 Peop.A. Snel. Ave.

RPCA [90] DREV-01
√

0.5304 0.4730 0.4204 0.1933 0.4720 0.4617 0.4525 0.5733 0.7335 0.5765 0.6714 0.3924 0.4345 0.4911
ViBe [53] TIP-10

√
0.7377 0.5020 0.8051 0.7347 0.3497 0.5539 0.6017 0.4150 0.5554 0.4268 0.7001 0.6111 0.3083 0.5617

SuBSENSE [36] TIP-15
√

0.6588 0.6959 0.8783 0.8740 0.4080 0.1962 0.7559 0.5073 0.8779 0.8560 0.9281 0.4251 0.2467 0.6391
MSFS-55 [98] ICDM-15

√
0.9100 0.2600 0.5700 0.0800 0.5700 0.8000 0.5200 0.8200 0.5800 0.6100 0.6000 0.8700 0.6800 0.6054

FgSN-M-55 [10] PRL-18
√

0.8900 0.2100 0.7000 0.0500 0.5700 0.9100 0.7100 0.7500 0.3100 0.8300 0.8300 0.9000 0.5200 0.6292
3DCD-55 [59] TIP-20

√
0.8300 0.3500 0.7900 0.5600 0.4800 0.6900 0.5800 0.7300 0.7700 0.6500 0.7000 0.7800 0.7600 0.6669

BSUV2.0 [11] Access-21
√

0.9886 0.8597 0.9358 0.8649 0.4773 0.3450 0.9346 0.8337 0.9592 0.9503 0.9643 0.6930 0.3786 0.7834
GraphMOS [77] PAMI-22

√
0.9931 0.7551 0.9744 0.9210 0.7322 0.7792 0.9122 0.9880 0.9547 0.9522 0.9856 0.9059 0.7380 0.8917

ADNN* [13] TIP-22
√

0.4527 0.5222 0.9169 0.8429 0.7259 0.0722 0.8200 0.7493 0.9827 0.9431 0.9348 0.3071 0.0445 0.6395
ADNN [13] TIP-22 × 0.9421 0.9242 0.9550 0.8865 0.9589 0.7528 0.9151 0.8689 0.9854 0.9525 0.9548 0.7108 0.7893 0.8920
MSF-NET [67] Access-23

√
0.9200 0.9000 0.9700 0.9400 0.8200 N/A 0.9700 0.9400 0.9700 0.9100 0.9700 0.7900 N/A 0.9200†

LTS-A Our
√

0.9932 0.9848 0.9940 0.9432 0.9775 0.9670 0.9773 0.9741 0.9915 0.9616 0.9795 0.9891 0.9775 0.9751

Cand. : Candela m1.10, CAVI.1 : CAVIAR1, CAVI.2 : CAVIAR2, CaVig. : CaVignal, HallA. : HallAndMonitor, High.I : HighwayI, High.II : HighwayII, Hum.B. : HumanBody2,
IBM.2 : IBMtest2, Prop.A. : PeopleAndFoliage, Snel. : Snellen, Fix. : Fixed Parameters, Ave. : Average, ADNN*: ADNN fixed parameters version. †: Result is based on
reported categories, which is not exhaustive.

TABLE VII
ABLATION STUDY AND COMPARISON OF LTS ON DIFFERENT DATASETS

USING FM SCORE.

Method Fix. Net. Size CDNet
2014 [84]

LASI
ESTA [86]

SBMI
2015 [97]

BMC
[96]

DIDL-D × 0.45MB 0.7691 0.9174 N/A N/A
LTS-D × 1.37MB 0.9485 0.9807 N/A N/A
DIDL-A

√
0.45MB 0.7368 0.8936 0.8872 0.6890

LTS-A w/o R&M
√

1.37MB 0.7372 0.8726 0.8923 0.6705
LTS-A w/o R

√
1.37MB 0.9023 0.9538 0.9625 0.7823

LTS-A
√

1.37MB 0.9431 0.9750 0.9751 0.8317
LTS-U

√
1.37MB N/A 0.8648 N/A N/A

DIDL-U
√

0.45MB N/A 0.7961 N/A N/A
DIDL-U+MU2 [62]

√
68.41MB N/A 0.7303 N/A N/A

DIDL-A+MU2 [62]
√

68.41MB 0.8955 0.7706 0.8325 0.6456
GMM [18]

√
N/A 0.5566 N/A N/A N/A

GMM+SBR
√

0.92MB 0.6799 N/A N/A N/A
Noise+SBR

√
0.92MB 0.0482 0.0352 0.0519 0.0123

ADNN [13]
√

0.42MB 0.7877 0.8459 0.6396 N/A
AE-NE [12] × N/A 0.7841 0.8690 N/A 0.7100
GraphMOS [77] × N/A 0.8592 N/A 0.7834 N/A
BSUV2.0 [11] × 115.94MB 0.8387 0.8500 0.8917 N/A
FgSegNet [10] × 56.16MB 0.9864 0.3700 N/A N/A
MU-Net1 [62]

√
67.96MB 0.9146 0.2656 0.4347 0.3002

EDS-Net [91] × 18.64MB 0.8644 N/A N/A N/A

DIDL-{A/D/U}: The LTS-{A/D/U} results without Bayesian refinement network.
w/o R&M: without multiscale random sampling in Bayesian refinement network.
w/o R: without random sampling in Bayesian refinement network.
Fix. : Fixed parameters, Net. Size: The size of network.
For network size, all implementations are in Pytorch.

improve results by 15%. This demonstrates the contributions
of the proposed approach including Defect Iterative Distribu-
tion Learning, Stochastic Bayesian Refinement Network and
improved product distribution layer. Furthermore, the results
for LTS-A and LTS-D in Table III and Table IV, respectively,
demonstrate the universality of our approach, as they exhibit
almost the same performance. In the BMC dataset, our method
does not seem to have a significant advantage. This is due to
the limited number of frames provided for each video. For
example, in video 001, only 69 frames are available, and their
timestamps are not consistent. This results in our inability to
generate high-quality histograms.

Given the limited scope and subject matter in standard
datasets, videos included may not provide a fully represen-
tative sample of real-world videos. Furthermore, the number

of segmented objects in these datasets is limited, making it
challenging to rely solely on scene information to handle
dynamic and complex scenarios encountered in the real world.
To further substantiate the universality of our approach, we
gathered a corpus of 128 videos containing 298k frames that
were recorded in real-life scenarios or obtained from cameras
located worldwide, featuring diverse scenes. Unlike standard
datasets, which often contain a restricted variety of controlled
environments, our newly gathered videos were specifically
selected to have closer complexities of the real world. The
realism and complexity is visually illustrated in Figure 7
(sample results in our newly captured videos). In practical
scenarios, LTS exhibits two distinctive benefits. First, LTS can
handle the segmentation of objects that are not presented in
the training phase, such as animals. Second, LTS performs
segmentation solely on objects that are in motion, avoiding
the erroneous segmentation of stationary objects (e.g., a car
waiting at a traffic light). The video results on real-world
scenarios can be found online2.

C. Ablation Study and Discussion

Ablation Study: This section presents the results of an
ablation study conducted on four datasets, presented in Table
VII. On the CDNet2014 [84] dataset, DIDL-A achieves an
Fm score of 0.7368. When refined by SBR without random
sampling and multi-scale, the improvement in accuracy is
negligible, resulting in a Fm score of 0.7372 as shown in LTS-
A w/o R&M. In contrast, the multiscale strategy significantly
improves accuracy, as demonstrated by the Fm score of
0.9023 in LTS-A w/o R, while the multi-scale and random
sampling strategy further improves accuracy, as shown by
the Fm score of 0.9431 in LTS-A. Interestingly, when the
size of G in Equation 16 is maximized to the image size,
the input of the SBR network becomes a combination of
the image frame and foreground mask, which is similar to
MU-Net2 [62]. This observation indicates that MU-Net2 can
be considered as a specific condition of the proposed SBR

2Sample videos are available in the supplementary material. The complete
2-hour video can be found at https://youtu.be/BcLnNTne-n0.

https://youtu.be/BcLnNTne-n0
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Fig. 7. Sample results from our 128 newly captured videos. The segmented moving objects are highlighted in red. The video results can be found in the
supplementary materials and on the YouTube link https://youtu.be/BcLnNTne-n0. We can observe that the scene information in newly captured videos is
highly complex, and there is a wide variety of moving objects in terms of both types and quantity.

Fig. 8. Sample results from 4 standard datasets (CDNet2014, LASIESTA, SBMI2015, BMC). The segmented moving objects are highlighted in red. The
video results can be found on the YouTube link https://youtu.be/0UI-cezMFlI. We can observe that standard datasets have simpler scene information and a
more limited variety of moving objects (pedestrians or vehicles) compared to newly captured videos as shown in Figure 7.

https://youtu.be/BcLnNTne-n0
https://youtu.be/0UI-cezMFlI
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network. Unfortunately, this specific condition removes both
multi-scale and random sampling, leading to overfitting to
scene information and poor performance on diverse videos. To
demonstrate this, we directly input DIDL results into a pre-
trained MU-Net2 provided by the author, presenting the results
of DIDL-A+MU2 and DIDL-U+MU2, which even worsens
results of the original DIDL-A/DIDL-U.

Moreover, SBR can be directly applied to other methods
such as GMM [18] and the results of GMM+SBR show
that incorporating spatial information improves segmentation
accuracy. Additionally, despite being trained on 97 videos
simultaneously, LTS-A’s accuracy is only slightly lower than
LTS-D, indicating the universality of our approach. Finally,
to confirm that our SBR network is refined by spatial infor-
mation rather than scene information, we directly concatenate
noise foreground with the image into SBR, resulting in poor
performance (Noise+SBR).

We also compare with state-of-the-art methods, considering
both network size and accuracy. We determine the network
size by reporting pre-trained model file sizes. Our method
has the second-smallest network in terms of file size, next
to ADNN [13]. However, the proposed approach achieves
significantly higher accuracy than ADNN. During testing on
Nvidia RTX3090, our method takes only 0.15 seconds per
frame (240×360 resolution) excluding I/O time. Notably, our
approach requires only 2GB of memory, making it compatible
with low-end computers.

Discussion: According to a comprehensive review of
moving object segmentation in stationary cameras (Section 9
and 10, Page 59) [81], different architectures should be used
in different scenarios and tasks. For example, supervised net-
works like FgSegNet [10] is useful when labeled groundtruth
is available, while unsupervised methods like GraphMOS [77]
can be used if groundtruth is limited. However, from our
point of view, the potential of deep learning networks may be
beyond this. With proper network design, it may be possible
to propose a single network that can handle all scenarios in
real-life environments. Thus, LTS-A is proposed. In addition to
the excellent performance of LTS-A on four standard datasets
containing 97 videos, we also applied LTS-A to another
128 videos in real-life scenarios, which are available in the
supplementary material and Youtube. Although quantitative
results are not available due to a lack of groundtruth, the
qualitative results are promising. Both of these demonstrate
the potential of our approach to be a universal method for
moving object segmentation.

There are some limitations in the proposed approaches. In
addition to the processing time for high-resolution images,
Equation 15 suggests that both the sampling position and size
should be random. However, this leads to high computation
cost. As a compromise, we use fixed sizes of 16×16, 32×32,
and 64 × 64 in our implementation. This limitation warrants
further investigation in future research.

VI. CONCLUSION

We proposed a potential solution for universal moving
object segmentation by learning the temporal pixel distri-
bution and the spatial correlation (LTS). To learn the pixel

distribution, we improved the implementation of the product
distribution layer and introduced Defect Iterative Distribution
Learning (DIDL) to learn parameters from an entire training
set by using a subset of instances. In order to take advantage
of spatial correlation, we proposed the Stochastic Bayesian
Refinement (SBR) Network to further improve results. Com-
pared to previous methods, our approach enables direct testing
on any video using fixed model parameters. Additionally, our
approach has less parameters, low computational requirements,
high accuracy, and is user-friendly. Thus, our method is a
promising approach for universal moving object segmentation.
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