Abstract:
The removal of outliers is crucial for establishing correspondence between two images. However, when the proportion of outliers reaches nearly 90%, the task becomes highl...Show MoreMetadata
Abstract:
The removal of outliers is crucial for establishing correspondence between two images. However, when the proportion of outliers reaches nearly 90%, the task becomes highly challenging. Existing methods face limitations in effectively utilizing geometric transformation consistency (GTC) information and incorporating geometric semantic neighboring information. To address these challenges, we propose a Multi-Stage Geometric Semantic Attention (MSGSA) network. The MSGSA network consists of three key modules: the multi-branch (MB) module, the GTC module, and the geometric semantic attention (GSA) module. The MB module, structured with a multi-branch design, facilitates diverse and robust spatial transformations. The GTC module captures transformation consistency information from the preceding stage. The GSA module categorizes input based on the prior stage’s output, enabling efficient extraction of geometric semantic information through a graph-based representation and inter-category information interaction using Transformer. Extensive experiments on the YFCC100M and SUN3D datasets demonstrate that MSGSA outperforms current state-of-the-art methods in outlier removal and camera pose estimation, particularly in scenarios with a high prevalence of outliers. Source code is available at https://github.com/shuyuanlin.
Published in: IEEE Transactions on Image Processing ( Volume: 33)