Self-Supervised Sub-Action Parsing Network for Semi-Supervised Action Quality Assessment | IEEE Journals & Magazine | IEEE Xplore

Self-Supervised Sub-Action Parsing Network for Semi-Supervised Action Quality Assessment


Abstract:

Semi-supervised Action Quality Assessment (AQA) using limited labeled and massive unlabeled samples to achieve high-quality assessment is an attractive but challenging ta...Show More

Abstract:

Semi-supervised Action Quality Assessment (AQA) using limited labeled and massive unlabeled samples to achieve high-quality assessment is an attractive but challenging task. The main challenge relies on how to exploit solid and consistent representations of action sequences for building a bridge between labeled and unlabeled samples in the semi-supervised AQA. To address the issue, we propose a Self-supervised sub-Action Parsing Network (SAP-Net) that employs a teacher-student network structure to learn consistent semantic representations between labeled and unlabeled samples for semi-supervised AQA. We perform actor-centric region detection and generate high-quality pseudo-labels in the teacher branch and assists the student branch in learning discriminative action features. We further design a self-supervised sub-action parsing solution to locate and parse fine-grained sub-action sequences. Then, we present the group contrastive learning with pseudo-labels to capture consistent motion-oriented action features in the two branches. We evaluate our proposed SAP-Net on four public datasets: the MTL-AQA, FineDiving, Rhythmic Gymnastics, and FineFS datasets. The experiment results show that our approach outperforms state-of-the-art semi-supervised methods by a significant margin.
Published in: IEEE Transactions on Image Processing ( Volume: 33)
Page(s): 6057 - 6070
Date of Publication: 07 October 2024

ISSN Information:

PubMed ID: 39374293

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.