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Beyond Stabilizer Codes II: Clifford Codes

Andreas Klappenecker, Martin Rötteler

Abstract

Knill introduced a generalization of stabilizer codes, in this note called Clifford codes. It remained unclear whether or

not Clifford codes can be superior to stabilizer codes. We show that Clifford codes are stabilizer codes provided that the

abstract error group has an abelian index group. In particular, if the errors are modelled by tensor products of Pauli

matrices, then the associated Clifford codes are necessarily stabilizer codes.
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I. Introduction

Quantum error control codes allow to protect the computational states of a quantum computer

against decoherence errors. Almost all quantum codes known today have been constructed as stabilizer

codes, cf. [1], [2], [3], [4]. Allowing the protection of quantum systems of arbitrary finite dimension,

we are led to modify the notion of a stabilizer code in the following way:

Let ̺:E → U(n) be a faithful unitary irreducible ordinary representation of an abstract error group

E [5]. A stabilizer code is defined to be the joint eigenspace Q of the representing matrices ̺(n) for

all n ∈ N , where N is a normal subgroup of E. If Q is nontrivial, then N is necessarily an abelian

normal subgroup of E.

We recover the definition of binary stabilizer codes as used in [2], [3] by taking E to be the generalized

extraspecial 2-group which is generated by k-fold tensor products of Pauli matrices. The stabilizer

codes derived within this error model have been studied in great detail, see [2], [3].

The definition of stabilizer codes forces the normal subgroup to be abelian. A more general class

of quantum error correcting codes – in this note called Clifford codes – has been introduced by Knill

in [6]. Clifford codes are derived with the help of normal subgroups which are not necessarily abelian.
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It remained unclear, whether or not it is possible to construct Clifford codes that are better than

stabilizer codes. We found surprisingly good Clifford codes by computer search. However, we were

never able to beat the stabilizer codes. The main result of this note partly explains this phenomenon:

we find that each Clifford code is actually a stabilizer code given that the error group has an abelian

index group. Therefore, the error models discussed in [1], [2], [3] cannot lead to Clifford codes which

are not stabilizer codes.

II. Clifford Codes

We will construct a quantum code Q from a normal subgroup N of an abstract error group E. The

main properties of such a code Q are determined by applying results from Clifford theory, hence the

name Clifford code. The relevant results from Clifford theory can be found in Huppert [7, Chapter 5]

or any other standard text on representation theory of finite groups.

Let E be an abstract error group. Recall that the group E has a faithful irreducible ordinary

representation ̺:E → U(n) of large degree deg ̺ = (E :Z(E))1/2. The errors are expressed as linear

combinations of the unitary n × n matrices ̺(g) representing elements g of the abstract error group

E.

The action of the representation ̺ on Cn induces an irreducible CE-module structure on the ambient

space Cn. Let N be a normal subgroup of E, denoted by N E E. If we view the ambient space Cn as

a CN -module, then we obtain a decomposition into irreducible CN -modules gW of the form

Cn ∼=

m⊕

i=1

{
⊕

g∈R

gW

}

,

where R is a transversal of the inertia group T (W ) in E, and m is the multiplicity of the module gW

in this decomposition. Recall that the inertia group is defined by

T (W ) = {g ∈ E | gW ∼= W }.

We define a quantum code Q to be a homogeneous component

Q ∼= W ⊕ · · · ⊕W
︸ ︷︷ ︸

m-times

of this decomposition. Thus, Q is a subspace of Cn which is also endowed with the structure of a

CN -module. We call any quantum code Q that can be obtained by such a construction a Clifford

code.
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We need to introduce some more notation before we can discuss the error correcting properties of a

Clifford code Q. We define Z(W ) to be the set of elements that act on Q by scalar multiplication

Z(W ) = {g ∈ T (W ) | ∃λ ∈ C ∀v ∈ Q : gv = λv}.

The error correcting properties of the code Q are summarized by the following theorem. Although this

theorem is essentially contained in [6], we include it here to make this note self-contained:

Theorem 1: We keep the notation introduced above. Let χ be the character of N afforded by W .

Then

eχ =
χ(1)

|N |

∑

n∈N

χ(n−1)̺(n)

is an orthogonal projector onto Q. The code Q is able to correct a set of errors Σ ⊂ E precisely when

the condition e−1

1
e2 6∈ T (W )− Z(W ) holds for all e1, e2 ∈ Σ. The dimension of Q is mχ(1).

Proof: We divide the proof into several steps.

Step 1. The matrix group ̺(N) is isomorphic to the abstract group N , since ̺ is a faithful representa-

tion. Since χ is an irreducible character of N , it follows that eχ is an idempotent in the group algebra

C[̺(N)] ∼= CN , cf. [8, p. 209]. The idempotent eχ is hermitian, since ̺ is unitary, hence an orthogonal

projection operator. That eχ projects onto Q is a well-known fact, cf. Theorem 8 in [9, p. 21]. The

dimension of the module W is χ(1), whence dimC(Q) = mχ(1).

Step 2. Let g, h ∈ E. The characters of gW and hW are ψ(x) = χ(gxg−1) and ϕ(x) = χ(hxh−1)

respectively, cf. Chap. V, §17, Theorem 17.3 c) in [7]. Suppose that g and h are not in the same coset

of T (W ) in E. Then ψ and ϕ are different irreducible characters. Thus the idempotents eψ and eϕ

satisfy eχeψ = 0 = eψeχ, hence project on orthogonal subspaces. We have im(eψ) = gQ, im(eϕ) = hQ,

and thus, in particular, gQ⊥hQ.

Step 3. It remains to show the error correcting properties of Q. Recall that an error w can be detected

if and only if eχ̺(w)eχ is a scalar multiple of eχ, cf. [6]. The code Q is Σ-correcting if and only if Q is

able to detect all errors in {e−1

1
e2 | e1, e2 ∈ Σ}, cf. [10], [11]. Hence it remains to show that an error w

can be detected if and only if w 6∈ T (W )− Z(W ).

(a) An error w ∈ Z(W ) can be detected, since, by definition, there exists a scalar λ ∈ C such that

eχ̺(w)eχ = λeχ.

(b) An error w ∈ E − T (W ) can be detected, since Step 2 shows that eχ̺(w)eχ = 0 holds.
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(c) An error w ∈ T (W )−Z(W ) cannot be detected. Indeed, ̺(w) maps Q into itself, since w ∈ T (W ).

However, eχ̺(w)eχ cannot be a multiple of eχ, since this would imply that w is an element of Z(W ).

This proves the claim. ✷

The error correcting properties of a Clifford code Q are fully determined by the inertia group T (W )

and the group Z(W ). It is often more convenient to use characters rather than modules to compute

these groups. The inertia group T (W ) coincides with the inertia group T (χ) of the character χ in G:

T (W ) = T (χ) = {g ∈ G |χ(gxg−1) = χ(x) for all x ∈ N}.

The group Z(W ) can also be determined by a character. Clifford theory shows that Q is an irreducible

CT -module, where T = T (W ). Denote by ϑ the irreducible character of T afforded by Q. Then Z(W )

is determined by the values of the character ϑ:

Z(W ) = Z(ϑ) = {g ∈ T | ϑ(1) = |ϑ(g)| }.

III. Characters

We have seen that the inertia group of χ determines the error correcting properties of the quantum

code Q. We show in this section how the inertia groups can be calculated for abstract error groups

with abelian index groups.

Let us first recall a few standard notations from group theory. If E is a finite group, then E ′ denotes

the commutator subgroup,

E ′ = 〈[g, h] = g−1h−1gh | g, h ∈ E〉.

The center Z(E) of E is given by the group

Z(E) = {z ∈ E | zg = gz for all g ∈ E}.

An abstract error group E has an abelian index group G ∼= E/Z(E) if and only if its commutator

subgroup E ′ is contained in Z(E). For that reason, it is of interest to study the inertia groups in such

groups E. We will see that the inertia group of a character χ of N defining a Clifford code is simply

given by the centralizer of Z(N) in E.

Let G be a finite group. We denote by Irr(G) the set of irreducible characters of G. We say that a

character χ ∈ Irr(G) is faithful on H ⊆ G if and only if the intersection of H with the kernel of χ is

trivial

H ∩ ker(χ) = H ∩ {g ∈ G |χ(1) = χ(g)} = {1}.
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We need to establish a few simple properties of characters. We will see that a character defining a

Clifford code will satisfy the assumption of the following lemma, which gives some information about

character values.

Lemma 2: Let E be a finite group, N E E. Let χ be an irreducible character of N that is faithful

on Z = Z(E) ∩N . If z ∈ Z, z 6= 1, and n ∈ N , then χ(zn) = ωχ(n) for some ω 6= 1.

Proof: Denote by ̺ a representation affording χ. Since ̺ is irreducible, ̺(z) is a scalar multiple

of the identity matrix I for all z ∈ Z by Schur’s lemma. If z 6= 1, then ̺(z) = ωI with ω 6= 1, since χ

is faithful on Z. Hence χ(zn) = tr(̺(zn)) = tr(ω̺(n)) = ω tr ̺(n) = ωχ(n) as claimed. ✷

In the next step we want to show that the character χ defining a Clifford code is indeed faithful

on the central elements of E contained in N . We exploit the fact that χ is a constituent of a faithful

character φ ∈ Irr(E) of the abstract error group satisfying φ(1)2 = (E :Z(E)). Recall that a scalar

product of two characters χ, ϑ ∈ Irr(N) is defined by

〈χ, ϑ〉 =
1

|N |

∑

n∈N

χ(n)ϑ(n−1).

This allows to define the set of irreducible components of the restriction of φ ∈ Irr(E) to N by

Irr(φ |N) = {χ ∈ Irr(N) | 〈χ, φ↓N〉 6= 0},

where φ↓N denotes the restriction of φ to N . Using this notation, we can now formulate

Lemma 3: Let E be a finite group, N E E, φ ∈ Irr(E), and χ ∈ Irr(φ |N). If φ is faithful on Z(E),

then χ is faithful on Z = Z(E) ∩N .

Proof: By Clifford’s theorem, the restriction of φ to N can be expressed as a sum of characters

χg(x) = χ(gxg−1) conjugated to χ:

(φ ↓ N)(x) = m
∑

g∈R

χg(x),

for some subset R of E. The conjugated characters satisfy χg(z) = χ(gzg−1) = χ(z) for all central

elements z ∈ Z. Hence

(φ ↓ N)(z) = |R|mχ(z)

for all z ∈ Z, which proves the claim. ✷

Recall that the support supp(χ) of a function χ:E → C is given by the set supp(χ) = {g ∈

E |χ(g) 6= 0}. We use our knowledge of character values to determine the support of the character χ:
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Lemma 4: Let E be a finite group satisfying E ′ ⊆ Z(E), and N E E. If χ ∈ Irr(N) is faithful on

Z = N ∩ Z(E), then supp(χ) = Z(N).

Proof: Let n ∈ supp(χ). Seeking a contradiction, we assume that n 6∈ Z(N). Since E ′ ⊆ Z(E),

this means that there exists an element g ∈ N such that gng−1 = zn for some z ∈ Z(E), z 6= 1. Note

that zn, hence z, is an element of N since N is a normal subgroup of E. Thus,

χ(n) = χ(gng−1) = χ(zn) = ωχ(n)

with ω 6= 1, by Lemma 2. This contradicts the fact that χ(n) 6= 0, hence supp(χ) = Z(N) as

claimed. ✷

Recall that the centralizer CE(H) of a subgroup H in E is given by the group

CE(H) = {g ∈ E | ghg−1 = h for all h ∈ H}.

Using this notation, we are able to explicitly determine the inertia subgroup T (χ):

Lemma 5 (“Tacheles” Lemma) Let E be a finite group satisfying E ′ ⊆ Z(E), and N E E. Let

φ ∈ Irr(E) be faithful on Z(E), and χ ∈ Irr(φ |N). Then the inertia group of χ in E is given by

T (χ) = CE(Z(N)).

Proof: The character χ is faithful on Z(E)∩N by Lemma 3. Thus supp(χ) = Z(N) by Lemma 4.

It follows that CE(Z(N)) ≤ T (χ). Conversely, suppose that g 6∈ CE(Z(N)). We want to show that

g cannot be an element of the inertia group. Since E ′ ⊆ Z(E), the condition g 6∈ CE(Z(N)) implies

that there exists an element n ∈ Z(N) such that gng−1 = zn for some z ∈ Z(E), z 6= 1. Since N is

a normal subgroup of E, we also obtain that zn ∈ N . Together with n ∈ N this shows that z ∈ N .

By Lemma 2, χg(n) = χ(gng−1) = χ(zn) = ωχ(n) with ω 6= 1. Since n ∈ Z(N) ⊆ supp(χ), χ(n) 6= 0,

whence g 6∈ T (χ). ✷

IV. Abelian Index Groups

Suppose that we fix a normal subgroup N of an abstract error group E and define a Clifford code

Q using a character χ ∈ Irr(φ |N). If the index group of E is abelian, then the next theorem shows

that Q could have been derived from an abelian group, namely from the center Z(N) of N .

Theorem 6: Let E be an abstract error group with abelian index group. Let N be a normal subgroup

of E. Suppose that Q is a Clifford code with respect to N , then Q is also a Clifford code with respect

to Z(N).
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Proof: We divide the proof into several steps.

Step 1. The Clifford code Q is defined by the following data. There exists a faithful irreducible char-

acter φ of E that corresponds to a unitary representation ̺ of degree (E :Z(E))1/2 and χ ∈ Irr(φ |N)

such that

eχ =
χ(1)

|N |

∑

n∈N

χ(n−1)̺(n)

is an orthogonal projector onto Q.

Step 2. Recall that E satisfies E ′ ⊆ Z(E), since the index group E/Z(E) is abelian. We want to show

that N E E implies that Z(N) E E. Indeed, take n ∈ Z(N) and g ∈ E. We have gng−1 = zn for

some z ∈ Z(E), since E ′ ⊆ Z(E). Now zn ∈ N , since N E E, and thus z ∈ N . On the other hand, an

element z ∈ Z(E)∩N is an element of Z(N). This shows that all conjugates of an element n ∈ Z(N)

are again elements of Z(N), whence Z(N) E E.

Step 3. The restriction of χ to the center Z = Z(N) is given by (χ ↓ Z)(x) = χ(1)ϕ(x) for some

irreducible character ϕ of Z, cf. Prop. 6.3.5 in [12]. We claim that

eϕ =
1

|Z|

∑

z∈Z

ϕ(z−1)̺(z)

is also an orthogonal projector onto Q. It is clear that dimC im(eχ) = dimC im(eϕ), since the “Tacheles”

Lemma shows that the inertia groups of χ and ϕ are given by T (χ) = CE(Z) = T (ϕ). Thus, it suffices

to show that the dimension of im(eϕeχ) is not smaller than the dimension of im(eχ).

Step 4. Recall that φ(g) = tr ̺(g) is zero for all g ∈ E not in the center Z(E). Moreover, (φ↓Z)(z) =

φ(1)ϕ(z) holds for all z ∈ Y = Z(E) ∩ N , cf. Lemma 3. Keeping this in mind, it is easy to calculate

the dimension of im(eχ) by

dimC im(eχ) = tr eχ =
|Y | φ(1)χ(1)2

|N |
.

On the other hand, we find that

dimC im(eϕeχ) = tr(eϕeχ)

=
χ(1)

|N | |Z|

∑

n∈N,z∈Z

nz∈Y

ϕ(z−1)χ(n−1) tr ̺(nz).

Since χ(z) = χ(1)ϕ(z) holds for z ∈ Z, and the conditions z ∈ Z and nz ∈ Y imply that n ∈ Z, we
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can further simplify this expression to

tr(eϕeχ) =
χ(1)2

|N | |Z|

∑

n,z∈Z

nz∈Y

ϕ(z−1n−1) tr ̺(nz)

=
|Y ||Z|φ(1)χ(1)2

|N ||Z|
.

This shows that dimC im(eχ) = dimC im(eϕeχ), whence eχ and eϕ project both onto Q. ✷

V. Conclusions

We have shown some basic properties of Clifford codes, which are a natural generalization of stabilizer

codes. The main result of this note shows that there is no loss in assuming that the normal subgroup

defining a Clifford code is abelian provided that the abstract error group is a nilpotent group of class

at most 2. An analogue of Theorem 6 does not hold for general index groups. In fact, we have

recently shown that there exist Clifford codes which are not stabilizer codes [13]. This result indicates

that abstract error groups with nonabelian index groups might provide a new angle to the theory of

quantum error correcting codes. Moreover, this shows that the theory of Clifford codes – after all –

extends the concept of stabilizer codes.
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