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Abstract

This paper treats the detection of pulsed signals in the presence 
of receiver noise for the case of randomly fluctuating signal strength. 
The system considered consists of a predetection.stage, a square-law 
envelope detector, and a linear post-detection integrator. The main 
problem is the calculation of the probability density function of the 
output of the post-detection integrator. The analysis is carried out 

for a large family of probability density functions of the signal * 
fluctuations, and for very general types of correlation properties of 
the signal fluctuations. The effects of nonuniform beam shape and of 

nonuniform weighting of pulses by the post-detection integrator are 

also taken into account. The function which is actually evaluated is 
the Laplace transform of the probability density function of the 

integrator output. In many of the cases treated, the resulting 
Laplace transform has an inverse of known form. In such cases the 
evaluation of the probability density function would require the 
computation of a finite number of constantsj in practice this would 
usually require the use of computing machinery, but would be 
perfectly feasible with presently available computing machinery.
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An extensive treatment of detection theory for pulsed signals 

in noise, for the case where the signal amplitude is constant, was 
given by Marcim/^'^2 .̂ This analysis has been extended by other 
i n v e s t i g a t o r s ^ ' some cases Where the signal pulse 

amplitudes are randomly modulated. However, almost all analyses 

to date have dealt with just two cases, insofar as the correlation 

properties of the signal fluctuations are concerned: the signal
amplitudes fluctuate independently from pulse to pulsej or, the 

signal amplitudes are constant during the integration time of the 

receiver, but are independent from one integration period to the 
next. Fluctuations not conforming to one of these assumptions have 
been treated only in very special cases (see e.g. Ref. ^). The 
purpose of this paper is to extend the analysis to much more general 

cases, insofar as the correlation properties of the fluctuations are 
concerned. The analysis is carried out for a large family of proba­
bility density functions for the signal fluctuations. Also, since no 
additional work is involved, we treat the case where the post-detection 
integrator forms a weighted sum of the input pulses.

We shall consider a receiver consisting of a pre-detection stage, 
a square-law envelope detector, and a linear post-detection integrator. 
The receiver noise at the detector input is assumed to be additive 

Gaussian (with zero mean), completely correlated for times of the order 
of one pulse width, and completely uncorrelated from one pulse to the 
next. The detector is assumed to be a square-law envelope detector.
For mathematical convenience, the detector output is assumed to be
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normalized as follows: detector output equals input envelope squared
divided by twice the input mean square receiver noise voltage. This 

normalization was used by Marcum^1 ^  and followed by Swerling^^j 
it simplifies some of the formulas, but results in no actual loss of 

generality.
Denoting by v^ the (normalized) i pulse emerging from the 

detector, we assume the post-detection integrator to form the 
following weighted sum:

N
(l) y =s integrator output ê ‘±T±

i=l

where JC are positive real numbers.
We assume that the detection procedure requires the integrator 

output y to exceed a threshold Y^ in order for detection of a signal 
to be announced. Here Y^ is a dimensionless quantity, because of 
the normalization of the detector output described above.

If G(y) represents the probability density function (p.d.f.) for 
y, and if GQ(y) represents the p.d.f. in the case where receiver noise 
only is present, then

(2)

(3)

Probability of detection
p oo

ion = J G(y) ay
b
oo

Probability of false alarm
J r\ w
*  ° > > ay

In most applications, the probability of false alarm is set at 
some desired level and Y^ is calculated from (3); then probability of
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detection is calculated from (2).

f 2)In casec?C^ = 1, all i, then GQ(y) isv

W  0o(y) = - ^ J T  y”'1 e'y (for ̂  = 1, all i)

In the general case, the Laplace transform of GQ(y) is given by 
p oo M

(5) / e"py G (y) dy = I I -̂ ~ - r  (Real part of p = 0)J o 1-1 * ip
This holds, of course, independent of any assumptions as to the 
signal fluctuations. (The integral need be taken only from zero to 
infinity since G(y) vanishes for y <  0.)

In order to calculate G(y) in the presence of signal, it is 
necessary to specify the statistical nature of the signal fluctuations. 

For present purposes, no attempt will be made to derive the following 

formulation of the signal fluctuation from physical considerations.
Its justification is simply, that from it one can construct a wide 
variety of p.d.f.'s and correlation properties for the signal 

fluctuation.
We define x = ratio, at the detector input, of the signal power

for the ith pulse to the mean receiver noise power.

We assume that x.. is of the following form:
L

(6) Xi S X  uk,i (i=1> * • * > N )
k=l

where L is a positive integer, and u, . are Gaussian random variables 
with zero mean. (The x^ are also assumed to be statistically independent 
of the receiver noise.)
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Define the random vectors U(1) (L), E by

(7) }  (k S3 1 . . . , L)
(k)We assume that the U v , k = 1, . . .

(]r\independent. Also, it is assumed that U x 
where, denoting expected values by a bar,

, L, are mutually statistically 
has covariance matrix (0^))

(8) 0S} = \ , i  \,j k = 1, . . . , L 

i,j = 1, • • . , N
In radar applications, the fluctuation in x^ is considered to be

due largely to fluctuation in the scattering cross section of the target.
To relate the above formulation to more familiar types of fluctuation,

consider the case where L - 2K and where, for each i, u? . = u? = . . .’ l,i 2,i
= uT . Then it is easily verified that x. has a p.d.f. w(x * x.) givenJ-i,l 1 i7 i
by

where exp ( ) stands for the exponential function.
Here xi represents the average of x̂  ̂over the fluctuations. For 

K = 1, this reduces to the familiar exponential or Raleigh fluctuation 
for the signal power.

Note that we do not require to be the same for all i. This can 
be considered in radar applications to reflect the effect of beam shape.

We shall now compute the Laplace transform C(p) of the p.d.f. G(y) 
of the integrator output y. This is defined as

p oo
(10) C(p) = / e"py G(y) dy

J o



where p is a complex number with real part = 0. The Laplace transform
can be used because G(y) vanishes for y< 0.

If we consider the conditional p.d.f. for y, for definite values
(2 )of x^, . . . , it is well known that the Laplace transform

C(p|:

(11)

x^) of this conditional p.d.f. is

N
C (p |x1 , . • • , Xjy) -  1 I p exP

i=l 1

In view of (6), this can be written

-px
1+oC .p 

1

(12)
N

c(p xp . . . , = TT1=1
exp

N
-  A T) IT 1 %:

k=l
1+ 4 p

C(p) is simply equal to this expression averaged over the

probability distribution of U (1 ) . , Because of the
00mutual independence of the U , one may write

(13) C(p) =

exp

N i 
T T  — —  J ' 1+^.p 1=1 1

N
X

- Ii=l

A ±V p p—— -—  (un . + . . . + UT . ) 1+ * p v 1,1 L,i'

i00

TT dP(u(k))
k=l

Now, assuming nonsingularity of (0jj ) each k,

( Ik) dP(UW ) =

00

N exp

( » ) 2 4 /2

N-1 x
i,3=l

t(k)
5iJ

where = determinant (0^') ,

= matrix inverse of ( 0 ^ )ij



87-10

Thus,

N 1 L
(15) c(p) = 1 i i+ j; p T T E k

i=i r k=l
—

where

(16) E, = N
(2* ) ^ /2

N N
exp

! - 1 Z
1,3=1

■ li=l
^  u.2 \  * 0 «1 + ^±V k,i

Define

(17) (p) e «3-J i ± 3

= e
/ v 2 p(k) + iP
ii ' l + ^ ±p 9 i = 3

and

(18) r > >

(Thus rk(°)

Then

(19) \
rk(°) 1/2

x  i i n ^ l
(at) N/2

1/2 ( N
exp |

1,3=1

(k)

Now assume for the time being that p is a real number = 0. Since the
right hand factor is then just the integral of a probability density and
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hence equal to unity,

(2 0) Ek =
1/2

U ij h

rk(°)

Thus, provided (0^P) are nonsingular with matrix inverses

N
(2D c(p) = l FT

i=i 1 + ^ip
rk(°) 1/2

where n(p) is defined by (17) and (l8). This has been derived 
assuming p to be a real number = 0, but, by analytic continuation, 
it clearly holds for all p in the closed right half plane. The 
only interesting singular case is that of complete correlation of 

the x^, which can be treated as a separate c a s e ^ ^ ^ ^ ^ \
It is interesting to consider some special cases. For example, 

suppose £  a 1, all i. Define

(22) (p) = I0“ eigenvalue of ( (p),th 00

(0) ** m î *1 eigenvalue of

Then, if X ± = 1, all i, (p) = ^  , and

n, <») - n  <4 k) * i !>

n  (•) - f r  f  >
1=1

(23)
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Putting (23) into (21), for the case £  = 1, all i,

(2*) C(p) =
L N

h  f t  n(l+p) k=l i=l
1 + 2p

(l+P)\(kj
- 1/2

( k )If the covariance matrices are all equal: 0:. = 0..,-L J J
all k, then X ? ^  = X., all k, and 9 i i7 ’

(25) C(p) =
(l+p)^ i=i

N
tt 1 + 2p

(l+p))^
- L/2

Specializing still further, suppose that

(26)

L = 2K

(0^)) = (0. .) , all k

<
= 1 1

, all i

u2  ̂= 0 ^  *s a2, all i and k 
In these cases, x.̂  are distributed according to .the p.d.f. (9) and

(27) x = x = 2Ka2 , all i
— 2The assumptions = 1, all i, and x^ = 2Kb , all i, amount in 

radar applications to assuming a uniform beam, and uniform weighting of 

pulses by the post-detection integrator— assumptions almost invariably 
made in probability of detection calculations. However, even the 
assumptions listed in (26) allow a large degree of freedom in the choice 

of correlation properties and p.d.f.’s for the signal fluctuations.
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Now define

(28) fi. = ith eigenvalue of ( ) = —~—
1 V  Qd ]  c T V

Using (25), (27), and (28), we obtain, under the conditions listed 
in (26),

(29) C(p) = (1 + p)N(K-l)
N
i=l K

1+p (l+ K

where x is defined in (27), K in (26), and in (28). This can also 

be written
-K

(29a) C(p) «
d^)N È 1 +

.̂¡xp
K(l+p)

Special cases are

(30) K = 1 C(p) - A
i=l 1+p(l+l-î x)

K = 2
„  N  

-  fi +  o l N  T T . 1 .—  V+ +  P /  |l 
i = l

i + p (i +
ii±x

f o\
These formulas (30) reduce to the correct formulas'0' when the

signal strength fluctuates independently from pulse to pulse, in which
(3)case n a 1, all i. Also, they reduce to the correct formulas'^' in 

the case where the signal strength is constant for the N pulses
■ • t . ; -v . ; ,7 7  .. .• • ■ ■ ■. ■ y  ■ ; ; ;. \

v^, . . . , v^; in this case, jju » 0, i = 1, . . . , N-l, and ̂  = N.

The correct formulas are obtained even though complete correlation leads
to a singular covariance matrix (0. .); this indicates that the validity
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of (29) extends to some cases where (0_) Is singular.

It is interesting to note what happens to C(p) in (29a) when 
K — >00. Since, for K— > 00, the standard deviation of the fluctuations 

about the mean value goes to zero, one would expect C(p) to approach 
the form it would take for nonfluctuating signals. This is indeed 
what happens: from (29a), as K— >oo,

C(p)-+
(l+p)N

exp l+p

N

z  -,i=l

N
But I /0i itrace of — *• N, so

i=l

c(p)— ^
(l+p)N

exp -Nxp
l+p (compare Ref. 2).

-K
One can use the expansion (l + ^) = exp V  _a3 ,- a + 2K

3K2

valid for <  1, to obtain the following expression for C(p):

(29b) C(p) =
(l+p)N

exp
00

»i+p Z j d
d-o

xp
K(l+p)

where A - Î ÜJ j+1

Ni li—1

^ + 1
1

xd.
(29b) is valid for all p = 0 if -r~  a 1, all i; otherwise it is valid for

1
xM-__j
K - 1

p <  min 
i
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It is useful to note that, in the cases represented "by the 

assumptions listed in (26)— and in fact in more general cases—  

the Laplace transform C(p) can he inverted in a straightforward, 
though possibly very tedious, manner. The simplest case is of 

course K = 1 (see (30)), in which case, if for example the are 

distinct, the p.d.f. G(y) is of the form

G(y) = X c^ exp
where the c^ are readily determined. Since digital computer programs 

exist for finding the eigenvalues of N x N matrices up to fairly high 
values of N, the above formulas can be utilized for digital machine 
computation of probability of detection in a fairly straightforward

-y
l+H.X1

way.
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