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simplifies the computations, up to Ic = 18. These are 
compared with values obtained from the approximation 
(36) in the following table: 

k In Xk In 1/4X 

P -1.39 -1.76 -0.92 -1.27 

: -1.97 -2.11 -1.47 -1.61 
10 -2.23 -1.72 
12 -2.32 -1.80 

:t -2.40 -2.46 -1.87 -1.96 
18 -2.52 -2.02 

which is just the amount one-half smaller than the estimate 
(35), and therefore the estimate of In Xk in (36) is also 
too large by this amount. This serves to establish that 
the discrepancy between the estimate of In Xk and the 
correct value does indeed approach a constant, and the 
relative difference tends to zero for k + ~0. In the latter 
sense, (26) is verified. The only modification one might 
wish to make is that the constant A/al” in (26) becomes 
In [l/d2741 - > I E e instead of In [l/d-]. This 
constant plays no essential role in subsequent develop- 
ments of the expression for channel capacity for very large 
average received signal energy. 
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Estimation by the Nearest Neighbor Rule 
THOMAS M. COVER, MEMBER, IEEE 

Abstract-Let R* denote the Bayes risk (minimum expected loss) 
for the problem of estimating 8 E 0, given an observed random vari- 
able x, joint probability distribution F(x,B), and loss function L. Consi- 
der the problem in which the only knowledge of F is that which can be 
inferred from samples (x,,~,),(x,,&),...,(x,,~,), where the (xi,Bi)‘s are 
independently identically distributed according to F. Let the nearest 
neighbor estimate of the parameter 8 associated with an observation 
x be defined to be the parameter en’ associated with the nearest 
neighbor x,’ to x. Let R be the large sample risk of the nearest 
neighbor rule. 

It will be shown, for a wide range of probability distributions, that 
R < 2R* for metric loss functions and R = 2R* for squared-error 
loss functions. A simple estimator using the nearest k neighbors 
yields R = R* (1 + l/k) in the squared-error loss case. In this sense, 
it can be said that at least half the information in the infinite training 
set is contained in the nearest neighbor. 

This paper is an extension of earlier work141 from the problem of 
classification by the nearest neighbor rule to that of estimation. 
However, the unbounded loss functions in the estimation problem 
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introduce additional problems concerning the convergence of the 
unconditional risk. Thus some work is devoted to the investigation 
of natural conditions on the underlying distribution assuring the 
desired convergence. 

I. INTB~DUCTI~N 

I4 

ET (z, 0) and h, h>, h &A, -. - , b,, 0,) be a 
collection of n + 1 independent identically dis- 
tributed random variables taking values in X X 0, 

where the observation space X is a metric space with 
metric p, and 0 is an abstract parameter space. The 
nearest neighbor (NN) estimate of 0 on the basis of the 
knowledge of z and the representative samples (x1, e,), 
(x2, a, *. . , (z,, 0,) is defined to be e;, the parameter 
associated with x;, the nearest neighbor to x. Thus 
2: & (21, x2, * . . , x,}, and p(x:, x) = min p(xi, x), where 
the minimum is taken over i = 1, 2, . . . , n. (In case of 
a tie, we arbitrarily let XL be the 2; of lowest index.) 

The first analysis of a decision rule of the nearest 
neighbor type was made in a series of two papers by Fix 
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and Hodges[” ’ [‘I in which the category of an observation 
x was decided on the basis of a majority vote of the nearest 
k neighbors. (It was assumed throughout that the param- 
eter space 0 was finite.) They were able to demonstrate 
conditions on the underlying probability distributions 
such that when k and n tend to infinity in such a manner 
that k/n 3 0, the risk of such a rule approaches the Bayes 
risk. Johnsr3’ subsequently showed consistency of such 
a procedure in a slightly different context. Because in 
many cases the number of samples n is small, it is of 
interest to know the behavior of decision procedures which 
are based on a small number of nearest neighbors. This 
analysis was made by Cover and Hart’*’ under slightly 
more general conditions than those of Fix and Hodges 
and indicates, perhaps surprisingly, that the large sample 
risk of a classification procedure using a single nearest 
neighbor is less than twice the Bayes risk. A larger 
number of nearest neighbors may, of course, be used, 
with an improvement in the large sample behavior at the 
expense of the small sample behavior. But there exists 
no rule, nonparametric or otherwise, for which the large 
sample risk is decreased by more than a factor of two. 

All of the previously cited work has been concerned 
exclusively with the finite-action (classification) problem 
in which the statistician must place the observed random 
variable x into one of a finite number of categories. The 
purpose of this paper is to investigate the behavior of the 
nearest neighbor rule in the infinite-action (estimation) 
problem. This examination involves many new problems 
due to the more complicated loss structure necessary for 
an infinite parameter space 0. However, under suitable 
conditions we find, almost by coincidence-since the 
methods of proof are different-that the nearest neighbor 
risk is still bounded by twice the Bayes risk for both 
metric and squared-error loss functions. 

Perhaps we should make clear that our goal here is not 
to establish the power of the nearest neighbor estimator 
among the family of nonparametric estimators, but rather 
to give explicit bounds on the behavior of the risk of a 
rule which must be judged, by almost any standard, to 
be very simple, and thus to provide a reference with which 
other more sophisticated procedures may be compared. 

II. PRELIMINARIES 

We shall need the following lemma, proved in earlier 
workr” l1 

Lemma 1: Let x and x1, x2, ’ ’ . be a sequence of in- 
dependent, identically distributed random variables taking 
values in a separable metric space, and let x; be the 
nearest neighbor to x among (x1, x2, . * . , x-1. Then 
XL -+ x with probability 1. 

Let 0 be an abstract parameter space and X a separable 
metric space. The loss function L, defined on 0 X 0, 
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assigns loss L(B, 6) to an estimate 6 when indeed the 
true parameter value is 0. An estimator 8 : X ---) 0 yields, 
for each x e X, a conditional risk E{L(B, h(x)) [ x), where 
the expectation is taken over 6 conditioned on x. The 
estimator minimizing this risk at each z is termed the 
Bayes estimator 0”. The resulting conditional and un- 
conditional Bayes risks T*(X) and R* are given by 

T*(X) = f WA O*(X) I 4 5 f bw, &x)) I XI (0 

and 

R* = ET-*(X), (21 z 

where, to be concrete, we note that 

f Me, e*(d) I XI = S, L(e, e*(x)>f(e I 4 de (3) 

and 

ET*(X) = s, r*(x)f(x) dx 
z 

(4) 
zzz 

ss @  x 
L(0, e*(x))f(e, XT) de dx 

in those cases where probability densities f(x, e), f(0 lx), 
f(x) exist. 

If x(, & (21, X2) . . . , x,,] is the nearest neighbor to x 
and if e; is the associated parameter of xi, then the NN 
estimate 0; incurs a loss L(0, f3:) when 0 is the true param- 
eter associated with 2. Recall from Section I that (xi, e,), 

i = 1, 2, f.. ) n is a sequence of mutually independent 
random variables, each independent of (2, 0), such that 
for each i the joint distribution of xc and 0, is the same 
as the (unknown) joint distribution of z and 8. We define 
the conditional n-sample iVN risks 

and 

(5) 

r,,(x) = E r,(x, x@. (6) 
2”’ 

Thus ~~(2, 2;) is the expected loss in estimating 0 by e: 

when x and x:, are the observation and nearest neighbor, 
respectively; and r=(x) is the n-sample NN risk when x 
is observed. The asymptotic conditional NN risk is given 
by 

r(x) = lim m(x). (7) n-m 

The unconditional n-sample NN risk R, is then defined by 

R, = E r,(x) = E L(e, 8:) (8) z afen’ 

and the large-sample NN risk R is defined by 

R = lim R, = lim E L(0, 0;). (9) n-m n-m e.en’ 

Unfortunately, although we easily obtain bounds on the 
conditional risk T(X) under mild conditions, certain addi- 
tional constraints are required on the underlying dis- 

1 We take this opportunity to correct a misprint in the earlier 
paper by Cover and Hart.141 The phrase, “since cZ(q Z) is monotoni- 
cally decreasing in k,” which appears immediately below (9), p. 23, 
should read “since d(xk’, Z) is monotonically decreasing in k.” Then 
the convergence of d(xk’, 2) to zero in probability implies convergence 
with probability one because of the monotonicity of d(xk’, x). 
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tributions (allowing interchange of limit and expectation) 
in order to conclude that 

R = lim E L(B, 19:) = E lim L(f?, 0:) = E r(x) (10) n-m n-m 

and hence to find bounds on the unconditional nearest 
neighbor risk R. Finding such natural constraints is one 
of the primary tasks of this paper. 

III. METRIC Loss FUNCTION 

We will term L a metric loss function if L is a metric 
on 0 X 0. Thus L must satisfy the following four condi- 
tions: 

-w4, 0,) + L(el, 0,) 2 L(h, e,>, el, e2, ea ~63 (11) 

L(4, 6) 2 0, all el, e2 (12) 

L(e,, e,) = L(e,, eJ, all 4, 6 (13) 

L(O,, 0,) = 0 if and only if & = e2. (14) 

[This definition of a metric is traditional but redundant- 
for example, (11) implies (12) .] For the following theorem, 
we shall need only the requirement that L satisfies the 
triangle inequality (11) and that L is symmetric (13). 

Remarks: Any norm ] ] . I] on 0 defines a metric loss 
under the definition L(O,, 8,) = jj& - &/1. However, 
the important squared-error loss function \ / e1 - &/ 1’ does 
not, of course, satisfy the triangle inequality and must 
be treated separately. 

Recall that a function f of a random variable x is said 
to be continuous with probability 1 (continuous wpl) 
if, with probability 1, 2 is a point of continuity of f. 

Theorem 1: Let L be a metric loss function such that 
for every e. e 0, E@{L(B, e,) j x} is a continuous function 
of x wpl. Then 

r*(x) < r(x) I a?“*(x), wpl. (15) 

That is, the conditional NN risk is less than twice the 
conditional Bayes risk wpl. 

Proof of Theorem 1: As before, let (z, 0), (x1, e,), (x2, 0,) 
. . . OX X 0 be a sequence of independent identically 
distributed random variables defined on (Q, 5, P). By 
the triangle inequality and the symmetry of L 

L(e, e;) 5 L(e, e*> + L(e*, e:). (16) 

Conditioning on x and x& we have 

f”,(x, x3 

5 -f bW, e*(x)> I 2, 5:) + f, W(e*W, e:> IX, 4 
(17) 

= E Me, e*(x)> 1 ~1 + f, {L(e*(x), 63 I d), 
8 

where we have used the conditional independence of 0 
(given x) and e:, (given z;). By Lemma 1 and the assumed 
continuity properties of L, we see that x; -+ x wpl, and 

E (L(e*(x), e:) 1 XL) -+f iL(e*(& e) 1 X} 
87,’ 

= r*(x), wpl. (18) 

Hence, by (1) and (17) 

lim T,(x, x@ 5 2r*(x) 09) n-m 

and 

r(x) _< 2?“*(x), wpl, 

as was to be shown. 

(201 

By the dominated convergence theorem we obtain the 
following corollary. 

Corollary 1 of Theorem 1: If L is bounded, then 

R* 5 R 5 2R*. (21) 

In search of natural conditions under which R = Er, 
we are motivated to make the following definition. 

Definition 1: Let X be a metric space with metric p, 
let (52, 5, P) be a probability space, and let x, x’ E X be 
independent random variables defined on (Q, 5, P). Then 
E* ‘~‘(2, x’) is defined to be the rth moment of the 
siale X with respect to P. 

Remarks: Note that the space X has finite rth moment 
if and only if there exists x0 E X such that Ep’(x, x0) < m. 
Of course, if X is bounded, then X has finite rth moment 
for all r 2 0. 

Let (x1, f3,), (x2, 0,) e X X 0 be independent, identically 
distributed random variables defined on (fit, 5, P). 

Corollary 2 of Theorem 1: If X has finite first moment, 
and if the conditional distributions of 0, (given x,) and 
e2 (given x,) are close in the sense that there exists a con- 
stant A such that, for every 0, E 0 and x1, x2 E X, 

(E Me,, e,) IX,) -c Me,, e,) / x~]/ 5 &(x~, x,>, (22) 
01 

then 

R* < R 5 2R*. 

Prooj OJ Corollary 2: From (17), 

(23) 

T-,(X, x;) 5 r*(x) + z, (L(e;, e*(x)) 1 2:) 
(24) 

5 2r*(x) + Ap(le, x3. 

Since the nearest of the first n samples drawn is certainly 
at no greater distance from x than is the first sample, 
we have p(z, x3 5 ~(2, x1), wpl. But Ep(x, xl) < 00 
by the finite first moment of X. Thus the sequence 
m(x, XL) is dominated by the integrable random variable 
2r*(s) + Ap(x, xl) and, again by the dominated con- 
vergence theorem, 

R = lim E r,,(x, x/J = R lim r,(x, $,) < E 2r*(x) = 2R*. 
n n 

(25) 

IV. SQUARED-ERROR Loss FUNCTION 

In this section let 0 be the real line (or any finite- 
dimensional inner-product space). We shall need the 
definitions of the conditional mean of f3 given x 

h(X) = me lx), (26) 



COVER: ESTIMATION OF NEAREST NEIGHBOR RULE 53 

the conditional second moment 

&x) = E (0” j x), (27) 

and the conditional variance 

u”(x) = /.42(x) - p;(x). (28) 

As is well known in the case of the squared-error loss 
function L(O,, 0,) = (0, - e,)“, the Bayes estimator 0” 
is the conditional mean 

e*(x) = ~~(4, (29) 

and the resulting conditional Bayes risk r*(x) and Bayes 
risk R* are given, respectively, by the conditional variance 

r*(x) = c”(x) (30) 

and the unconditional variance 

R* = E q”(x). (31) 
s 

when x and x:, have different signs, thus causing 0(, to 
be a poor estimate of 0 because of the discontinuity of 
E (8 1 x) . On the other hand, fixing x first ensures that 
x1, ultimately will be close enough to x so that 0; will be a 
good estimate of 0. 

Corollary 1 of Theorem I: Let X have finite second 
moment M  and let there exist constants A and B such 
that 

and 

/f12(x1) - ax*)1 i &J”h, 22) (37) 

for all x1, xZ E X. Then, for L(O,, 0,) = (0, - O,)“, 

Theorem 2: Let L(O,, 0,) = (0, - 8J’ and let X be a 
separable metric space. If pi(x) and am are continuous 
wpl, then 

r = 2r*, wpl. (32) 

Proof of Theorem 2: Conditioning on x and XL, 

r,(x, 2:) = ,f ((e - e;)” ( X, x:,} 
, n’ 

= E (O* ( 2, 2;) - 2 B (Be:, j 2, d) 
a 0.8. 

+ E {e:’ 1 X, x:). (33) 8. 

R = 2R*. (38) 

Remarks: The multivariate normal distribution satisfies 
these conditions with B = 0 and Euclidean metric p. 

Proof of Corollary 1: Since e - p1 (x) (conditioned on x) 
and 0; - p,(x:) (conditioned on x;) are conditionally 
independent zero-mean random variables, 

r&x, x:,) = E  (([e - ,u1(41 + b&d - ~,b:)l 8.87,’ 
+ b&3 - a)” I 2, dl 

5 2u2(4 + AP’(x, ~3 + BP%, 4 (39) 

5 aa” + (A + R)p’(x, x,), for all n. (40) 
Since 

By the conditional independence of 8 and t$‘, (conditioned 
on x and x,!,), 

r,(x, x3 

E {2a2(x) + (A + B)P~(x, xd I 

<2R*+(A+B)M< a, (41) 

we have, by the dominated convergence theorem and 
p(x, x9 ---f 0 wpl, 

Since XL -+ x wpl, and since ~1, and pZ are continuous 

r(x) = lim r,(x, XL) = 2p,(x) - 2&x) = 2r*(x). 
n,-+m 

(34) 

WPl, 

(35) 

Thus r = 2r* wpl. 
Remarks: The following example makes it clear that 

come additional conditions are required in order to find 
the unconditional risks. Let ~~(2) = l/x and a’(x) = 

2 g = R* < m  . Let x be drawn according to any probability 
density on the real line which is continuous and nonzero 
at the origin. Note that pl(x) is continuous wpl, since 
the point of discontinuity x = 0 has probability zero. In 
this case, the limiting conditional nearest neighbor risk 
r(x) is 2r*(x), as expected. However, R, = ~0, for all n. 
In other words, for almost every x, the NN estimate 
E{ (0 - 0;)” ( x) converges to 2R* as n -+ a,; but for 
fixed sample size n the unconditional risk E(B - 0;)” 
is infinite no matter how large n may be. Loosely speaking, 
the infinite contribution to the n-sample risk R, occurs 

R = lim 1;: r,(x, x:) = E lim m(x, x:) = B 2c2(x) = 2R*, 
n-m n-m 

(42) 
which was to be shown. 

The following corollary to the proof of Theorem 2 yields 
bounds for the risk of the k nearest neighbor rule. In this 
rule, the k nearest neighbors xj,l’, xr’, . . . , xy’ are 
inspected, where 

(x - x;1y < (x - xyy < * * . 5 (x - xy, (43) 

and the associated parameters BA”, Orl, . . . , 0:’ are 
combined in the natural way (for the quadratic loss 
criterion) to give an estimate 

Thus e; becomes 0:’ under this new definition. 
Corollary 2 of Theorem 2: The k nearest neighbor rule 

has conditional risk rck)(x) = (1 + l/k)?*(x) under the 
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assumptions of Theorem 2, and has unconditional risk V, THE JOINTLY GAUSSIAN CASE 
R = (1 + l/k)R* under the additional assumptions of 
Corollary 1 of Theorem 2. 

For (z, 0) jointly multivariate normal, an explicit 

Proof of COrOkry f2: The conditional k NN risk iS 
formula for the n-sample nearest neighbor risk R, and 

given by 
tile n+ample k NN risk R(k) can be obtained. we shall 
treat only the univariate “case. Let N(h) c”) denote a 

rCk’(x, XI, * * * , XJ univariate normal density with mean p and variance n ‘) - u-. Let 
= E ((0 - 17:‘)” 1 x, x1, x2, . .+ , x,) 

= E 
I( 

e - i 2 oiil 
2 

r=l >i 

f(e) = NPI, ~9 
x,x:“, xi:‘, ... , 5:’ 

(45) 
f(x I e> = No, 6) 

ii 

from which we find 
= E Ie - PHI + ; 2 [~1(4 - ~~(da~~)l 

2 
)I 

f(e Ix) = N(-&& z + & Pl, -&$-5) 
el”‘l x,xyl, ..* ,xy and 

For i = 1, 2, + -. , k, 2:’ + x, wpl as n -+ 03, and hence and 

pl(~r’) + pl(x) and ~“(z~~‘) -+ a’(~); (46) R=EXs. 

from which we obtain r = (1 + l/k)r* wpl. Ul + 02 

Passage to the unconditional NN risk R = (1 -I- l/k)R* N 
follows from (45), the finite second moment of X, the 

ow, by the conditional independence of the 0,‘s 

dominated convergence theorem, and the inequalities E ((0 - &?‘)” 1 x, x1, x2, .+. , x,} 

(47’1 

= E 

and 

Extended Application: Let 0 = {0(t) : 0 5 t < T] and 
z = {x(t) : 0 I t < T} be stochastic processes. Presumably e is a random input signal and x is the received signal at 
the output of a random channel. We wish to minimize 
-WE (e(t) - @m2 4 over all estimates 8 depending on 
x. Suppose in the past n independent uses of the channel 
that the input-output pairs (x,, 0,), (x2, 0,), e . . , (x,, 0,) 
have been observed. A k NN procedure, using a metric 

> 

l/2 
P(Xl, x2> = - x2(t))” dt (49 

yields an estimate 

(50) 

which results in a large sample risk 

R = (1 + l/k)R* (51) 

under suitable regularity conditions on the joint distribu- 
tion of the random processes. We shall not develop these 
regularity conditions here. 

(52) 

(53) 

(54) 

(5.5) 

(56) 

Hence 

RJk) = R*(l + ;) + (-&$ E (x - d?2 (5% 

where 

is the sample average of the nearest k neighbors to x. 
Realizing that x N N(pl, UT + ui;), we can write (58) 
in normalized form as 

RF) = (1 + ; + $ 6:(k))R*, 

where 6i(lc) is defined to be the expected squared distance 
from an N(0, 1) random variable x to the average of the 
k nearest neighbors of n independent identically distri- 
buted N(0, 1) random variables x,, zz, - * + , z,. 

Clearly one wishes k to be large in order that the con- 
tribution of the l/k term be small, while one wants k 
to be small in order that 6:(k) be small. This sort of 
trade-off is always present in problems of the nearest 
neighbor type. Note that, in general, RAk’ + R* as k + ~0 
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and n -+ ~0 in such a manner that lc,/n -+ 0. We  have not 
attempted an investigation of the precise nature of this 
convergence. 

We  remark that if we knew that x and 0 were jointly 
Gaussian, we could certainly use knowledge of this fact 
to develop a more sophisticated estimator than the NN 
estimator. However, the NN estimator has the advantage 
that Rck) < 24 < 03, for all n  and k. Thus even a single - 
sample% yields finite risk. In contrast, consider a standard 
linear regression technique utilizing the fact that, in the 
Gaussian case, p(x) is of the form ux + b to form estimates 
$ and 6 on the basis of the minimum mean-squared error 
line fitting the points (CC,, 0,), (x2, e,), . . . , (x,, 0,). The 
resulting estimator 8 = tix + 6 has infinite risk for sample 
sizes of n = 1,2, 3. Thus the nonparametric NN estimator 
is actually better for sufficiently small sample size. 

R _< 2R*, for met.ric loss, 
R = 2R*, for squared-error loss, and 
R = (1 + l/k)R*, for squared-error loss with a 

k NN estimate. 

VI. CONCLUSIONS 

It has been shown that the large sample risk for the 
NN decision rule is no greater than twice the Bayes risk 
for both the squared-error loss function and the metric 
loss function. In particular, it has been shown under 
mild continuity conditions that the conditional risk T(X) 
of the NN estimation rule in the infinite sample case 
satisfies the inequalities 

T(X) < 2r*(x), for the metric loss case, and 
r(x) = 2?*(x), for the squared-error loss case. 

Under certain additional moment conditions the un- 
conditional risk R of the NN estimate satisfies 

These conclusions are complemented by those of earlier 
work,‘4’*15’ in which it is shown that R 5 2R* for the 
classification problem with a probability of error loss 
criterion. Thus the most sophisticated decision rule, based 
on the entire sample set, may reduce the risk by at most 
a factor of two. In this sense it may be concluded that at 
least half the decision information in an infinite set of 
classified samples is contained in the nearest neighbor. 
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On the Mean Accuracy of Statistical Pattern Recognizers 

GORDON P. HUGHES, MEMBER, IEEE 

Ahsfracf-The overall mean  recognit ion probability (mean accu- 
racy) of a  pattern classifier is calculated and  numerically plotted as 
a  function of the pattern measurement  complexity R and  design data 
set size m. Utilized is the well-known probabilistic model  of a  two- 
class, discrete-measurement pattern environment (no Gaussian 
or statistical independence assumptions are made).  The miniium- 
error recognit ion rule (Bayes) is used,  with the unknown pattern 
environment probabilities estimated from the data relative frequen- 
cies. In calculating the mean accuracy over all such environments, 
only three parameters remain in the final equation: n, m, and  the 
prior probability PC of either of the pattern classes. 

W ith a fixed design pattern sample, recognition accuracy can 
first increase as the number  of measurements made  on  a  pattern 
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increases, but decay with measurement  complexity higher than 
some opt imum value. Graphs of the mean  accuracy exhibit both an  
optimal and  a  maximum acceptable value of n  for fixed m  and  &. 
A four-place tabulation of the opt imum n  and  maximum mean accu- 
racy values is given for equally likely classes and  m  ranging from 
2 to 1000. 

The penalty exacted for the generality of the analysis is the use 
of the mean  accuracy itself as  a  recognizer optimality criterion. 
Namely, one  necessari ly always has some particular recognit ion 
problem at hand  whose Bayes accuracy will be  higher or lower 
than themean over all recognit ion problems having fixed n, m, and jE. 

I. INTRODUCTION 

s 

OME consequences of the statistical model of pattern 
recognition will be presented.“‘-“’ It will be shown 
that certain useful numerical conclusions can be 

drawn from rather few assumptions. Basically, the only 


