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PREFACE

This Memorandum is a result of RAND's continuing study of
Communication Satellite Technology for the National Aeronautics and
Space Administration. It presents an analysis of the behavior of
hard limiters for certain special analytically solvable conditions
involving three or four input sinusoidal signals. It should be
of particular interest to engineers concerned with the theoretical
or experimental behavior of hard limiters for use in multiple access

operation of communication satellites.




SUMMARY

29 748

An analysis has been performed of the effect of hard limiting
on a sum of three or four sinusoidal signals. Expressions are ob-
tained for the output amplitudes for three input signals, two of
equal amplitude, and for four signals, amplitudes equal in pairs.
The answers are compared with experiment and display excellent

agreement.

[ The results indicate the general character of the reduction of
the suppressive effects of limiting as the number of signals increases.

Also, '"negative suppression" occurs for certain amplitude ranges.
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I. INTRODUCTION

The effect of hard limiting on a sum of signals causes the
limiter output to contain both signal and intermodulation products.
The detailed investigation of the dependence of the relative output
signal levels on the relative input levels is an exceedingly‘complex

(1,2)

problem. The theory has been developed for Gaussian signals,

(3-5)

and for one or two sinusoids plus noise. The problem of three
or more sinusoids has generally been regarded as too difficult for

analytic investigation, though at least one attempt toward its solu-
tion has been made.(6)

While the general problem has not been solved, this Memorandum
presents analytic answers to the input-output level problem for three
signals, two of equal amplitude, and for four signals, amplitudes
equal in pairs. The frequencies of all signals have been assumed
incommensurable and the bandwidths narrow, so no higher modulation
products appear at the signal frequencies in the output.

In Section II, the theory will be developed for three sinusoidal
signals, and in Section III, for four such signals. The theoretical
results are compared with experimental investigations, and extremely
close agreement is displayed.

In the two-signal case, limiting produces 6 db suppression of a
weak signal with respect to a strong signal. For three input signals,
two equal, there is again 6 db suppression when the single component

is strong compared to the double components. However, when the

double components are strong compared to the single component, the



phenomenon of 'megative suppression'" occurs. When the strong to weak
ratio at the input exceeds 2 db, the weak compomnent at the output is
enhanced with respect to the strong components. This behavior appears
in both the theoretical and experimental results.

For four input signals, amplitudes equal in pairs, the 'negative
suppression' again appears when the input strong to weak ratio ex-
ceeds 6 to 8 db. Again theory and experiment display the same
character.

The analysis shows that the suppressive effects of limiting

decrease as the number of signals increases.




II. LIMITING OF THREE SINUSOIDAL SIGNALS, TWO OF EQUAL AMPLITUDE

It has not been possible to solve in manageable form the limiting
of three signals of arbitrary amplitude. However, when two of the
signals have equal amplitude, the output can be expressed as a
rapidly converging series in the ratio of the weak to the strong com-
ponent. This epables rapid computation of the output levels and
suppression effects.

Let the input be

e, =2 cos(wlt+61) + b[cos(w2t+62) + cos(w3t+83)] (1)

and w.. are assumed incommensurable. The

where the frequencies wy 5 Wy 5 3

limiter characteristic is taken to be

e = 1 e, >0
out in
= 0 e, = 0 (2)
= -1 e, <0
in

Thus, the output is a rectangular wave which changes sign at the zero
crossings of the input. This characteristic may be represented in

the form

out sin(x ein) (3)

oe—— 8
%

When the expression (1) is inserted into this integral, the sine of a
sum may be transformed by simple trigonometry into the sum of four

products of sines. Thus




-

®
I
Alro
oe—g 8
(=9
""Ix

sin(ax cos rl)cos(bx cos r2)cos(bx cos r3)

+ sin(bx cos r2)cos(bx cos rl)cos(bx cos r3)

out

(4)

+ sin(bx cos r3)cos(bx cos rl)cos(bx cos rz)

- sin(ax cos rl)sin(bx cos rz)sin(bx cos r3)

i i

where r, = w,t+5

1 1 1 and similarly for Ty,Tg. The sines may be expanded

Ty, Tq whose coefficients are Bessel functionms.

Under the assumption that the frequencies are incommensurable, the

as Fourier series in rs

expansions need include only the constant and fundamental terms to

give the expressions for the signal components. To this order

sin(ax cos rl) -~ 2 Jl(ax)cos T

1
(5
cos(bx cos r2) - Jo(bx)
The output signal components may, therefore, be written as
eg=ccosr + d(cos r, + cos r3) (6)
4T 2
dx
c=2 [ @ [3,00] )
0
x
24 J_d_ﬁ
d = - | = Jo(ax)Jo(bx)Jl(bx) (8)

The evaluation of these integrals requires a lengthy sequence of trans-

formations, but leads to a straightforward result.




Replace Jl(ax) in ¢ by its Poisson integral representation(7)

m/2
Jl(ax) = 2%5 I Sin2 ¢ cos(ax cos @)dy 9
0

and the square of a Bessel function by the special casen =m = 0 of

the Neumann integral representation (Ref. 7, p. 150Q)
m/2
2 .
Jn(z)Jm(z) == I Jn+m (2z cos 8)cos(n-m)Qd8 (10)
0

When these expressions are substituted in (7) and the order of integra-

tion changed, the integral over x may be performed by the formula (Ref. 7,

p. 405)
® V&Z-B® o> B
f dx Jg(ox)cos Bx = 0 a < B (11)
0

which then leads to

_ 16 ff dbédep sin2 ©®
) ﬂ3 2
[4 Ei cosze-c0326]
a

T 2b cos 6 > a cos ¢ (12)

The limits of integration are not specified in (12), but go over that
portion of the region 0 < g, ¢ S'g which satisfies the indicated in-
equality. The analysis now separates into two cases, depending on
whether %? is greater or less than one.

If o = %; is less than one, the inequality places no restriction

on 6, but limits ¢, There results



16 e e sin2 cpde
=.—§ j j -1 2 2 2 % 4
0 cos “(« cos 9) [a cos §-cos @]

The transformation
cos ¢ = @ cos O cos

and subsequent simplification yields

n/2 /2
c = i% [ de J dy [1 o cos e cos WJ (14)
0 0

Anticipating later results, introduce the notation

_Lty __ (2n): :
n [ &)n! 22n(n,)2 (13)

Since o is less than one, the square root can be expanded by binomial

theorem, yielding

ul
=1_6J

m

/

2
r © &
J dedw[l—% g-;;%-a2n+2coszn+26 coszn+2mJ (16)

Since it will be used in several forms, the general relation is

(8

now state

/2
. 2 bW by
j sin x@ coszy@ dop = Pé?{;ﬁ;ﬁi;z) (17)
0

Specializing to x = 0, y = n + 1 yields




Tl'/z 1 2

f 0522544 FP&I+s)  ma ) s
c = Ty T T3 (18)

0

Using this relation in (16) yields

2

. 2n+2
2 2y 2n41 2b 3 2b
= = -y —7 {22 I ==
¢ n[z ()): n+1 (a) J a <1 (19)

-%
For n large, a is approximately (mn) *, whence the series converges

as n-S/z-

Even for-%? = 1, the series can be evaluated very quickly
with only a desk calculator or slide rule.
If o = %? is greater than one, a more complicated sequence of

transfomations is required. Now © is restricted by the inequality

in (12), while ¢ is not. The integral becomes

/2 sin! VI-cos=p/a”
c = 16 f Sinchdcp J dé (20)
ﬂ3 2 2 2 ik
0 0 [a cos B~cos @J

The transformation

/ 2

7 sin ¢ (21)
o
brings this into the form
m/2 m/2
1

c = 16 j sinzmd@ j dy (22)

TT3Q/ 2 2 2 %

0 0 [1-(1-cos p/a”)sin W]

The integration over y yields the complete elliptic integral of the

first kind,(g)



0

]

wl
o

/2
J sin @ K(Ji - cos ¢/a ) (23)
0

3
R

The key to the solution is to expand the elliptic integral K(k)
in powers of the "complementary modulus" k1 = A1 - kz. The resulting
expression involves a logarithm. The first four terms of the expansion
are given in Ref. 9, and the complete expansion may be determined by
using the relations between elliptic integrals and hypergeometric
functions. It proves convenient to introduce the additional notation
1 1 1

bt nri a2t T o Po

(24)

log 2 + % y(n+s) - % ¥ (n+1)

where | denotes the logarithmic derivative of the gamma function. The

expansion for K is now

2 ® 2 cos 4o
K(Jl - cos'gp/a ) 8 a -————JQ [log cos an] (25)

This is substituted into (23) and the series is then integrated term by
term. Those terms free from logarithms may be evaluated by using (17)

with x = 1, y = n, yielding

a

(26)

w/2
fo...2 2n L@/ (k) 10 _'n
. sin ¢ cos gdy 2T(r2) G m+ 1




The logarithmic term is found by differentiating (17) with respect to
y and then setting y = n. The result, which involves the logarithmic
derivative of the gamma function, may be expressed in terms of a and

bn’ giving

n/2 a
. 2 2n T _n 1
sin"p cos™ ¢ log cos @dp = - 7 m——1 [log 2 - bn+ PICTS)) 27
0

When the expressions are assembled and simplified, there results

0 83 2n
2a\_n a 2b 1 2b _
= % ey (2b> [log = + 3(log2-b_)+ 2(n+1):] 2 -a>1  (28)

A similar technique may be used to evaluate the coefficient d. The
product of Bessel functions of the same argument is replaced by a
Neumann integral, which now involves a Jl function. The new J1 function

is replaced by a Poisson integral, and the x integration is performed. At

this point

d =

2 2
16a dfdp cos 6 sin ¢
n3 J T @ cos 6 cos ¢ <1 29)

{l-a cosze coszw]

For o < 1, there are no restrictions on either integration variable.

Expanding by binomial theorem, and then using (17) yields

@ a2 a 2n
_4b< n ntl (2b 2b
d=-m (n+1) (a) a <1 (30)
0

When o > 1, the integral is best evaluated by using the method of

rotations on the surface of a unit sphere expounded in Chapter 12 of
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(7

Watson's treatise. Since this method has not appeared very fre-
quently in the literature, the intermediate steps will be presented.

First, replacing 6 by g - 8 in (29) yields

d =

l6a I d6dep sin e 31n2@

T 0=96, ¢ < E, @ sin 6 cos p <1 (31)
2 2 7°
[1 o sin 6 cos @]

2

Now view © and ¢ as spherical coordinates on the surface of a unit

sphere. The direction cosines on the surface are defined by

4 = sin § cos o (32)
m = sin § sin ¢ (33)
n = cos © (34)

and the element of surface area is
d{i = sin €d® dy (35)
The integral may now be written in the form

2
d= 16§ d Om - gm,n >0, af<1 (36)

1 1
(1-n2)2(1-02£2)2

The point of the method is that the integral is invariant with respect
to a cyclic permutation of the direction cosines, which is equivalent
to relabeling the coordinate axes. Thus, on performing the inter-

change £ * n, m = 4, n ® m, there results
16a d (o zz

d =
(l-m )%(1- n’)

73 4mn>0, o<1 (37)
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The rotation has arranged that the coordinate restriction applies to
only one variable. Since o > 1, restoration of the 6, ¢ expressions

now yields

/2

/2 3
16w i Gde
a =25 [ cosodo f T 7 7 %
0 l/ (1-sin 6 sin @) (1-a"cos 6)

The transformation

o cos B = cos (39)

and subsequent simplification gives

2
/2 /2 d@(}- Eg%—y>cos2@

a=22 [ ay | s r (40)
T 0 0 [1-(1- %ﬂ)sinch]
o4
This is again an elliptic integral, yielding
/2 2
] 2
d = 1_2 JF dy [E(«/l- =2 “’)- <ot K< 1- Lo )] (41)
™ 5 o o a

where E(k) denotes the complete elliptic integral of the second kind.

This may be expanded by a relation similar to (25)

o]
———— 2n+2
_cos?y _ < cos ba ]
E( 1 2 =1+ ZJanan+1 o log o5 v Pa Pt (42)
0

03

When (25) and (42) are substituted into (41), the resulting expression
may be integrated term by term. After many tedious simplifications,

there results the expression
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a a 2n+2

n nt+l a
z D) b {1°g = + 3log 2-2b b+ 57 +1)} —->1 (43)

The four expressions (19), (28), (30), and (43) give the amplitude
of the single and double output components for all values of the ampli-
tudes of the input components. They are plotted against the ratio b/a,
the double to single ratio, in Fig. 1. For b/a small, that is, weak
double component, the single component tends to &4/m while the double
component vanishes as 2b/ma. For b/a large, that is, weak single com-
ponent, the double component tends to 8/TT2 while the single component
vanishes as g:(}og lgk +-% . At b/a = 1, or three equal components,
the output amglitude is .6683. The total signal power output in this
case is —( 6683) .670. The limited signal power output for three
equal signals has been computed by W. Doyle,* using a digital computer
simulation program. He obtains the value .669, displaying essentially
perfect agreement.

To compare theory with experiment, signal suppression will be
considered. This is denoted by y, and is defined as the quotient of the

weak to strong component ratio at the limiter output to the weak to

strong ratio at the input. Thus

v =< a/b < 1 (44)
= %lg a/b > 1 (45)

The first case corresponds to a weak single component and strong double

components, the second to weak double and strong single. In Fig. 2,

*
Private communication from W. Doyle, Consultant to The RAND
Corporation.
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the suppression ratio v is plotted in decibels against the input ratio
b/a in absolute decibels. Positive decibel values of vy correspond to
reduction of the weak component.

The behavior of the ratio y is conventional for the one strong-two
weak case. It starts at zero db for equal components and rises rapidly
as the single component increases. For the single component very strong
compared to the double component, vy tends to 6 db (or a voltage fac-
tor of 2). This limiting 6 db behavior has been known for many years,
and has been used as a description of the interference-suppressing
properties of a limiter.

However, the behavior of the ratio v in the one weak-two strong
case is most unusual. The ratio rises very slightly, then reverses,
crosses zero again at an input ratio of 2.2 db, and goes slowly to
negative values. For b/a large, the suppression ratio behaves asymp-

totically as

y(db) - - 20 loglo[.818 +.576 1og10§ J (46)
and tends very slowly to -, Even for an input ratio b/a = 106, the
suppression ratio is only -12.5 db.

This behavior indicates that in the one weak-two strong case, hard
limiting enhances the weaker component with respect to the stronger
components at large input ratios. It is not enhanced in absolute
value, but tends to zero as shown in Fig. 1. Therefore, under these
circumstances the limiter displays '"'megative suppression."

The explanation of this effect may be as follows: Since the

frequencies are incommensurable, there will be times when the two
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strong components are nearly 180° out of phase. The weak component
then exerts an inordinate effect on the zero crossings of the input
signal, and the limiter squares up the waveform to enhance the weak
component. Since the 180° phase condition is relatively rare, the
total enhancement is moderate. However, it is sufficient to reverse
the normal behavior of the two weak-one strong case, and to produce
slight negative suppression.

To demonstrate that this effect is not purely mathematical, an
experimental curve of three-signal suppression by limiting is pre-
sented in Fig. 3. This curve was obtained by members of the Philco
Corporation Western Development Laboratories,* who very kindly gave
permission to reproduce it in this report. The theoretical and ex-
perimental curves agree within % db for all input values, and are much
closer for most values. The negative suppression is very clearly dis-
played in the experimental curve, and may be regarded as established.

Figures 1 and 2, with the corroborating experimental curve of
Fig. 3, give a complete presentation of the three-signal output ampli-
tudes when there is no crosstalk and two of the three input amplitudes
are equal. The experimental conditions were carefully adjusted to meet
such circumstances, and the experimenters were not aware of the exist-
ence of the theory presented in this Memorandum at the time they per-
formed their experiments. Also, the theory was developed before the
author had seen the experimental results, which were originally com-

municated to him by N. Feldman of The RAND Corporation.

*
Private communication from R. S. Davies and W. Wood of the
Philco Corporation, Western Development Laboratories.
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I11. LIMITING OF FOUR SIGNALS, AMPLITUDES EQUAL IN PAIRS

The general four-signal case has proved intractable, but it has
been possible to solve the case where the amplitudes are equal in
pairs using methods similar to the three-signal case. The input

signal is now

ey = a(cos r, + cos r2) + b(cos r, + cos r (47)

3 4)

If the frequencies are incommensurable, the output signal may be written

in the form

(48)

e. = c(cos T

S + cos r2) + d(cos r, + cos x

1 3 4)

By using the integral representation (3) for the limiter characteristic
and expansions similar to those of Section II, the coefficients c and

d are evaluated as

c=2 g £ 3, (ax) 3, (ax) (Jo(bx))2 (49)
a=2 J dx (Jo(ax))zJo(bx)Jl(bx) (50)
0

In terms of the ratio o, defined by

b
3 (51)

¢ and d are connected by

d(e) cCé) (52)

Hence, only one of the integrals need by evaluated. Relation
(52) is obvious from the symmetry of the input signal (47). The co-

efficient ¢ is given directly as a function of o by
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dz

L 5,23, (3,2’ (53)

-2
C—ﬂ. Z

ot 8

Again, replace the square of a Bessel function by a Neumann integral

involving J the product J by a Neumann integral involving J and

0’ OJl 1’

that J1 by a Poisson integral. The expression for ¢ becomes a quadruple

‘ integral, and the z integration may be performed immediately by (11),

} yielding

c ==

4
m

. 2 , 2
32 { J dbdpdy sin 8 sin g p «cos y > sin 6 cos @ (54)

2
(o coszw-sinze coszw)
As before, the analysis separates into the two cases, &« greater
or less than 1. If o > 1, the inequality in (54) does not restrict

6 or ¢, and the integral becomes

/2 cos-lcé sinfcosep)
P I f ded@sinzesinsz dy (55)
4 2 1 .2 2 .k
Ta Y 0 (cos™ §- — sin Bcos )
o

The transformation

26 cos’ k
sin § = (1 - il_n_z_o_s__&f’ sin B (56)
- o |
brings this into the form
/2 2 2
32 7 dBdpdB sin™8 sin'g
c = "_4— J L (57)

m o . 2 “
0 [1_<1_ sin ezcos @)SiHZBJ

o

The B integration is an elliptic integral. Thus
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/2
c = —7?3 I rdedcp sing sinch K(«/l ﬁfl_iz_cﬁ_@) (58)
mTa g o

This elliptic integral is expanded in power series by a fomm analogous

to (25), yielding
® n/2
3 n42 . . 2 2n ha
¥o @

All the integrals appearing here may be found from (17) or its deriva-

tive. After much algebraic reduction

o> 1 (60)

® a” a y
4 n n+l 1
c == gJ [log 16 o - 3bn- bn+1+ 2(n+1)]

For @ < 1, the inequality in (54) affects all three variables.
To effect the integration, again use the method of rotation on a
unit sphere. Introducing direction cosines by (32), (33), and (34),

and the area element by (35), brings ¢ into the form

32 7 dydis m?
c = = J

(l-nz)% (GZCOSZW'ﬂz)% Bees vt v

Cyclic interchange £ - n, m = £, n ® m, followed by a return to the

6, ¢ representation, gives the result

, . 3 2
c = 32 jfj df8depdy sin™8 cos 'y " o cos § > cos (62)

m (l-sinzesinch)%(azcoszw-cosze)z
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The inequality does not restrict ¢. Since o is less than 1, there will
be no values of { which satisfy the inequality unless cos © < o. There-

fore, the integral with limits inserted becomes

/2 /2 3 cos-lﬁé cosB)
o r cos @d@ r sin~6do [ dy (63)
n y ¢ -1 (l-sinzesin2 );2 J (azcoszw-cos 9);2
0 cos o ® 0

The transformations

cos B = o cos B (64)

sin sin B sin 7 (65)

gives limits 0 and g for both B and 7|, and the simplified form

/2 2 2 2
32 sin B(l o cos PB)cos @dﬁdﬂdq
x|

(1-sin B sin n)é [1-(1- az os B)s1n wjz

(66)

Introduce a new set of spherical coordinates 8, T, with appropriate

direction cosines and area element. Then

_ 2 . 22
.- _3% “ czispfl& cos @Ll SR >2 - 4mn >0 (67)
n (1-m“)* [1-(1- o*n )51n Gl e

Cyclic interchange m — n, n = 4, £ ™ m, and restoration of the B, 1

representation brings this into the form

32 s dBdﬂdm(l-azsinZB coszﬂlgoszw
e =2 []] - (68)

[1—(1-azsin26 coszﬂ)sin2$]%




22

The ¢ integration is equivalent to that in (40), whence

/2
c = 2% J dBdﬂfE(Ji-agsin26c052ﬂ>-azsin26coszﬂ K<Jl-azsin25coszﬂ)1 (69)
m - '
0

The elliptic integrals again are expanded by (25) and (42), and all the

integrations become special cases of (17). Finally

® 2 2
_ fL 2. an n+1
¢c=73 [ (n+1)
” 0

2n+2 16 1
16, _1 70
o {log = <2b_-2b .+ 2(n+1)}] o<1 (70)

Figure 4 shows the limited output components as a function of b/a.
If one input pair, for example b, is small, the output for the large

8 2
term c tends to - and the output for the small term d tends to wa
™ o

(log 16&*%). At o = 1, the four equal signals case, the output amplitude
is .5726. The total power is then 2(.5726)2 = .656. This is in exact
agreement with the number computed by W. Doyle using digital computer
simulation.
The signal suppression is computed directly from (60) and (70),
and the result is graphed in Fig. 5. Experimental points, obtained by
the Philco Corporation,** are also shown on Fig. 5. While the agreement
is not as perfect as in the three input signals investigation, the
experimental points still lie within 0.5 db of the theoretical curve.
Again, the signal suppression rises slowly from zero db, reaches

a maximum, and goes negative. The crossover is at 8.5 db (theoretical)

*
Private communication from W. Doyle.

k% .
Private communication from R. S. Davies and W. Wood of the Philco
Corporation, Western Development Laboratories.
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or 6 db (experimental). For large input ratios, the 'negative
suppression' increases very slowly toward large negative values. The

explanation of this phenomenon is the same as for the three-signal

case.
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