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Abstract

A simple algorithm is presented for finding rate %-random-error
correcting convolutional codes. Good codes considerably longer than
any now known are obtained. A discussion of a new distance measure
for convolutional codes, called the free distance, is included.
Free distance is particularly useful when considering decoding schemes,
such as sequential decoding, which are not restricted to a fixed con-
straint length. It is also shown how the above algorithm can be modi-

fied slightly to produce codes with known free distance.
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I. Introduction

Following Wozencraft and Reiffen [1], we can represent a rate

R = %-binary convolutional code of memory order m as follows:
t = i@ (1)
where
1 2 (n 1 2
t = [to( ), to( ),...,to ), tl( ),tl( ),...,tl(n),...] and
i = [10,11,12,...]

are semi-infinite row vectors and

— g
G = h‘.‘lﬂ—-—g_———-——-b
SR —

is a semi-infinite matrix and where

g = e, Phns, ™ @g ™, e D, M

g_is called the generator of the code. All blanks in G are assumed to
(1)

be filled with "zeros". ij is the (j+l)St information digit and tj
b

N -
t. "“7,...,t. " is the subblock of encoded digits corresponding to ij.
J 3
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The code is specified by G and is said to be in canonic systematic form

if sil) =1, gl(l) = gz(l) = ... gm(l) = 0. Then
2
g = [l9g°( )9---sgo(n), 0, 81(2),...,gl(n),...,O,gm(2),..., m(n)] and
s (2) (n) . (2) (n)
t= [1°,t° seeest T ity seeesty seeelde

The first j + 1 subblocks of transmitted digits can be represented

as follows:

LI ij Gj » 3 =0,1,2,... (2)
(1) ( 1 1 )
Wher‘e t. = [to ,oo.’to n), .tl( ),.oo’tl(n)’.-l’tj( )’olo,tj(n ],
i._j = [io,il,...,ij]’

and Gj contains only the first (§j + 1)n  columns of G, e.g. for canonic

systematic codes,

2 2

lgo( ).. go(n)ogl(2)...gl(n)og2(2). ‘g2(n)““.og (2) .gj(n)
_ (1) (n), (2) (n) (2) (n)

Gj = lgo o8y Ogl SRR eeed0 421 ’gj-l

(3)

(2) (n) (2) (n)

lg° o8y . .Ogj_2 852
. (2) (n)

| 1go EEY 58 |
where gi(k) =0, k=1,2,....ny if ipm. The first row of Gj will be de-
noted gﬁ.

Note that each information digit affects a span of at most (mtl.n
transmitted digits since each row of G has non-zero entries over at most
this span. Hence n, = (mtl)n is called the constraint length of a con-

volutional code of memory order m. Decoding is often assumed to be done




by looking at only one constraint length of received digits commencing
with the information digit to be decoded. The first constraint length
of transmitted digits is given by

t =i 6 . (4)

The minimum distance, dmin’ of a convolutional code of memory or-

der m is defined [1] as

1
min %50 U CpednSy) )
where dH("') denotes the Hamming distance between the two vectors

and the minimization is over all i = P A | and i' = [1 ',i.',...
~m L 0’7 1? ’ m] m L o?*>1°?

..,im'] with io # io'. It follows readily [1] that

d, =minW
min .
1620

H(Engm) (6)
where WH(.) denotes the Hamming weight of the enclosed vector.

For the purposes of this paper, it is convenient to define a new
quantity, called the column distance.

Definition 1. Given a rate-% convolutional code, the order j column

distance, dj’ is given by

d, = min 4,(i.G,, i.'G,) (7)
R A R I
|o¢l
for 5 = 0,1,2,...
Clearly,
d. = d. (8)
min m

We now proceed to collect some simple properties of the column

distance. A trivial modification of the proof of (6) yields:




Property 1. dj = min W (1i.G,).

iopo H —17]
perty £y (g.)
Property 2. d. N
] H &
Proof: Taking i) = 1l and i = i, = ... = 1_i = 0, we have i.6, = g%.

©«
Hence by property 1, dj WH(Ej)'

Since ijGj is always the leading portion of [iﬁ’ i...]¢

5417 341 T L34y 1T

follows immediately from property 1 that:

Property 3. dj‘dj+l » J =0,1,2,... .

It is well known [1] that io can be correctly decoded by a min-

imum distance decoder operating on the first n

received digits if

A
min . .
5 or fewer errors occur over the constraint length. Once i, has been

decoded by operating on the received digits in subblocks 0 through m,

its effect can be removed from the received sequence and il can be decoded
in exactly the same fashion by operating on the received digits in sub-
blocks 1 through mtl. This procedure can be continued indefinitely to
decode all the information digits. Such a decoding technique has been

termed feedback decoding by Robinson [2].

This discussion suggests that an appropriate '"criterion of good-

ness" for convolutional codes is a high minimum distance to constraint

d .
length ratio, ~§1q_. Indeed the commonly accepted "criterion of good-
A

ness" is the asymptotic Gilbert bound [1], i.e. a convolutional code of
memory order m is said to be a "good" code if H(imni—n) Z 1-R, where H(x) =
= -x log,x - (1-x) log2(l-x) is the binary entropy function. Also it

is obviously desirable that the complexity of the encoder be kept as
small as possible. The usual encoding circuit for an R = % systematic

convolutional code is shown is figure 1, and it is noted that the number

of two-input modulo-two adders required to implement this encoder is




exactly WH(E) -n. Thus minimizing WH(E) for a given d . and n, mini-

mizes the number of modulo-two adders in the encoder. All the codes
presented in this paper will exhibit this property, i.e. for a given

d ., andn

min X WH(g) will be the minimum possible value.

II. An Algorithm for Finding "Good" R = Convolutional Codes

ol

In this section, a simple algorithm will be given which will be
shown to produce "good" R = %- convolutional codes for all m < 71.
First a statement of the algorithm is given and then several interest-
ing properties of the codes produced are shown.
Algoritim Al.

(0) Set g, = 1, do = 2, and j = 1.

l.

1

(1) Set g;
(2) Compute dj' 1f dj > dj-l’ go to (u).
(3) Set gj = 0.

(4) If §j = m, stop. Otherwise set j = j + 1 and go to (1).

Property Al-1. WH(gj) = dj for j = 0,1,...,m.
Proof: WH(Eﬁ) :-dj by property 2 of the column distance. Since g

is permanently set to 1, i.e. WH(Ej) is increased by one, if and only

if dj > di—l’ WH(gj) :_dj. Therefore WH(gj) = d

Since property 2 of the column distance requires that WH(gm)zﬁm =d

5
min?
property Al-l ensures that WH(gm) is minimal and hence the resultant

code requires the minimum number of modulo-two adders in its enced

circuits.




Property Al-2. In the computation of step (2), if dj >'dj—l’ then
d, =d, .+1. If is set to 0 in step (3), then d, = d, ,.

s IS & p (3, 37 %2
Proof: Property Al-2 follows directly from algorithm Al and from
property Al-1.

Property Al-3. The codes obtained from algorithm Al exhibit the

9600

1"t 1" 3 -
nested" property, i.e. for m <My g = [gml, 0, gm1+i0’gml+2

* s 0 0 ]n
s Y gm2
Proof: Property Al-3 follows directly from algorithm Al.

Property Al-4. If gj = 1, then gj+l =0, J=1,2,...,m.

Proof: Assume gj =1, j > 1. Then set 541 © 1. The information
sequence i = 1j =1, =i, .05 lj-l = 1j+l = 0 always produces

a codeword with dj+l = dj. Therefore algorithm Al will set gj 0.

+1 7
Property Al-4 allows us automatically to add a '"zero" to gj after add-
ing each '"one" beyond gy This permits a shortcut to reduce the number

of times steps 1 and 2 must be applied to reach a given length code.

Property Al-5. (optimality property). Let g be the generator obtain-

ed by using algorithm Al. Let gm' # &, be any other generator of the
same length such that WH(Eﬁ') = dj', j=901, ..., my i.e. such that
each "one" in the generator increases the column distance by one. Then

there exists a jo,O < jo < m such that dj > dj' and d, = di' for
= = ° o

i = 0, l, 2’-on’jo_lo

Proof: Assume the first point at which the two generators disagree,

i 0 <4 <m, has g. =0 ., '=1, Thend, ' =4, +1 > d. But
Jor T Z o S NS By = Ds By, Jo Jo Joe

this is impossible, since if the column distance can increase at j, al-

gorithm Al would make g; = 1. Therefore the first point at which the
)

two generators disagree must have g, = 1, g. ' = 0, and hence 4, > d, '.
Jo Jo Jo Jo




The optimality property shows that any other algorithm for generating
convolutional codes which increases the column distance by one each
time a "one" is added to the generator differs from algorithm Al
in that such "ones" are not always added at the first opportunity.
Algoritim Al was programmed on the Univac 1107 computer at the
University Computer Center. The most difficult part of algorithm Al
to program is the computation of dj in step (2). This was done by us-
ing a sequential-decoding-like algorithm suggested by Forney [3]. The
program took approximately one and one-half hours to reach m = 71.
The codes obtained from algorithm Al are compared with Bussgang's
{4] optimal codes and Lin and Lyne's [5] near-optimal codes in Table I.
Bussgang's computer search for optimal codes reached m = 15 before the
amount of computation became too large. Lin and Lyne were able to carry
their near-optimal search out to m = 20. Algorithm Al is sufficiently
simple to allow hand computation out to m = 22 and it was extended to
m = 71 by computer. Table I also compares the codes obtained with
the Gilbert Bound [4,5], and it can be seen that the codes remain "good"
out to m = 71. An interesting, but as yet unsolved, question is whether
algorithm Al will continue to produce "good" codes, i.e. codes whose
distance increases linearly with j as j becomes arbitrarily large. The
amount of computation required by algorithm Al, because of the calcula-
tion of dj in step (2), appears to increase exponentially with increas-
ing m, as it does in all known search techniques for finding codes.
n m;, algorithm Al requires substantially less compu-

—id s

tation than that suggested by Lin and Lyne.




III. Algorithms for Generating "Good" R =%~ and R = % Codes

For rates R = %, n > 2, we again seek an algorithm for generating
codes such that dj = wH(-&j) for =0, 1, 2,...,m and "ones" are added
to the generator at the first opportunity consistant with this constraint.
(2), gj(s),...,gj(n‘, to be

specified in each subblock, there will not be a unique algorithm with

Since there are now n - 1 digits, viz. g,

the above property for n > 2, For example, for n = 3 the three follow-

ing algorithms each result in a code such that dj WH(gj) and "ones"

are added to g, at the earliest opportunity. For n= 3, it is well

known [5] that dj £ 4, ,+1 so that it is unnecessary to test the choice

j-1
(2) _ _(3) _ . . .
£ = g. = 1 since the column distance can never increase by 2.

] J
Algorithm A2,
(0) Set go(z) = go(S) =1, d =3, and j = 1.
(1) Set g.(2) =1, g.(a) = 0,
] J
(2) Compute dj' If dj >dj—l’ go to (6).
(3) set g. 2 =0, 5.3 =1,
J ]
(4) Compute dj. If dj > dj-l’ go to (6).
(5) Set gj(2) = gj(a) = 0.

(6) If j = m, stop. Otherwise set j = j+1 and go to (1).
Algorithm A3.
Steps (0) through (5) are the same as in algorithm A2.
(6) If j = m, stop. Otherwise, interchange steps (1) and (3),
set j = j+l1, and go to (1).
Algorithm Au,
Steps (0) through (5) are the same as in algorithm A2.

(6) If j = m, stop. Otherwise, if d. increased during step (2),
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interchange steps (1) and (3), set § = j + 1, and go to
(1), 1f dj increased during step (4) or remained the same,
set § = j + 1 and go to (1).

The codes obtained from algorithms A2, A3, and A4 are shown in
Table II and are compared to Bussgang's codes, Lin and Lyne's codes,
and to the Gilbert bound. Each algorithm was carried out to m = 35
by computer in a few minutes. Again the codes were quite "good" and
are considerably longer than other known "good" R = %- codes. Note
that the codes obtained from Algorithms A2, A3, and A4 exhibit about
the same distance properties. Indeed it seems the many variations
of the algorithm available for R = %-will have little effect on the
distance properties of the resulting codes.

Note that at m = 7, the code obtained from algorithm A2 is
actually better than Lin and Lyne's near optimal code. It can be shown
that this code meets the Plotkin upper bound [6] on minimum distance
atm= 7.

1 (2) _ (3) (1)

To generate R = m codes, gj s gj , and gj must be speci-
fied for each j, and it must be recognized that an increase of either
one or two in the column distance for each j is possible. Only one al-
gorithm will be given for generating R = %-codes with the property that
dj = WH(gj) and "ones" are added to the generator at the earliest oppor-

tunity.

Algorithm A5,

7 AN 2 AN SR
\<) \3) \ &)

(0) Set g, = g = g =1, do = 4, and § = 1.
(1) Set gj(Q) = gj(s) =1, gj(u) = 0, i=1, and go to (8).
(2) set g, =0, g, =1, 1 « 2, and go to (8).

3 3




(2) (3)

(3) Set gj =0, gj =1, i = 3, and go to (8).
(4) set gj(s) = 0, i = 4, and go to (8).

(5) Set gj(s) =1, gj(“) =0,1=5, and go to (8).
(6) Set gj(z) = 1, gj(a) =0, i=6, and go to (8).
(7) set gj(z) = 0 and to to (9).

. .s g0 to (i+l).

(8) Compute d,. If d, =d
] J -4

(9) If j = m stop. Otherwise, set j = j+1 and go to (1).
Table III compares the R = %- codes generated by algorithm A5,
Lin and Lyne's codes, and the Gilbert bound. Algorithm A5 was carried

out to m = 35 by computer in about 10 minutes and again "good" codes

were found.

For certain decoding schemes, such as sequential decoding, the
decoder is not constrained to consider only one constraint length of
received digits while attempting to decode a particular transmitted
digit, but may search over several constraint lengths. In such cases,
the conventional minimum distance loses much of its meaning. Massey [7]
has suggested defining a new distance measure, called the free distance,
appropriate for an hypothetical decoder which makes its decoding deci-
sions on the basis of the entire received sequence.

Definition 2. d = ¢ . i.e., the free distance is equal to the
free ®

column distance at j = =,

Some properties of d can readily be derived.

free

Property 1. dj :-dfree E.WH(E) for all finite j, in particular

dm - dmin f-dfree E-WH(E)°




Proof: dj £ dy = dfree follows directly from property 3 of the

column distance. dree = d, < W, (g) follows directly from property 2

of the column distance.

Property 2. For all the codes obtained from algorithms Al, A2, A3,

Abt, and A5, d

)]
[a¥
1
[a B}

free = min m’

Proof: d_, =4 = Wﬂ(gm) = WH(g) is a property of the codes obtained

min m

from algorithms Al, A2, A3, AL, and AS.

Property 3. For R f-%r canonic systematic convolutional codes, dfree =
= d

(n-1)(m+1)m.
Proof: We need not consider any information sequence with a string

of m or more "zeros" in it since additional "ones" in the information
sequence can only add weight to the codeword. Property 1 implies that

dfree can never be more than (n-1)(m+t1)+1l, the maximum number of "ones"

in any R = = ~anonic systematic generator. Since we are considering

= o

only information sequences which have at least one '"one" every m digits,
all codewords with io # 0 have at least one '"one" in the Oth subblock
and at least one "one" in every succeeding set of m subblocks. There-
fore all such codewords with io # 0 must reach a weight of (n-1)(mtl)+1

ir (n-1)(m+1)m subblocks. Hence dfree = d'n-? (m+1)m.

Property 3 indicates that d can always be found by computing the

free

column distance over a finite number of subblocks. It is conjectured
that the result of property 3 can be strengthened considerably by more

detailed arguments, and probably that dfree = d2m' If true, this would

substantially simplify the calculation of d for a given code.

free

Free distance is an appropriate distance measure, not only for

an unconstrained hypothetical decoder, but for a practical decoder which



decodes in "frames' of perhaps 10 constraint lengths. Suppose dfree =

=d and for simplicity assume that d

10m is an odd integer. Then a

free

decoder confined to one constraint length will make a decoding error

dmin+1
2

for at least one pattern of errors in a "frame" whereas a

decoder looking over 10 constraint lengths cannot make a decoding error

d
unless 422%31l errors occur in the "frame'". Since for small enough

p(digit error probability), the decoding error probability is a func-
tion only of the minimum number of errors in a "frame'" that can cause

a decoding error, d is an important parameter for a practical de-

free

coder. Since a sequential decoder scans several constraint lengths be-

fore making a decision, d is a more appropriate distance measure

free

than dmin for codes used with sequential decoding.

Clearly, it is of considerable interest to find codes with known

dfree’ es pecially codes for which dfree > Amin‘ A slight modification of
the preceeding algorithms can be used for this purpose. Algorithm A6
indicates the necessary modification of algorithm Al.
Algorithm A6 (assume L > m).
(0) Set g, = 1, Do = 2,and j = 1.
(1) set gj = 1.
(2) Compute d . Ifd4 > Dj—l’ set Dj = d, and go to ().
(3) Set g = 0 and Dj = Dj—l'
(4) If 4 = m, stop. Otherwise, set j= j+1 and go to (1).
The following properties of the codes resulting from algorithm
A6 will be presented without proof.
Property A6-1. wH(Eﬁ) = Dj for all j.
Property A6-2. In the computation of step (2), if d > Dj—l’ then Dj =

D

j

-1

+1.
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Property A6-3. The codes obtained from algorithm A6 exhibit the

"nested property". (See property Al-3.).

Theorem A6-1. WH(gj) =D, =

3 dfree for all j, where d is the free

free

distance of the truncated code with memory order j.

e by property A6-1 and property 1 of free dis-

Proof: WH(_&j) = Dj < dfre

L4 ‘ 2 i L)
tance dfree" W (g%) by property 1 of free distance. Therefore d

= WH(Ej) for all j.

free

In general algorithm A6 will result in generators with greater

weight than those obtained from algorithm Al. Therefore, d e for the

fre

codes obtained from algorithm A6 will be larger than dmin for the
same length codes obtained from algorithm Al.
Table IV shows the results of applying algorithm A6 to the con-

struction of a R = %- canonic systematic code with m = 35 and L = 71,

It is interesting to note that algorithm Al produced a code with m = 35

and d , =4d = 13. Algorithm A6 resulted in a code with m = 35
min free

and d = 17. d . was checked for this code and found to be 13.
free min

Therefore, algorithm A6 gave us a code with the same length and the

same dmin’ but with a larger d . Clearly, although the two codes

free
have the same dmin’ the code obtained from algorithm A6 would exhibit
a lower probability of error when used with sequential decoding. Since

for this code, =d,. =d 1° it would seem most appropriate for

dfree 71 2mt
use with a decoder which searched over approximately two constraint

lengths on the average.
V. Summary and Conclusions

Simple and efficient algorithms were given for constructing con-

volutional codes of R =-% which yielded codes with dmin considerably




better than the Gilbert bound out tom = 71 for R = %3 and m = 35 for
R = %- and R = %u The algorithms always retained the property of min-
imizing the number of modulo-2 adders needed in the encoding circuit
for codes of a given length and minimum distance.

A definition was given for a new distance measure for convolu-
tional codes, called the free distance. It was indicated that dfree
is a more important distance measure for convolutional codes used with
sequential decoding than dmin’ since a sequential decoding search is

not limited to a constraint length. Specifically, 4 is more closely

free
related to the probability of error for sequential decoding than dmin'
Finally, a slightly modified algorithm was shown to produce codes with
known dfree'
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