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ABSTRACT

Estimation or learning problems arise in practical systems in
many ways. Depending on the learning information available, the
estimation problem may be supervised or unsupervised. Bayesian
estimation may be used for both these problems. The Bayesian solu-
tion of a supervised learning problem is reasonably simple while the
unsupervised Bayesian learning is enormously complex. A practical
way of solving an unsupervised learning problem is to convert it into
a supervised learning problem by labelling the observation before using
it for learning. Decision directed learning scheme uses the result of
a decision process as the label. The computations for this scheme are
feasible but the resulting estimates do not converge to the correct value.

A learning scheme, 'learning with a probabilistic teacher!, is
proposed in which a label is generated as a random variable from an
appropriate probability density function. This scheme leads to a feasible
solution to an unsupervised learning problem and assures the convergence
of the estimate to the correct value. The average mean square error of

the resulting estimate is twice the mean square error of the 'learning

_i...
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with a teacher!' estimate. This learning scheme can also be used to
estimate the state of a Gauss Markov sequence when the observation

process has additive as well as multiplicative noise.
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CHAPTER 1

INTRODUCTION

An estimation problem arises in practical systems when the
value of some parameter x of the system is unknown and some measure-
ment (or observation) z on the system is available. If z = f(x) where {
is a known function, the value of x may be obtained from z by solving
this implicit equation. However, in many practical systems some
parameter v of the function f hasito be treated as a random variable.
Now the knowledge of the function f is not sufficient to get the value of
x. It can only be "estimated" from the observation using some statistical
estimation technique. In addition to the knowledge of the function f such
techniques require the statistics of the noise v.

The complexity of computations required by any estimation scheme
depends on the form of f and the statistics of v. A scheme can be used
in practice only if the computations for it are feasible. In addition it
should give 'good' estimates of x. It should be able to use a sequence
of observations if available, and result in an estimate which, in the
limit, converges to the correct value of x.

In some estimation problems two paranleters‘ of f are random
variables. The statistics of the second parameter H may also be availa-
ble. Such problems naturally arise in pattern recognition context where
they are referred to as unsupervised estimation (or learning) problems.
If, on the other hand, the correct value of H is available, the estimation
is called supervised learning. The presence of additional noise makes
unsupervised learning more complex than supervised learning.

Bayesian estimation may be used to get an optimal solution to

these learning problems. It is reasonably simple for the supervised
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learning. The solution gets enormously complex for an unsupervised
learning problem and becomes infeasible. A practical way of solving

an unsupervised learning problem is to convert it into a supervised
learning problem by first estimating H as £ and then treating £ (the

label) as the correct value of H. The generation of the label £ may be
called labelling. Now the labelling, as well as the supervised learning
which follows it, should be feasible and result in a converging estimator.

The only scheme proposed in literature which makes use of label-
ling is 'decision directed' learning scheme. The computations for this
scheme are feasible but the resulting estimates do not converge to the
correct value. In this work a feasible labelling method is proposed
which assures that the estimate converges to the correct value.

The proposed labelling method uses a random variable £ as an
estimate of H. Therefore the resulting learning scheme may be called
'learning with a probabilistic teacher'. This learning scheme is for-
mulated in Chapter II. Its convergence is established. Some examples
are presented to show the behavior of the estimates.

In some estimation problems the parameter x does not remain
constant over the observation period. The observation process may
still make it an unsupervised estimation prdblem. In Chapter 1II we
show how the proposed learning technique can be used when x varies
as a Gauss Markov sequence.

The learning scheme proposed in this work opens up a new line
of attack on unsupervised learning problems. Various prob1e~ms re-
quire investigation in this connection. Chapter IV contains some

suggestions for further work.*

e N -
Unless otherwise specified, all the variables are considered as
continuous variables in this work.
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I.1. Estimation Problems in Pattern Classification

In a pattern classification (or simply classification) problem,
given an object and a set of classes from which the object may have
been drawn, we have to determine the class from which the object
was drawn. To put it in a mathematical framework, let Z be the space
in which the object z is defined and H the set of classes (or hypotheses
or labels). To solve the pattern classification problem, for any given
or observed value z we have to determine Hi e}f, the class from which
z was drawn (or the hypothesis which was active when z was drawn).
The pattern classification problem, therefore, is to determine a way
to process the observation z to make a classification decision which is
"optimal” in some sense.

To define the sense in which the classification decision is optimal
a loss function associated with the misclassification is given. This loss
function depends, both on the correct class of z as well as the class to
which it is classified. A reasonable definition of the optimum decision
system is the decision system which minimizes the expected loss func-
tion. Such a system is nothing but the realization of a Bayes decision
rule [1].

When posed this way the pattern classification problem is charac-
terized by the joint density function pX(y) = p_z_, I_{_(z’ H) defined over the
spaceY = 2xH. Depending on the amount of information available
three categories of classification problems are possible, that

(a) We have the complete knowledge of px(y),

(b) we have no knowledge of pX(y), and

(c) we have partial knowledge of px(y) in terms of the functional
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form of p_z_, H(z, H:.l :x). We do not know the values of some
parameters x € X .
The problems in category (a).can be completely solved using Bayes
decision rule [1]. The problems in the second category are commonly
referred to as 'non-parametric' decision problems. Reference [2]
contains a survey of techniques applicable to the non-parametric prob-
lems, among other things.

For the problems of category (c) we know the functional form of
the joint probability density function va _Ii(z’ H:x). If we can treat the
unknown parameter x as a random variable, x, and summarize the
uncertainty in our knowledge about it as a prior probability density

function pX(x), we may express p, H(z, H) as
b ot

Pg._, E(z, H) = &pé, WEE(Z’ H; x)pz{_(x)dx

where
pE, E/§<z’ H;x) = pE, E(z, H:x)

Now we can use the Bayesian decision techniques applicable to category
(a). If, in addition, a sequence of observations from (Zx]-[) space is
available, we may try to use the information contained in this sequence
in improving our knowledge about x. We may do this by estimating the
value of x using the given sequence.

Therefore, we see that in the pattern classification problems of
category (c), an estimation problem arises when we have the additional

knowledge available as the sequence of observations. In pattern classi-

fication literature such estimation problems are also called 'learning' problems.*

"In this work we shall use 'estimation' and "learning' interchangeably.



I.1.1. Supervised and Unsupervised Learning in Pattern Classification

In a learning problem associated with a pattern classification
problem of category (c), we require a sequence of observations from
the space Y, which can be used to estimate or learn the value of the
unknown parameter. This sequence of observations is also called the
'learning information'. The learning information may be available in
one of the two forms:

a) The observed sequence has the form Y, = y,v,,--- » Vil =
[(Zl’ Hl)’ (ZZ’ HZ)’ con (zk, Hk)], i.e. we are given the correct
classification for all the observed values of z in the sequence.

b) The observed sequence has the form 31{ = [Zl’ Zoyenoy zk]. We
are given the observed values of z in the sequence with no infor-
mation regarding the classification of each of the zk's.

The structure of the learning procedure depends on the form in
which the learning information is available. When the learning infor-
mation has the form (a) the correct classification for each observed
value of z in the sequence is also available. Some supervision of the
sequence of observations (by some external means) is required to
generate the correct classifications. Hence the leérning problem using
this information is called 'supervised learning' or 'learning with a
teacher' problem. The learning information in the second form does
not require any external supervisions and hence is called 'unsupervised

learning' or 'learning without a teacher!' problem.

I.2. Supervised and Unsupervised Learning

So far we have seen how the supervised and unsupervised estima-

tion problems occur in pattern classification. To consider these
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estimation problems formally, in this section we formulate these
problems in general. The formulation here will be the basis of all

our discussions in this work.

I.2.1. Problem Formulation

We consider the following
1) z is a random variable defined in Z space.*
2) H is a random variable defined inH space, the space of classes or
hypotheses.
3) A joint probability density function py_(y) is defined on Y = (ZxH)
space.
4) A density function pH(H) is defined on H and is known.

Therefore we may express pl(y) as

PX(Y) =Py E_(Z’H) = p_z_/E(Z;H)pE(H) . (1.1)

5) The conditional density functions pE/H(z; H:x) have some unknown
parameters x. We are given the functional form of this conditional
density function.

6) The correct value of the unknown parameter x is X Based on this
structure we define the following two problems:

Problem A - Given a sequence of observations in the form %k = (%k’ﬁk) =

[(Zl’ Hl)’ s, (Zk’ Hk)] where

P, (oHy) =P, yla,H (1.2)

_Z_k’ =k

we have to make an optimal estimate of x.

Sk .
The spaces that we consider here are continuous spaces unless
otherwise specified.

+When-H. is discrete the density function Py will be a collection of delta

functions which we accept as an admissible density function.



Problem B - Given a sequence of observations in the form

e = [zl, Zoy e Zk] where

p-H—k(Hk) = Py (Hy)

and

PE (Zk) = p—z-(zk) = S‘ pg/_H_(Zk5 H)p__I—l(H)dH* (1. 3)%x

k
We have to make an optimal estimate of x.

To specify the sense in which we desire the estimate of x to be
optimal, let g(X - x) be the loss function associated with the value
%, the estimated value of x. We define the cost function J as

J = E[{4(% - x)}/learning information] . (1.4)

We shall call the estimate 'optimal' if it minimizes the cost function J.

We note that Problem A is a problem of 'supervised learning' or

'learning with a teacher' while Problem B is a problem of 'unsupervised

learning' or 'learning without a teacher’.

I.3. Bayesian Estimation Philosophy and Technique

Let us examine the Bayesian estimation techniques for solving
the problems A and B.

The Bayesian estimation philosophy assumes that x is a random
variable x defined in some appropriate space X. It further assumes
that a prior distribution pX(x) is available which summarizes the un-

certainty in x. Now to evaluate the value of the cost function J, say

" The probability density function p

(z, ) defined this way is called a
z k
'mixture’. —k

“The observed zy is generated from the space Y as (Zk’ Hk)’ though

we are allowed to observe only 2y
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for a single observation z = z, all we need is the posterior density
function pz{_/é(x; z). Hence the computation of the posterior density
function is also sufficient to find the estimate of x. The same idea
applies when we observe a sequence. Now we have to calculate the
posterior density function for this sequence.

The central idea of the Bayesian estimation scheme is the
computation of the posterior density function. Therefore, by estima-
tion we shall imply the computation of the posterior density function.
As a result we may rewrite the statement of Problem A and B of
Section 1. 2.1 as follows:

Problem A - The Supervised Learning Problem
Given a sequence of observations Yy = (yl, Yos-ers yk) and an

a priori density function px(x) compute the posterior density function

P (5 Y4 ) -
x/y, e
Problem B - The Unsupervised Learning Problem
Given a sequence of observations 3 (2952554, Zk) and an

a priori density function px(x) compute the posterior density function

Px/q, % i)

Let us see how the posterior density function can be computed.

1.3.1. The Computation of the Posterior Density (Batch Processing)

Using the Bayes rule we may express the posterior density function
for the problem A as

(Y5 %)
i) - Py /x di
P/ Py L

P, (x) (1.5)
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where

p, (4 )=\rp (Y3 x)p_(x)d (1.6)
)™ | Py 05

Here
Py /Y3 %) = Py p/p (2 Hix) = Py (25 Hixlpy(H) (L.7)
Knowing the values for Y We can use these equations to compute the

posterior density function px/% (x;’ta(k).
=k

The Eq. (1.5) requires the knowledge of p}&_ /X('lj,k; x) which is
k —

the joint conditional density p

X]_?XZ: <. -_Y_k/x(yl’YZ’ o ’yk; x). Let

us assume that

k
(AL) (g, ;x) = (y.; x)* (1.8)

i.e. l.l's are conditionally independent, given x. This assumption
leads to some simplifications in the equations above.
A very similar computation is required to compute the posterior

ensity function p X3 or Problem B. € may express
density f i N /% ( ,%k) for Problem B. W
=¥k

pz/%_k(X§ 3‘1() as
p.'.j_k/ﬁ(%ki x)

p%—k(}k)

p_)s/%_k(x; %) = p, (%) (1.9)

where

“Under this assumption the conditional independence of gi's, given x,
follows by integrating both sides of (1.8) over the space on which the

sequence h, is defined. This implies

k
p%—k/_%('}k; x) = E pﬁi/ﬁ(zi; x) . (1.8a)



p (3. )=1\p (3. ;x)p_(x)d 1.10
%—k%k -ij%_k/ﬁ%kx zx % ( )

and

p%k/z(-(’&k; x) = S‘S‘ e 5 p%_k’ f\_k/z(3 k,'fnk; x)dH;, dH,, ..., dH
HH- H
(1.11)
The forms of Eqs. (1.9) and (1.10) are very similar to the forms of
(1.5) and (1. 6) respectively. For Problem B we require the additional
(1.11) to take into account the uncertainty about the classifications of
the observed sequence.
The computations for the posterior density function using (1. 5),
(1.6) and (1. 7) for Problem A,or (1.9), (1.10) and (1.11) for Problem B

require observing the k elements of the sequence. This arrangement

of computations may, therefore, be called the Batch Processing mode.

I.3.2. Definition of the Complexity of Computations Measure

A meaningful measure of the complexity of computations is
required to compare the ease of implementation of various schemes.
For this purpose,as its measure of complexity,we shall use the number
of words of computer storage required for any scheme or computation.
Here we assume that a number can be stored in one word of computer

memory with arbitrary degree of accuracy.

I1.3.3. The Computation of the Posterior Density (Recursive Processing)

As we noted in Section I. 3.1 the batch processing mode operates
on the complete sequence of observations. If the observations are made

sequentially, we have to store all k observations before we can start



the computations. This adds to the computational complexity of the
batch processing mode. We may avoid this additional complexity by
arranging the computations in a recursive manner, such that we
compute the posterior density function after each new observation
from the sequence.

The computations can be made recursive by arranging them as

follows. For Problem A we express the posterior density function
P (X; ) as
2y

Y/ % 1 Vi 1)

py-k/%-k- . (Yk; ’%k" 1 )

PE/%k(Xi "jk) = pz/}&.k—l(x;ltk_l)

(1.12)

where

pzk/%k-l (Yk51&k"1) = “S’YX sz/z’ %.k—]_(yk" X"‘d’k-l)p.}i/}a_k_l(X; '\*k_l)dx

(1.13)
Under the assumption (Al) of conditional independence, these

equations can be simplified as

pXk/ Z‘.(Yk; x)

(x59,) = . p G5y q)
P/ Py S R 1) /ey 4

(1.14)

where

P (V154 - )=§ P (yy5 %P (59, q)dx (1.15)
Yilgeop R kel ) /26 P/ Yk-1
Similarly for Problem B we write

pgk/zi—’%-k—l(zk; X’%k—l)
p (x59,) = - P (259, 1)
5/%—kx tx pgk/%_k_l(zk’:}k-l) 2‘-/%k—1 F
(1.16)




1-12
where

pék/%'k-l (zk’.%k—l) = ‘S;:p—z-k/-}—{-’ %—k-l(zk; %, ’3 k..]_)pz{-/%k-l(X; %k-l Jdx
(1.17)

and

. - % H
pﬁk/ﬁy _%_k_l(zk’ % %k'l) \]S:'( pEk/Eéy "I—'I'k’ %’k"l (Zk’ X, K’ %k-l)

. H dH
p-I;I-k/-)Ei%k—l( k’X”g’k-l) k
(1.18)
Liet us assume that
(A2) p (Hy ; x 1) = Py (Hy) = pr(H,) (1.19)
_ng/;g,%k_l R S L - P < A

i. e. E—k is independent of x and %k-l and is identically distributed.

Under this assumption we can simplify (1.18) as

: ) .
p—‘?-k/z’%k-l(zk’x’%k_l) i{p_ék/&_ﬂk,%k_l(zk’x’ i 31!

. pH(Hk)de
The starting point for both the problems is the a priori density
function px(x) which is assumed given or known. The process of com-
puting the—posterior density function for the kth step (i.e. a computation
of (1.12) for Problem A or (1.16) for Problem B) is known as 'updating’.
The computation of the posterior density function this way, is
called 'Bayesian Estimation Scheme' or 'Bayesian Learning Scheme'.

Eqgs. (1.12), (1.13) or (1.14), (1.15) define a recursive Bayesiain

Learning Scheme for the supervised learning problem (Problem A) and
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Eqgs. (1.16), (1.17) and (1. 18) define a recursive Bayesian Learning

Scheme for the unsupervised learning problem (Problem B).

I.3.4, Convergence of Bavyesian Learning Scheme

As formulated above, the use of the Bayesian learning scheme re-
quires computing a sequence of posterior density functions. By the
convergence of the Bayesian learning scheme we mean that the sequence
of the posterior density functions converges with probability one, to a

delta function at the correct value of the unknown parameter x, i.e.

X

lim p (x514,) = 0(x - x) .p. 1
T Pl o 20

or

1

O(x - x_) w.p. 1 (1.20)
O
k- =

SR
where X, is the correct value of the parameter x.
The convergence of the Bayesian learning scheme in this sense
has been studied by various authors [3], [4], [5]. The convergence in
the form of (1.20) has been established under very general conditions.

In this work we shall consider the convergence only in the sense

of (1.20).

I.4. The Implementation of the Bavyesian Learning Scheme

For the supervised and the unsupervised learning problem we can
define a Bayesian learning scheme. The convergence of this scheme
is also guaranteed. Let us examine various questions relating to the
practical implementation of this learning scheme.

In principle we can always use the Bayesian learning scheme for
the supervised as well as the unsupervised learning problem. All the

operations required by the Eqs. (1.14), (1.15), (1.16), (1.17) and (1.18)
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are well defined. This, however, calls for the ability to store, and
to operate on general continuous functions. This capability is beyond
the reach of present day digital computers.

If we consider discrete X, H and 2 spaces, we may be able to
store the complete functions by storing the value of the functions at
every point in the space on which they are defined. This method has
been studied by Fralick [4]. He suggests some computational proce-
dures for such implementations. Unless the spaces involved contain
very few points, this implementation method is very complex. This
complexity depends on the size of the spaces involved.

For continuous space we have to deal with continuous functions.
The only way of handling such functions in a digital computer is when
the functions have a parametriAC form. Then we can generate the value
of the function at any point in this space, knowing the parametric form
and the values of the parameters.

In Problem A we use (1.14) and (1.15) for updating. Hence we

require the knowledge of the density functions p-X /x an along
k! =

dp
%/, Hk-1
with the value Vi to compute the posterior density function px/g% . If
==k

we assume that

(A3) pXk/_)S(yk; x) has a parametric form and p}ik/?i(yk, x) = pl/ﬁ(yk; x)
i.e. the form of this function remains the same for all k, we only need
to store the parameters for pX/X to generate this function and use it in
Egs. (1.14) and (1.15). Now, if pé/%k(x;'%k) also entertains a para-

metric form and this parametric form remains the same for all k, we

can carry out the required updating for any number of steps. The up-

dating at any stage requires computing the values of the parameters of



When the functional form of the posterior density functions
P_’S/ . remains the same for all k, a fixed finite dimensional suffi-
cient statistic exists for these functions [6]. The density functions
satisfying this requirement (of fixed form) are called reproducing
density functions. Various authors [6], [7] have studied the problems
which entertain the reproducing density functions and the conditions
under which such density functions exist. Spragins [6] has found that
the existence of the reproducing density functions requires assumption
(A3) and depends only on the form of pX./_)S.

For the unsupervised learning problem (Problem B) we have to
use Egs. (1.16), (1.17) and (1.18). The form of (1.16) is like that of
(1.14) and the form of (1.17) like (1.15). The density function
pék/_}g’ %—k_l(zk; X’%k-l) has to be computed using (1.18). The existence
of the reproducing density functions for this problem depends on the
form of pE /?_S and hence on the form in which (l. 18) effects the

> Fk-1

computations. In practice no reproducing densities are known to exist

for unsupervised learning problems.* So, if we start with a px(x) having

a parametric form, and go through the recursive computations for the
posterior density function, either the posterior density function will

have no parametric form or the number of parameters required for its
form will increase exponentially. In either case the computations become
extremely complex and infeasible. Therefore the Bayesian learning
scheme cannot be used for the unsupervised learning problems with
continuous functions.

To elaborate further on these points let us consider an example.

=‘<Note added in proof: However K. Prabhu and the Author recently dis-
covered an example of reproducing density under unsupervised learning.
We intend to publish this seperately [15].
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1.4.1. An Example

Let

=H x+

Zx k Yk (1.21)

where

H° with probability p
0 with probability (1 - p)

x is the unknown constant,

Yy is a purely random sequence, P, (Vk) = pz(vk) ~ N(0, R)

Vi and _I_—I__k are independent. Depending on the observed sequence, we
define the following two problems:
Problem Al - Observing the sequence 4, = [(zl, Hy),.nns (Zk’ Hk)]

compute the sequence of the posterior density functions

Px/ My )

Problem Bl - Observing the sequence 3k = [Zl’ Zoy e e+, % | compute

1]
the sequence of the posterior density functions px/%_ .
~ gk

For this example

Py, (Fy) = Pyy(Hy) = pO(H, - H) + (1 - p)O(H,) (1.22)
1 o 2
- ==[z, ~H x]
1 2R "k
P/t xR T TR © (.23
1 2
- o (7]
_1_ " 2Rk (1. 24)

pEk/Ek>§(zk; 0,%) = 27R ©



Let us assume that the prior density function P, is given as N(E, PO).
Let us see the computation steps for the posterior density function
for both these problems.

Solution of Problem Al.

For the observationy; =y, = (ZI’HI)

Qo

Py, (vy) = S‘_OO Py, /<15 X)pgs(x)dx
H 1 2 1, =2
:§°° Py l)e'z‘ﬁ<21'ﬂ1x) 1 TR
-0 V2TR :7211505
- 1

—2
Py (Hy) (z, -H;x)
! 2(R+H P HT) © 1

T ©
“Fr R+ H,P_H;)
(z

-Hlx) 1 - 'Z-f;'g(x-x )

pz/lh(xs it

Pp(Hy) 2(R+H, P _H])

Jen(R + H P _H
(]

or

Zise ifH1:0

p_}s/xl :< (1.25)

where



x; =X+ PIH"TR'l(z1 - H°%)

-1 -
Pl B Po

1 1

+ TR w0 (1. 26)

We note that the form of the posterior as well as the prior
density functions is gaussian. As a result, the gaussian density func-
tion is a reproducing density function for this problem. The mean
and the variance of this density function form the sufficient statistic
and can be updated using (1. 25) and (1.26). This updating can be
easily carried out for any number of stages.

Eq. (l.26) defines the well known Kalman filter [8] for this
problem. We use the Kalman filter to change the mean and the variance
of the posterior density function when the 'teacher!' tells us that
Hk = H°. Otherwise the posterior density function remains the same
as the prior density function for that stage.

Solution of Problem Bl.

As H, is a random variable we have to use the Eqgs. (1.16), (1.17)

k
and (1.18) for this problem. Using (l.18) we may express p

z./%) Fx-1

as

p_z_k/zi..) %-k-]_ (zk; X, %k"l) = p_%.k/?.(_(zk; x)

And from (1.17) for the first observation zy
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,2
oo 1 1
. 1 >R (7 H %) . 2R
= 27R [pe + ( -p)e ]
1 -2
) - ZPO (x~x)
* ’21TP'O1 [ dX
(z1=-H°§)2
- 2
o) oT 4
) b . 2(R+H POH ) N (J'_:_Bl --Z-R—
JZﬂ(R+H°POH5Tﬁ) J27R
Therefore
1 2 1 2
|, " 7Rl 7HX) - 3% (21)
7Ean lpe + (1-ple
P (x;2,) =
E/—z-l 1 (zl-HO—x)2 2
B o oT Z1
o . 2(R+H'P _H )+{1_ Je—?ﬁ
2R + HOPOHOT) 2mR
1 -2
- 55— (x-%)
s “Fo (1.28)
. e )
JZﬂPO'

The form of the posterior density function px/z (x; Zl) as expressed
=/=1
by (1.28) is not gaussian any more. It is a sum of two gaussian func=-
tions and hence is a bimodal function. For the next observation we

have to use this as the prior density and compute the posterior density
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which, now, will have 4 modes. In general, after k stages of recursive
computation the posterior density function will be a weighted sum of

Zk gaussian functions. Three parameters have to be stored for each
such gaussian function to reconstruct the posterior density function,
i.e. the mean, variance and the weight. Therefore, after k stages

the posterior density function requires 3 x 2K words of storage. This
storage requirement keeps on increasing exponentially. As a result

we cannot carry out this computation for more than a few stages and

cannot use this method for solving this problem.

I.,5. Labelling

According to the formulation of the Section I. 2.1 the only difference
between Problem A and Problem B is in terms of the learning infor-
mation. For Problem A the learning information is available as a
sequence of 'classified™ samples, ¥ = [(zl, Hl)’ (2‘2’ HZ)’ ceey (zk, Hk)]’
while for Problem B we only have a sequence of unclassified samples,
CT [-Zl’ Zoyeesy Zk]' In the solution of Problem A we have the con-
venience of using the reproducing density functions, while the solution
of Problem B requires the ability to manipulate general functions. If
we can convert the Problem B into an appropriate Problem A, we may
be able to use the computational ease of reproducing densities. To con-
vert the Problem B into such a Problem A, therefore, we should get a

"abell ﬂk from the space H for each z Now we can treat (Zk’ lk) = Y]:'(

K

as a classified sample.

b !
By a classified sample we mean the value of z, along with the correct

value of Hk which was active for the kth observation.
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If we adopt this philosophy of labelling in solving the unsuper~
vised learning problem the solution can be carried out in two steps
(Figure 1).

Step I. Labelling ~ Having observed the sample 2y and knowing the

prior density function at this stage as pﬁ/%-k-l(z; 3k-1 :ik_l),
where Ik-l: L5855 Lo (the sequence of labels generated
so far), a label £, has to be generated.

Step II. Updating - Using yf{ = (zk, lk), the prior density function
pé/%-k-l(}q ’ﬂk—l :Ik—l) has to be updated as the posterior
density function pz/%k(x; % k:f.k).

The second step here requires similar computations as the solu-
tion of a supervised learning problem. Using Eqs. (1.14) and (1.15)
this step can be carried out easily if reproducing densities exist. The
solution of the unsupervised learning problem arranged this way,
critically depends on the method used in generating the label lk in
step I. We would like the labelling process to be such that
(i) it is computationally feasible i.e. the computations required for it

can be carried out in practice, and
(ii) it leads to a sequence of posterior densities which converge in the
sense of (1.20).

The sequence of samples for any learning problem (A or B) is
generated from a joint density function defined on the space Y= (ZxH).
In an unsupervised learning problem we are allowed to observe the value
of 2y only, though it has some value of Ek associated with it as its

correct classification. Therefore,there always exists a sequence of

labels (the correct classifications) satisfying the second requirement
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above. The labelling here is like a "teacher" that generates a label
for the classification of the observed sample. This label is then
used as the correct classification in learning.

In selecting the label lk we can make use of zq and the prior
density function pﬁ/% k_l(x; ’j’k-l :Ik-l)' One obviogs approach of
generating the label is by using a decision method for classifying
the sample 2y and using this classification as the label. Let us exa-

mine this method of labelling.

I.5.1. Labelling Method I. Decision Directed Learning

If H space is discrete we may classify the observed sample zy

with a minimum probability of error and use this classification as

the label. To do this we require the values of p (Hi;z , s 1)
H /231 © K Tr-17F%-1

We may write
Hi ; : =
pﬂk/_z_k, %‘k- 1( K K %k' 1 Zk" 1)

i i
P (203 s oy Ly Py (H)
2 [Hy e K K Fk-1""k-1 H, Tk

. - (1.29)
1 . 1
iz Py /H,, Ta-1 (25 H 3 o1 et ey ()

i
where using assumption (A2) we may write p (z, ; H _ L 1)
23 /By 31 W Fk-1"K-1

as

i
P (z, ; H _ :I 1) =
EN/- PTG ) Fx-1""k-1

i , e . !
i p.z_k/ﬂka X %‘k" 1 (zk; Hk’ * % k-1 )pﬁ/%_k_ 1 (X, ’8 k-1 .Ik' 1 )dx



Under assumption (Al),

i
p (z,;H L )=
EN): NN k0 Tk-1""k-1

P (z ;Hi,x)p (%32 _1:L, _1)d
S%_z_k/.}_{kaﬁ LS S Z(_/%_k_lx%k 1°k-179%

(1.30)
Next, we generate the label as
= H'  such that P (Hi 3z L) >
b = Hy Hy /2y 351 1 R 17k
H‘j ;2 L
PH /z,, %_k_l( 16 %1 Fk-17%-1)
forallj#i . (1.31)

This labelling process, therefore, requires the solution of a
decision problem and uses the result of the decision as the label. The
learning scheme using this method of labelling is called 'Decision
Directed Learning'. Scudder [9] has analysed the behavior of this
learning scheme.

When we classify the observation using (1. 31) we divide the 2
space in various finite (or semi-infinite) regions. Each region has
a particular value Hi associated with it. The observed Zq is given
the label according to the region in which it lies. Therefore, even
though p__I—l/_z_(H5 z) has a non-zero value for many points of H space, we
label z, as Hi{ only if it falls in the region of Z space having this label.
As a simple example let us consider the example of Section I. 4.1 again.
If we use the labelling procedure described above we shall be labelling

all samples z, = z as !Lk = H® (Figure 2). Therefore, in learning, we
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shall be using the samples having the probability density function
shown as the shaded area in Figure 2. To learn correctly we should
be using the samples having a density function pE/E(z,- H®). For this
example we would expect the Decision Directed Learning scheme to
converge to a value of x which is larger than the correct value.

Scudder [9] has analysed the convergence properties of this
learning scheme. He points out that there is a finite probability of
error in the limit for this learning scheme and hence it does not con-~
verge in the sense of (1.20). Patrick [10] points out that the Decision
Directed Learning scheme can be used in practice only under high
signal to noise ratio problems. *

Therefore we note that the labelling method used in the Decision
Directed Learning scheme does not satisfy the second requirement for

the labelling process as required in Section I. 5.

I.6. The Relation of Labelling to the Bayesian Learning Scheme

Let us consider the unsupervised learning problem (Problem B)
with a discrete H space. LetH space have n points. If we observe a
sequence Zk consisting of k observations, there are nk possible
sequences for the labels.

In the Bayesian learning scheme we start from the prior pX(x)
and observing z; = z; we compute pEE/El(X;Zl) using Egs. (1. 16)—,— (1.17)
and (1.18). As H is discrete the integral in (1.18) can be replaced by a

summation and we write (1.16) as

e

" For more about this learning scheme see Appendix A.
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n
i i
Z p.?_l/.I'_I.I’E(Z]-;Hl’ X)p_I:I_1 (Fy)
(X'Z ): i=1 (x)
Px/2'%5 %1 o Py
. 1pd j
D, Py, rs By 1)
: =1"=1 =1
j=1
Z Py /H,, 5 1’H1’X)PH (1) )P, (%)
i
i1 Py /H (zl,H )le( D)
P, /e (213 Hy)py (HY)
-
ey j
j=1
.I'l
= . i i,
i=1

The Bayesian learning scheme computes the posterior density
function px/z Hl(x; Zy, Hil) along all possible (n) classifications Hl1 of
zg. The posterior density p / (x; Zl) is then computed by weighing
pE/Ep_Iil(x’ zy, Hil) with pH / (Hl’ Zl) Here pH / is the probability that
the classification of z; was Hl given the observed value of z;. The
same process goes on at every stage. Hence for k observations the
Bayesian learning scheme considers nk possible sequences of labels
or classifications and computes the posterior density function by
averaging over all the nk possibilities. The computation of the posterior
density function along any sequence of labels is like "learning \;vith a

teacher"”. The number of such sequences is nk and thus grows exponen=-

tially with k.*

Sk .
Note that this unsupervised learning scheme has been discussed in
general earlier on page 1-15. Here we are considering it for discrete

H space.
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If we are given the correct classification of all the observed
samples, out of nk sequences we have to follow only one sequence (the
correct sequence) of labels. In any other labelling process we decide
one sequence of labels according to our labelling process.

In general,the methods of labelling are limited only by our
imagination in finding a method of selecting a classification H, for

k
the observed Zy - But does there exist a labelling method which can
be implemented and which assures the convergence of the resulting
learning scheme to the correct value?

In this work we have attempted to answer this question in the

affirmative.

I.7. Summary

In this chapter we have reviewed two learning problems. Problem
A is a supervised learning problem while Problem B is an unsupervised
learning problem. The Bayesian learning scheme can be used for both
of these problems. The solution of the supervised learning problem
using Bayesian learning is reasonably simple while the unsupervised
Bayesian learning is enormously complex. Through a simple example
we have seen how the complexity of the unsupervised Bayesian learning
scheme increases exponentially.

Labelling the observed samples in an unsupervised learning
problem can lead to a feasible solution. The only labelling method
presented in the literature uses the solution of a decision problem as
the label and hence results in a 'Decision Directed Learning Scheme!.

This learning scheme has some undesirable convergence properties.
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In the Bayesian learning scheme for the unsupervised learning
problem all possible sequences of the classes are considered. The
final posterior density is computed by weighing the posterior densities
along all such sequences with the probability of their occurance. By
labelling we select one of all such sequences. A question is raised

regarding the existence of other possible labelling schemes which

assure the convergence.
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Appendix A - More about Decision Directed Learning

The term decision directed learning scheme applies to a
labelled learning scheme in which a label Lk is generated for the
observation Zy by a decision process. This decision process is
used to classify z, to some class Hk and then Hk is treated as the

label Ek The observation z, and the label lLk are then used in

k
estimation. Therefore to formulate a decision directed learning
scheme a decision procedure and an estimation procedure are re-
quired.

When formulated in a Bayesian framework* a Bayesian mini~
mum probability of error decision procedure is used to get the label.
The observation and the label are then used in Ba&resian estimation.
Scudder [9] considered a two class problem with two gaussian condi-
tional densities and assumed the mean of one of the two densities as
unknown. He constructed a decision directed estimator for this
problem in a Bayesian f.ramework and found that asymptotically this
estimate does not converge to the correct value.

Patrick, Costello [10], [12], [13], [14],‘ and Monds [11] have
considered decision directed learning in other parametric and non-
parametric frameworks and have studied general properties of the

decision directed estimators. They have indicated the following as

some properties of a decision directed estimator:

R R
The decision directed scheme is formulated in this framework in
Section I.5.1. '
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1. A decision directed estimator does not converge to a unique
value, in general, for a multi class problem. This is because
of the presence of various trap states.*

2. This estimator, under very general conditions, converges to a
unique value for a two class problem. This unique value is
not the correct value, and it depends on the decision procedure
used.

3. The decision directed estimator uses samples from a finite
or semi infinite region of Z space (determined by the decision
boundaries) in learning about a class. If the conditional densities
(p_z_/ﬂ(zs H)) overlap, such regions do not contain the complete
conditional density function and hence the estimator has some
asymptotic errc;r. As the overlap of the density functions de~
creases this error becomes small and goes to zero for non-
overlapping density functions.

4. The performance of the estimator is very seriously affected by
the starting values (a priori information).

5. The main advantage of a decision directed estimator is that it
is implementable and gives good cost effective performance under

high signal to noise ratio conditions [11].

a%
<

A trap state is defined as a state at which no further updating is
possible for the estimate [14]. This is a point in X space.
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CHAPTER 1I

LEARNING WITH A PROBABILISTIC TEACHER

In Chapter I we have seen how the Bayesian learning solution
to the unsupervised learning problem is enormously complex from
a computational viewpoint and how we can use labelling to reduce
the complexity of a solution. In this chapter we restrict our atten-
tion to those unsupervised learning problems for which a feasible
labelling method results in an implementable learning scheme. We
define such problems as Problem C and proceed to consider a labelling
method which uses a random number generator in its implementation.
The convergence properties of the resulting learning scheme are

established and some examples are presented.

II.1. A Class of Unsupervised Learning Problems

In Section I. 2.1 we considered the framework in which we
defined two problems, the supervised 1earhing problem (Problem A)
and the unsupervised learning problem (Problem B). To define a class

of unsupervised learning problems we further assume that

. = zZ H, ;
a}t.k_l(yk, X"\*k-l) pEk’E_k/_%’%k_l’__ﬁ_k-l( k> Tk’

X, %k-l’-&k-l) is such that a fixed dimensional sufficient statistic

1) the f f
(1) e form o pXk/.’.‘.

exists for the density function px/l& (x;n.a\k).
=gk

In this framework we define Problem C as
Problemn C - Given a prior density function px(x) and a sequence of

observations %k satisfying (1), compute a sequence of

posterior density functions such that it converges to the
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correct value as the number of observations increases;

i.e.
lii-inoo P,/ k(x;'}k:zk) = 8(x - x_) w.p. 1 (2.1)

where p2<_/ k(xggk:zk) is a posterior density function of
the sequence.

Problem C defines a class of unsupervised learning problems.
The formulation of Problem C is aimed towards a solution using
labelling. The updating process of such a solution requires solving
a supervised learning problem. Due to the assumption (1) above,
this supervised learning problem entertains reproducing densities
and hence can be solved easily using the techniques discussed in the
Chapter I. Therefore the updating process becomes simple.

To solve Problem C we require a labelling method which assures
the convergence in the sense of (2.1). In Section I.5.1 we noted that
the decision directed learning scheme does not converge. As a result
we cannot accept the decision directed learning scheme as a solution

to Problem C.

II.2., Learning with a Probabilistic Teacher

In Section I. 6 we noted that in the Bayesian solution of an unsuper-
vised learning problem all possible sequences of labels for the observed
sequence Rk are considered. The posterior density function is then
computed using Eq. (1.32).

Eq. (1.32) suggests a labelling method. Let us treat the label Zk
as a random variable £k' Let this random variable g_k have a probability

density function



This density function can be computed using Eqgs. (1.29) and (1. 30)
and is the same one used in the decision directed scheme. However,
we employ it differently in this case. Knowing the density function
p-g_k(lk) we generate the label lk by drawing it as a random number
from this density function. With the availability of a random number
generator this task is within the reach of a digital computer.

When we generate the labels this way the average posterior
density function at any stage will be the same as the posterior density
function for the Bayesian learning scheme. Therefore it is reasonable
to hope that this in limit, will lead to a solution of Problem C.

In this labelling method the label is generated probabilistically.
Therefore we may call the resulting learning scheme as 'Probabilistically
Directed Learning Scheme' or 'Learning with a Probabilistic Teacher'
(LPT scheme in short). A learning scheme of this type was first
suggested in [1]. Its convergence properti‘es were first established in
[2].

Let us consider the LPT scheme in detail. The computations for

the observation z, are carried out in two steps, labelling and updating.

I1I.2.1. The Probabilistic Labelling

At the k'P stage of computations, the density function

; Z i i t ior density function.
p-}—‘/-%-k-l’é—k-l(x’ak-l’ k-l) is available as the prior density function

When we observe z, we proceed to compute Py

(H
"—k/'z'k’ %'k"l "-x—'-k“-l

K’

Zy %k-l’ik-l) as follows. We write
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(H bt

pﬂk/?_k, %—k-l ’;Fk-l Kk Pk % k-1’

k-1

z, ,H. ; Z
Pare B/ e 1 gm0 6 i1 T -1

P (2153119 % 1)
21/ 3c-1Ex-1 K 1%k

Under the assumption (A2) we can express it as

p (H s & - i _ ):
.I:I_k/z.k’%k_l’ék_l k’ k’?k 1""k-1

P (z, ; H _19% )Py (Hy)
2 /Ho 3y €y K K TR T k-1PH Pk

p-z-k/%k—l’ik-l(zk;31"1"1“1)
(2.2)
Here
p (2,531 _19% 1) =
-"’:k/%k-l”—‘;kq K k-1 T k-1
P (z,; H 9% )Py (Hy)dH
*S;{Ek/—}ik’%—k—l’é-k-l 1 e -1 T k1P, il
(2. 3)
and

P (z, ;H . ) =
-%k/ﬂk’%k-l’&k-l k? k"}k 17" k-1

P (z,;x,H T
\S;. Ek/zc-’ﬂk’%—k-l’é—k-l k> k’}k 1" k-1

. . 2z d
ng/%k_l,xk_l(x”a‘ Kk-17% -1 )%

Under the assumption (Al) of conditional independence we may write

it as



P (Z ) _ L - ):
Ek/ﬂk’%k’l"t—k-l k’ k’%k].’ k-1

S; k/H X 215 k’ )PX/%k l’t'kl ;%k"l’i’k-l)dx
(2. 4)

Knowing pz/%k Dy 1(x5’}k-l’i’k—l) and z;. we can compute the density

function Py /z - zk’%k’-l’i'k-l) using the Egs. (2.2),

(H
Zpo Fr-12%5-1
(2.3) and (2.4).* This computation can be carried out for discrete

as well as continuous H spaces. In generating the label Lk we treat

it as a random variable £k with a probability density function
P ( ) =
/s 1o b 70 Fr-10F -1

PH, /210 331 e e T % i) (2.5)

To generate the label we draw a random number from the probability

). A pseudo
+

d ty functi
ensity function pz /Zk’%-k 1’-—k 1 Lk k’%k 1’ k-1

random number generator can be used for this task.

I. 2.2, Updating

The updating of the density function requires computing the posterior
d ity £ ti ; L. ) f th i
ensity function p_’S/%wé..k(x’?k’ k) rom the prior P—’-{-/:ﬁ-k 1’-£';k-1(x’
%k-l’é-k—l) and (zk, !Zk). Using Bayes rule we can express

pﬁ/%_k’ ;_k(X; 3 k’ik) as

" Note that Egs. (2.2), (2.3) and (2. 4) are similar to Eqs. (1.29) and
(1.30).

We shall consider the question of generating the label randomly in
detail in Section II. 4.
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pzs/%_k, Ak(x; T =

H L
p.E.k, .g_k/ﬁp %“k'l"ﬁ"k‘l (zk’ Zk’ % % k-1° k'l)

P (z : sy 1)
—z—k,'&k/%k“l"é‘k—l k’ﬁ(,’}k ]., k 1

. . 2.
pz/%_k_l,i_k_l(x,3k—1’£k-1) ( 6)
where
. Z -
pEk’ﬁ'k/%-k-l’ik-] (Zk’ zk’ 3 k-1? k-l)
S;'p?-k’-&k/-}s’%—k-l’ _;C_k_l(zk’ 2k; X’IZ k"l’ik"l)
)dx (2.7)

' p_}_:/%k_l,_t;_k_l(xsak-l’ik-l
The updating process defined by Eqs. (2.6) and (2. 7) is very
similar to the solution of Problem A defined by Eqs. (1. 5) and (1. 6).
For Problem C as defined in Section II. 1 some reproducing densities
exist for the posterior density function here. As a result the compu-
tation of the posterior density pﬁ/%k’ik(x;’i k,;Ck) from the prior

P (x;2., _1,&, _¢) is reasonably simple.
E/%k'l’—i'—k"l ’31( 1’ k-1

We note that the updating process for the LPT scheme is the
same as the updating for the decision directed scheme. In fact what-
ever method we may use to generate the label, if we treat lk as the

correct classification for zk,the updating process will be the same.



I1.2.3. The Operation of LPT Scheme

The recursive computations for the LPT scheme proceed in
two steps at any stage. At the kth stage we observe 2y = Zpe The

density function px/ (x; %k—l’i’k—l) is available as the prior

Fi-1-%5-1
density function. As a first step we generate a label lk according to

the method described above in Section II. 2.1. This label Zk along

with the observation Zq is used to update the density function
X3 Z to x; £.). And we proceed
p-)s/%-k-l’;—k-l( 3 k-12 k-l) p—)s/-%-k’é-k( :%k: k) P

to observe Zpale

To start the recursive computations here we require the know-
ledge of the prior density function px(x) which is used along with the
first observation z; in the probabili;tic labelling at the first stage.

In IL 2. 2 we noted that the updating process for the LPT scheme

and the decision directed learning scheme are the same. For labelling,

both these schemes require the density function Py /z (Hk;
=l =

' Fx-1"%k-1
2153 k-l’ik-l)"/ This density function is used differently by the two

schemes. In the decision directed learning scheme the label lid is

a,ss]'_gned that value of Hk for which o] is maximum.

Hy /21 330 10E-1
The LPT scheme generates the label randomly with the probability

density function p . Therefore for an observation z
H /20 g1 Lg-1 k
the labels assigned by the two schemes will be the same with the prcba-

dd
bilit
= W %k—l’i-ﬁ-kd(lk

(ll(id; zk’% k-l’i‘kal) is the largest value of the function

p
H/Zp0 33010 Ege-1 ~

Therefore for k observations iid (the sequence of

; zk”‘%kwl’i’k-l)" Note that

) .
_I_-I_k/_z_k, Fk-1° £y-1
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labels assigned by the decision directed scheme) has the largest
probability of all the sequences of labels the LPT scheme can
generate; this probability being
k

pék/%k(iid; [ T[ P-I:Ii/éi’%i-péi-l“gd’ “ Fi-1%4-1)
As each of the multiplying factors on the right hand side of this expres-
sion is less than one, the probability pik/ k(idd53k) decreases as k
increases. For small k this probability may be significant and as
this is the probability with which the sequence of labels generated
by the LPT scheme and decision directed scheme are the same, the
behavior of two schemes may not be significantly different for a small
number of observations. But as k increases this probability becomes
very small. As a resﬁlt the convergence properties of the two schemes
may be entirely different. In Section I.5.1 we noted that the decision

directed learning scheme does not converge. Let us examine the con-

vergence properties of the LPT scheme next.

I1I.3. The Convergence of LPT Scheme

The way we have defined Problem C in Section II.1 we require
that its solution be in the form of a sequence of posferior density
functions which converges in the sense of (2.1) to a delta function at
the correct value. As was pointed out in I. 3. 4 the Bayesian learning
scheme offers a solution to this problem. To accept the LPT scheme
as a solution we have to establish its convergence.

We require another assumption before we can establish the

convergence of the LPT scheme. We assume that
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(A4) (z5 H, %2 o158 ) £0

P /By, %, Fr-10Eg1
for any x € X
zy € 2
H eH
Under the assumption (Al) of conditional independence we may
write it as
p_z_k/ﬂk,z(zk; Hy, ) £0 forany x e X
2 € Z
Hk eH
The need for this assumption for the LPT scheme arises in the
following way. From Eq. (2.6) we note that pZ‘.k/_Iik’é is the only
function of x which multiplies the prior density function
pz/%k-l,ék_l(x53k“’l’ik'l) in the updating. If we let it have a zero
value for some x then there is no way of changing the value of the
posterior density function at that value of x due to the later observa-
tions. As the LPT scheme assigns labels probabilistically we cannot
let a single observation fix the value of all the subsequent posterior
density functions for any value of x. Therefore if the ‘assumption (A4)
does not hold for some problem the LPT scheme solution may lead to
wrong results.
A list of problems which entertain the reproducing densities has
been compiled by Spragins [10] and Raiffa and Schlaiffer [12]. Examining
their list we find that the as sumption (A4) does not put any severe re-

strictions. It is satisfied by all the problems with the reproducing
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densities. The only exception is a problem in which the conditional
density pE./.I:I_ is a uniform distribution and the range of such uniform
distribution is the unknown. A detailed discussion of this problem
is presented in Appendix B.

The convergence of the LPT scheme is a direct consequence
of two theorems. These theorems which establish the proof of con-
vergence are formally presented in Appendix A. The assumption (A4)
is required in the proof of Theorem I. In Theorem 2 we require the
further assumption of the existence of a sequence of functions of the
observations converging to the correct value. In other words, from
whatever we are observing and the way we are assigning the labels,
the possibility of reaching the correct value from va(x) is not ruled
out. Further, as shown in the proof of Theorem 2 ;n the Appendix A,
the existence of such a sequence of functions implies a unique solution.

This assures that the mixture we are dealing with is identifiable [11].*

iR ‘
Note that we are dealing with the mixture

p,(z) = g P, /uz; Hipy(H)dH (A)
2z  YE =
If H has two points only, H° and Hl, pz(z) takes the form

P, () = B (= HOPy(H) + b e H1>p_}_I<H1>

g . . 1
We say that this mixture is identifiable if for any two points z*~ and z ,

pz(zl) = pE/E(ZI;HO)pE(HO) + pE/E(zl;Hl)p_I__I_(Hl)

and
2, _ 2 .0 o 2 .1 1
p,(z7) = pE/E(z s H )pH(H ) + PE/_H(Z ;H )pE(H )
are two independent equations in pH(HO) and pH(Hl).
In general pz(z) is said to be identifiable if the mapping of pH(H)

on to p_(z) as defined by the Eq. (A) above,is one to one [11].
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To see heuristically why the LPT scheme converges we note
that we are treating the label as a random variable., If we consider
the average behavior of the posterior density function with respect

to the randomness in the label we get

E [p (539, 2,)] = (53 1,2,)

°P (£,;2.)dL. . (2.8)
2/ Ty
The way we have selected the label, the right hand side is nothing but

Pr/a O HK (2. 9)

This is the posterior density function for the Bayesian learning scheme.
Hence the LPT scheme follows the Bayesian learning scheme on the
average.
The convergence of the posterior density functions p (x;% ),
x/3, 7tk
involved in the Bayesian learning scheme, has been well established
[3], that

]il_r_)noo p_x_/%k(x;?k) = 0(x - xo) w.p. 1 (2.10)

All the functions p / are positive functions. ‘The expectation
2/ 20 éé.k
operation of Eq. (2.8) is like positive summation. The only way in

which Eq. (2.9) and (2.10) can be satisfied together is if

li ; £.) = 0(x - .p. 1 2.11
kl_I)Ilm pz/ k’ik(xg%k, k) (X XO) w. P ( )
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I1I.4. The Implementation of the LPT Scheme

Let us consider the practical questions regarding the implemen-
tation of the LPT scheme. For this scheme at kth stage

(i) given Zy and p we compute pyy /z

X/%_k 1’-—-k— Kk —k’%k-l’é -1 ’

(ii) with p P Z 15L& ) =D (L, ;
Lo/ 2 Fac-10Ec-1 Y 10 Fae 1% o1 B /2031851 ¥

2103 k-12%x-1) (EQ. 2.5) we draw a random number 4, having
this probability density; and
(iii) using Zy and lk we update the prior density function

:C.k_l) to the posterior density function

pz/%k-l’é-k-l(x; {1

pﬁ/%k, ék(x; 3 k’£

The way we have defined Problem C, the prior and posterior
density functions here entertain a sufficient statistic. As a result
step (iii) requires recomputing the values of the parameters
defining the sufficient statistic. This is a straightforward operation.

Step (i) requires computing pH /z (H

20 Fae- 1L ge- 1 i %0 Px-10%%-1)
We know the functional forms and the parameter values of all the func~-
tions involved in this computation (Eqs. 2.2, 2.3 and 2.4). Therefore
we can carry out this step also.

We are'treating the label lk as a random variable £k' In step (i)
we compute the probability density function we want _Z_k to have. In
step (ii) we have to generate a random number having this probability
density function. Note that we want a single outcome or observation
of the random variable £k as 21(

To examine various techniques we can use for this,l let us consider

the problem of generating an outcome of the random variable { defined

in H space and having a probability density function P, (0.
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Algorithms are available [4] for generating Pseudo random
number W on a digital computer. w has a uniform probability density
on 2=[0,1]. To generate any other random variable on the computer
we can consider w as a random sample point (from the sample space
2), and define the random variable £ as

L=Y@w . (2.12)
To get an outcome £ we observe a value w of W. If we know the function
¥ we can get £ using (2.12). Let us see how we can arrive at the
function ¥ knowing P, (4) for various H spaces.
(a) Discrete H space—-

When H space is discrete P, () is a collection of delta functions;
py(0) = ) P(£)5(e - 1) (2.13)
i

Here P(f') gives the probability of occurance of 21, a point inH space.

Note that

Z P = 1 (2.14)
i
We can easily divide §2into n parts (where H contains n points) such
that the length of the ith part is P(ﬁi). Now we select £k if the randomly
observed value of w lies in the region of P(l.k). The function ¥ now
has the form shown in Figure 2.1.
(b) H is the real line -

Let us define the distribution function P2 (£) for the de:gsity function

P_z_“) as
g

P£(£)=S pz(ll)dﬂl (2.15)
L oo L
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We note that Pz(ﬁ) is a monotonically increasing function with
P_z_(-oo) =0 P!_(oo) =1
We can generate a value of £ by solving
pﬂg):w (2.16)

for any random outcome w or w. (2.16) is an implicit equation.
Reference [9] has presented various techniques for solving such
equations. For our purposes we assume that a solution can be found
to this equation.
(c) H is an m dimensional vector space+ -

If the dimensionality of His m we may make an m dimensional

sample space as Ql x 8, x 93 Xevo X Qm where
Q =[0,1] foralli

The random observation is made in this space now as an m dimensional
vector. To generate £ we use a function to map this sample space on
e,

So, we see that the LPT scheme leads to a solution of Problem C
which can be implemented in practice using a random number generator.

Let us consider some examples next.

II. 5. Examples

Let us consider two examples and examine the behavior of their

LPT solution. As the first example we consider the problem of

+In pattern classification problems the H space is discrete in general.
Therefore this case rarely occurs in pattern classification.
ok '

‘<This may be an involved problem but can be solved.
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Section I. 4.1 in whichH is [Ho, Hl]. The two conditional densities
p-z_/E(z; Hl) and pZ/L_I_(z;Ho) are gaussian. The mean of the first
conditional density pE/E(Z;H ) is considered unknown. As the second
example we consider the same problem but assume that the variance

of one conditional density is unknown.

II.5.1. Example C-1

As the first example of the LPT scheme let us consider the
problem of Section I.4.1 and define Problem C-1 as follows:

Problem C-1

Let
Py 1) = p
=k
o
Py (H)=1-p
He

1
pEk/Ek(zkiH ) ~ N(XO’ R)

pgk/ﬂk(zk; H°) ~ N(0, R) (2.17)

for all k.* (In other words the two conditional densities are gaussian.)
We treat the mean of the conditional density function pzk/Hk(zk; Hl)

as the unknown parameter x. Observing a sequence 3 We have to
compute the sequence of the posterior density functions using the LPT

scheme.

%
This structure can also be defined as follows. Let
Zy = Hx vy
where
1 with probability p
H =

=k 10 with probability 1 - p

Vi is a white noise sequence pzk(vk) = pX(v) ~ N(0, R)

H. and

Hy vy are independent.
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Raiffa and Schlaifer [12] have shown that this problem entertains
reproducing densities. The reproducing density has the gaussian

form,
Pz/%k’ 2, %5 fo®n) ~ N(x, Pp)

The mean ;k and the variance Pk constitute the fixed dimensional
sufficient statistics. The updating, therefore, requires computing

the values of these two parameters which can be done as follows,

_ - T -1 -

X = X + PkLkR (zk - kak-l) (2.18)
-1 _-1 T, -1

Pk = Pk-l + LkR Lk (2.19)

where

. 1 .
L,=1if £ =H andL, =0 if zzk:Ho . (2.20)

k
Eq. (2.18) simply computes the sample mean of all the samples which
are labelled as Hl. Here §k is a function of 31{ and ik while Pk is a
function of :ﬁk.

. The updating for this problem is straightforward. We start
with the prior density function px(x) ~ N(;o’ PO) which we assume
given. Before we can update, h;wever, we have to generate the label
lLk for the observed sample Zy . Liet us see how this is done for the
LPT scheme.

Labelling - We note that for this problem

- —1—(2 -L x)z
oL 2Rk Tk
p_z.k/ﬁ,ﬂk(zk5 x,4) = TR © (2.21)

where L, is given by (2.20). Therefore using Eq. (2.4)
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1 2
3" " 2R (7 Tyex)
2/, Hk’%k 1&g J
1 - 2
1 " 7B, T X))
" 2P e dx

(2, =Ly %, 1)
2(R+L. P, ,LI) X Kk-i

_ 1 K k-1""%k
Jemwr+ LP, _ L)
(2.22)
And
ut Fé
p‘k/ﬁk’%—k-l’ik e e P ie1)
p (HISZ :2 "f’ )
WAL TURTE 20 K ko177 k-l
-...._._.__L_.__( - )2
2(R+P_;) k-1
P e
Sr®R+P, )
= = 2
(Eemxey) L
5 . R Ny g)e'iﬁ‘zk)
3 m
J2r(R + P_)
=a say (2.23)

k
As we know everything on the right hand side of Eq. (2.23) we can

easily compute the value of ay for any observed Zy - Note that

(H°; L

P ) = a
L/ 331251 “ a1 Tl k



2-19

To generate the value for ﬂ.k we draw a random number w from
a uniform distribution on [0, 1]. If
o
wSa , 4=H

and if

w>c.k R !Lk=0 . 2.24

The value of lk so generated is used as the label in this scheme.*
This label is used with Zq in the updating.
The implementation of the LPT solution of this problem is straight-

forward. To examine the behavior of the solution we considered the

following numerical values for the parameters:

R=5

p = 1/2
px= N(OyzO)
x =-4

o]

The 'learning with a teacher', decision directed and the LPT
schemes were simulated on a general purpose digital computer. The
sequences of ;k’ the mean of the kth posterior density function, are
shown in Figure 2.2 for two typical sequences of 500 observations
each. The sequence Of-;(k is plotted for each of the three schemes.

Examining Figure 2.2 we note that the ;;k sequence for decision
directed scheme converges around the value -4. 6 while the 'learning
with a teacher' and the LPT schemes converge to the value -4.0 and

show a very similar behavior.

sk
In the decision directed scheme we choose the label as

_ o] . - >
ﬁk—H if ak>(1 o.k) or a 0.5

Ek:O if o,k<0.,5
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FIG. 2.2 TWO TYPICAL LEARNING SEQUENCES OF ¥, FOR EXAMPLE C-1
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The Bayesian solution ('without a teacher') to the problem con-
sidered in this example is infeasible due to the computational com-
plexities discussed in Chapter I. Therefore we cannot compare the
performance of the LPT scheme with it. We may, however, compare
the performance of the LPT scheme with the 'learning with a teacher!'
scheme via simulations. For this we would like to get some idea
about the variance Of;k for these schemes.

To get the sample variance Of;k for these schemes we repeated
the simulation 60 times starting with px(x) ~ N(-4,20). The sample
variance was computed from these run—s-* and is plotted in Figure 2. 3.
In this figure we have omitted the variance curve for the decision
directed scheme. As tAhe>decision directed scheme converges to an
incorrect value,the sample variance curve for this scheme is not
meaningful.

Examining Figure 2.3 we note that the variance curves for the
LPT scheme and the 'learning with a teacher' scheme have a similar
shape. The variance for the LPT scheme is larger than the variance
for the 'learning with a teacher' scheme for the same number of obser-
vations. We expect this because the 'learning with a teacher!' scheme
makes use of the knowledge of the correct classifications of observed
samples.

Further, we note that the variance of ;k for the LPT scheme is
approximately twice the variance for the 'learning with a teacher' scheme.

We will have more to say on this in Section IL. 6.

* -
Actually we computed the variance from 60 as well as 80 runs and
found them to be very similar.
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II.5.2. Example C=2
In the first example (C-1) of the LPT scheme we considered
a two class case (i.e. H = [H°, Hl]) in which the two conditional
densities were normal and the mean of one of them was unknown.
Here let us assume the same structure but consider one of the
variances unknown and define Problem C-2 as follows.
Problem C-2
Let
1
Py (H)=p
~k
o
Py (H)=1-p
Hy
PZ /H (zk; Hl) o N(H«, Vo)
~k’/ =k '
o)
P (z, ;H”) ~ N(0,R) (2. 24)
Ek/Hk k

for all k., We treat the variance of the conditional density function
P (2, ; Hl) as the unknown parameter, and are required to formu-
_Z_k/.I;I. Kk’

k
late the LPT solution for this unknown parameter,observing the sequence

[£3
If we define the unknown parameter x as 1/variance we can make
use of the reproducing densities as described by Raiffa and Schlaiffer

[12]. When we define x this way we can write

=
1 _lx 2 k
pEk/.Iik,zé(Ek;H ¥ =2 ° (2.29)

The Gamma-2 density function is a reproducing density function for
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this problem. This density function has the following form:*

1 1 1
> sv,. -1 ~5xv. v
2"k 1 2 Vk 2%k
Pfy 2 i) = T (Zxvvy) e
—%k’ k (-z-vk— Ip

(2.26)
Vi and vy are the two parameters of this density function and form
the fixed dimensional sufficient statistics. Here Vi is a function of

f.k alone while Vi is a function of Tk and I’k in the following way:

. _ ooyl
!vk_1+l if ILk—H

vy =
. o
-1 if g =H (2.27)
1 2 . 1
_v;[vk-lvk-l t(z - ) ] if 4 =H
Vi = ¢ o
Vel if 4 =H (2. 28)

\
Note that by Eq. (2.28) Vi computes the sample variance of all

the observations which have a label Hl, Eqs. (2.27) and (2. 28) define
the updating process for this problem. This updating process starts

from a prior density function which is a Gamma-2 distribution with

the form,
1o v 1,1 -l
p(x)=———————-——foo (lxvv)z0 e2 co v >0
X (v - 1)) 2700 o
270 v >0
o

We assume that vy and v, are given to specify the prior density function.

Sk
This density function is defined with

x>0, v, >0 and v, >0

k k
The first and second moments of this density function are L and -i—-L—-Z
ko gvii

respectively. Figure 2.4 shows a family of curves for this distribution.



p-(¥)

FIG. 2.4 GAMMA-2 DENSITIES, v =1

v
(-1

-1 -UaxwV
P_x_(X)= (1/2x7/V) 2 e /2

Ml



2-26

We require the label Lk in the updating process. To generate a

label using the LPT scheme we have to compute P, (2 ;
G MEVRRTE PR
H ?k 1 k l) Using Eq. (2.4) we write
1
:H £ =
P /B 310 Y S B S Y
(20 3 V1]
X Zk M ka"’lvk"l (l»_ " )2 vk"l
J L, 1 2 %Vk-1"k-1
2 k-1 :
XV
27 k-1"k~1 dx
1, -1
1 L 21701 L
2 Vk-1Vk-1{2 V-1 Vk-1) ZVk-1 " 2)
- I, LI
1 1 2.2 "k-1"2
V2T (5w~ D g i F (7 - 97
=By say
And
@ L,.1) = S
p s s
£k/5k’%k'1’£"k 1 “k Rk 17 k-1 ‘ - __g'ﬁ(zk)
B, p +£—-—-—R)- e
k 27R
=a, say
Thereiore
o — -
(B 2 mro ) = 1 70y

p
L /2y Fr-12%%-1
To generate the value for Zk we draw a random number w from a

uniform distribution on [0,1]. If
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and if

(JJ>G.k Zk:H

The value of .Zk so generated can be used in the updating process.
This example was simulated on a general purpose digital

computer with the following parameter values;

The correct value of x was taken as 0.1 so that the correct value of
the variance was 10.0.

Figure 2.5 shows two typical sequences of Vi for the LPT,
decision directed and 'learning with a teacher' schemes. The
decision directed solution shows a very eratic behavior * while the
Vi sequence converges to the correct value, 10, for both the LPT
and 'learning with a teacher' schemes. To get a better idea about the

behavior of the LPT and 'learning with a teacher' solutions we re-

peated the simulation 50 times and computed the sample variance of

Among the many trial runs we found that the v} sequence of the decision

directed solution to this problem either remains at a very small value -~
around 2.4 -- or goes to a very large value around 12.5. This happens
often enough that the two curves shown represent very typical cases of
the decision directed solution for this problem.
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Vi for both the schemes. This sample variance is shown in Figure

2.6.%

Examining the Fig. 2.6 we find that all the comments about
Fig. 2.3 in Section II. 5.1 are valid here also. Here the variance
of Vi for the LPT scheme becomes approximately twice the variance
of Vi for the 'learning with a teacher' scheme, as the number of

observations increases. We shall try to explain this in the next section.

II.6. The LPT Estimate: Some Properties

The structure of the problems we are considering here is such
that x is some unknown parameter of the conditional density function
pE/H(z;H:x), We are given some observations and have to make an
estimate of x which is optimal with respect to the cost function J
defined by Eq. (1.4). When using the Bayesian estimation philosophy
we found that the posterior density function contains all the information
required for making the optimal estimate. Therefore we reformulated
the supervised and unsupervised learnihg problems (Problem A and B)
of Section 1. 2.1 in Section I.3 and accepted the posterior density
function as a solution. In Section II.1 we restricted our attention to a
class of unsupervised learning problems and called this Problem C.
We accepted a sequence of posterior density functions which converge
in the sense of (2.1) as a solution to Problem C. As a result we get
the posterior density function pz/ k’ﬁk(x; K’ 'flk) as a solution to
Problem A and p?—‘-/—'i—k"f'-k(x; c}k,;’;k) as a solution to Problem C. From

the posterior density function we are required to make an estimate of x.

+We calculated the variance for 50 as well as 80 runs and found the two
to be very similar.



VARIANCE OF vj —=—

10

LPT SCHEME

LEARNING WITH TEACHER

] | ] |

100 200 300 400
No. OF OBSERVATIONS ——a

FIG. 2.6 SAMPLE VARIANCE OF v,

500



2-31

To make an optimal estimate using the posterior density func-
(X53'k’£k) we require the know-

k

tio 5 2
on pﬁ/%k’ flk(x’ ak’ k) °F pﬁ/%_ka.‘.{i A
ledge of the cost function J. In general S'(k, the estimate in the

Problem A after k observations,is a function of the k observations

(%k’ ka). Therefore we may write

~A
*k = Wk(%k’f’k) : (2.29)
We note that the density functions and have the same
y manetion pE/ k’ﬁk p§/ %—k-f‘k ©

form. Therefore if we use the same cost function for the Problem C

we will get the same function ll/k for the estimate 321(3 and we may write

2 = V3o 2 (2. 30)
The estimates here are functions of the random observations and
therefore are random variables themselves. We would like to get
some idea about the variance of these estimates.

From (2.29) and (2. 30) we note that 5“{‘ and SEIS have the same
functional form. ?cf: uses the correct c:lassifica.tions'fmk while ~1C<:
uses the labels generated in the LPT scheme as the classifications.
Note that H

k
the density function p_I:I_k /Ek(Hk; zk:xo). The label Lk is generated in the

is a random variable and given a value of z , Ek has

LPT scheme from the density function Py and is inde-

H /20 311 Ex-1
pendent of H . We have seen that the LPT scheme converges to the

correct value in the sense of (2.1). Therefore —Hk and £k have the same

probability density function asymptotically. As a result 3':{: and 3}1({:
have identical density functions asymptotically.

Lemma: If X and %, are two independent random variables with the

same density function say P, then

E{(x, - %)%} = 2Varx, (2. 31)
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Proof.

I

E{(XZ - xl)z} E{xg - ZXIXZ + x%} = E(xg) - ZE(XZ)E(XI) + E(xf)

1}

2{E(x}) - (E(x))?)

2Varx

1

If we are trying to estimate the random variable %X, and we
estimate it by the random variable x, then @2 - _}_{_1) is the error.
As x, and x, have identical distributions, the mean error is zero.
E[(x2 - xl)z] now has the interpretation of the variance of the error.
We see that the variance of the error is twice the variance of Xy

l—I_k is an unknown random variable for the LPT scheme in which
we are using _ﬂ_k in its place. As we have seen above, Ek and gk have
the same distribution asymptotically. Hence, the same remarks
apply to §<1C;' and '}Zﬁ in Egs. (2.29) and (2.30). Therefore we may say
that

as k—>m  E[ES - %)% = 2varsl

(2.32)
The left hand side is the average variance of the LPT estimate.
As a result the average variance of the LPT estimate.asymptotically

equals twice the variance of the 'learning with a teacher' estimate.

This is also confirmed by the examples of Section II. 5.

II. 7. Summary

In this chapter we restrict our attention to a class of unsupervised
learning problems. If the labels of the observed samples are available
(or assigned) this class of problems entertains reproducing densities.

We define this class of problems as Problem C.



As a solution to Problem C we suggest 'learning with a proba-
bilistic teacher' (LPT) scheme. This scheme uses a probabilistic
labelling in which the observation Zq is assigned a label generated at
random with a probability density function pﬂk/-?-k’ %k-l’ik-l(lki Zk”'&k-l’i'k-l)'
The convergence properties of this scheme are established and the
questions relating to the implementation are examined. Some examples
are presented which show a comparison of the results of this scheme
with the 'learning with a teacher' and the decision directed learning
schemes. Further we find that the average asymptotic variance of the

LPT estimate is twice the variance of the 'learning with a teacher!'

estimate.



Appendix A - The Convergence of the LPT Scheme

In this appendix we establish the convergence of the LPT scheme
in the sense of Eq. (2.1). Fralick [3] has proved the convergence of
the Bayesian learning scheme. Here we present a similar proof of
the convergence of the LPT scheme.

First let us prove a more general theorem about the sequence

- - - . i .
of the posterior density functions pz{-/ k’:‘L—-k(x,’& K’ k). This theorem
has been proved in [2] for a discrete H space. It was proved by Daly
[5] for the posterior density functions p?_{/:%k(x;'\ék).
Theorem 1.

Any sequence (%1, Y20 ) such that

4y ‘S‘_;:f(x)pé o2 00 (A-1)

is a bounded martingale if
(i) f(x) is any non-negative Lebesgue measurable function,
(ii) max f(x) = M < oo,

; L.)i ted using the LPT scheme
pz_{/%k, ék(x, 'Ek’ k) is computed using R

P (21,15 801 % R Lq) # 0 for any x €X,
”z"k'l‘l/!'k'i‘l’ﬁ’%k’é-k k'l'l’ﬂk'l‘]. ’ik k

2yl € 25 Lyyp € H.

Proof.
To prove that the sequence (%1, %2, ...) is a bounded martingale
we have to show that

(@) E{[g,[} <o (A-2)

b) Bl /g0 = % (A-3)



Since f(x) is non-negative and bounded by M onX

0 s %k = S;f(X)p?ﬁ/%k,&k(x;Xk,ik)dx

S MS‘Xp§/%k, ék(x;zk,.tk)dx =M<oo . (A-4)
Hence
1] < (A-5)
and
E{|g, |} < (A-6)

To show (b) let us evaluate E{%k+l/%k’ _;{_.k} as

= f(x X3 , 2 dx ,
E{ft1/300 2 E{[‘;()pﬁ/%kﬂ,ikﬂ( Frt1 %141 ]/-}k Z,)

‘;f(X){E[p-}S/%—k-l_l?ik-}l(x’. ’i’k'l'l’ ik‘l‘l )/3k’£k]}dx

(A-7)

As we can write

13 (x; L) =
5/%1{_'_1,_;;1{_'_1 ’3k+1’ kt+l

z M X £ ) ( )
P 1 /Ly g0 2 kD ek O e P e

P (21415 £.)p (4 1)
—Z-k+1/£k+1’%-k’-£—'k TR WEEL SNTIN H, @ ktl

pz/-%-k’ ék(x; 3k’£k) (A-8)

where
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p (2y, 432 Z.)
-Z‘k+1/-g-k+1’%k’£—k kbl kD § 0 Tk

; d
; P21/ e 3 a2 K1 k1 Qo T

X
" Px/a 2, % rofidd (A-9)
if p-I:I-k+1uk+l) £ 0, we may express (A-7) as
E ’ = £ 3 ’3"

P.Z_k.*_l/&k.;.l:?..(’%k,i-_k(zk'i-l’.lk-{-l’x’%k;ik) . ,

. 9 xX
2y /L Jro £, P13 1 TSN IE Sl

| (A-10)

The expectation on the right hand side may be expressed as

P (2, 13 x L)
Ek+1/£k+1’ E’%k’ék k+1’£k+1’ ’Rk’ k
2, e e o)

- CINE-N

P
Zyr1/ e F

= ‘Z"k+1/£k+1!§y%_k,£-_k k412 "k+1° ’%k’ k

P
3y Zer Lo o

(2115 Ber 10 J a0 %K)

p (z L . .39,,% )dz dae
Ek+1’£k+l/%k’£k et 12 et D e T Y T

(A-11)
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Z . 2
p'z—k+1/£k+17 % %‘k’ @_k( k+1? lk-i-]_ » %y %k’ k)

Z2H p5k+1/£k+1’%k, ﬁk(zkH; £k+1’% k,i,k)
b ]

" P ( 3 Z L )
£k+1/—z-k+1’§,k,£_k 2k+1’ k+1° 3"k

Ydz

. p (o ia £ ;
5k+1/3_k:£k 1419 3 10 R 1 Ve Yot

P (z . < £ )
"z'k+1/£-k+1’§y_:i..k,§_k k+1’Lk+1’ ’%k’ k

3102y e e o)

P
an G/l

P (z . £.)p. ( )
: 1 /Ly o i kb1 ek 0 Tk Hy1 hen

5 rd
P-Z-k+1/%-k:£-_k(zk+1’3k’ K!

P (= ; £ . )dz d (A-12)
2141/ 10 ¢ k1) 310% 101 et
where
P (z : £ ) =
—Z-k+l/%-k’£'—k k33w Tk
13 (21015 » 310 L )P (£,_,.)d
:,lg-'[ Ek+1/£k+1’%k’£-k k+1’Lk+1 }k’ k Hk+1 k+1 2k+1
(A-13)
As, according to (iv)
Pz /1 X £ (Zk+152k+1,x»'gk,£-k) £0 forany x eX
Zrtl/ 2410 3 0 2k )
2141 € F
hep1 €H

(A-14)
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from (A-9)
p-z—k+1/£-k+1’%—k’£k(zk+1;lkH"X ) # 0 (A-15)

and from (A-13)
(2415 Fr0 %) # 0 (A-16)

P
2141 300 1
Under these conditions we may write the right hand side of (A-12) as

(s

: L
5 Hékﬂ/!_k_,.l,?é, %k’ &.k(zk'l'l’ Lk'l'l, X’z k’? k)

>

. p (L, ,.)dz d
Hy kR4 D het1

=1 . (A-17)

Substituting this in (A~10) we get
B /a0yt = | fop (5 1,
Vet 1/3% S EVENE N [ 3

= %x

This proves (b) and the theorem.

This establishes that the sequence (}1> ¥2> - --) is a bounded
martingale and as Doob [6] has shown, a bounded martingale converges
with probability one. Hence the sequence (C&l’ %25 -+ - ) converges
w. p. 1 to a value Yo’ which is independent of the sequence {% K’ f’k}
along whichthe posterior density functions are computed.

In order to show that the LPT scheme converges to the right
value we use Theorem 2 which is a modified version of a theorem due

to Braverman [7] and Fralick [3].



on X such that lim yfm =X with probability one, where X is the
m -0

correct value of x, then

p:S

lii—r)noo p_/%k,i.ﬁ;k(x53k’ik) =0(x - x) w.p. 1 (A-18)

Proof.

Let us consider the sequence of functions

Pk(Ex) = SEX pz/%k, ik(x; %k,tk)dx (A-19)

where Ex is some set defined inX. We can write

P (E)) = SIXIEXP_}E. /%k’ ik(x; 3k,£k)dx (A-20)

where
1 if x e E
X

1 =
Ex lo if  xéE,

is the indicator function of the set EX € X. Hence from the Theorem 1

the sequence of functions Pk(Ex) forms a bounded martingale and

lim Pk(Ex) = POO(EX) w.p. 1 (A-21)
k-0
Further, if {P—’Xl’XZ’ e s Yy e .} is a sequence of random variables

such that E[P’-/Xl’XZ’ -++,¥; ] is a bounded martingale then E[P—/XI’XZ’ e ’Xk]

converges to u with probability one [8]. If we let u = I andy, =(z;,%)
X
then E[E/Yly cee yk] becomes P, (E_) which is a bounded martingale as

shown above and hence must converge to IE which is either 0 or 1.
X



Therefore POO(EX) is a step function with a discontinuity at some

value of x which is independent of the sequence L’% k,__i_k)_. But if

the observed sequence waS'('z m,;ﬁ.m) on which there exists the
sequence of functions ’Jm(a m’f‘m) converging to X, W.P. 1, com-
puted along this sequence the discontinuity will occur at X with
probability one. And as POO(EX) is independent of the sequence, this
implies that the discontinuity of POO(EX) will occur at X for any

sequence. Hence

lim p (%;9.,%.) = 0(x - x) w.p. 1 (A-25)
k—>00 —X—/%—k’:—e‘—k 31{ k ©
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Appendix B - An Example Violating the Assumption (A4)

Let us consider the following problem:

Let

P, /(% H) = 35 [u(z + 2) - u(z - a)]
and

P,/ H) = 75 [a(z +b) - u(z - b)]
where

i.e. the two classes have a uniform distribution (Figure 2. 7a) and

p(H®) = p

pﬂ(Hl) =1l-p
Let a be the unknown constant. We observe %k a sequence of inde-
pendent, identically distributed random variables and have to 'learn'’
the value of the constant a.

For this problem p (2, ; x _.,&._ ) has
—Z-k/g-k’z{-’%—-k—l’ék-l 10 e "’ak 1" k-1

the form

1= 1
. o i = e + - -
ng/!_k; % %—k-l’ :E,k_l(zk’ s x,% k-1? k-l) zx[u(zk x) u(zk x)]

which is not a non-zero function. Hence the assumption (A4) is violated.
It does satisfy all the other conditions required for Problem C. Spragins

[10] has shown that the reproducing density function has the form

.M
(x5 310y = 3 () Sulx - My)

P
?_{./ %k’ 'é'k k
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where

and

M, = Max{mi}

Figure (2. 7b) shows one such function.
If we want to use the LPT scheme for this problem, for any
observed z, we compute Py

B /20 3901 E-1
and (2.4). We may select a label lk according to (2. 5). Note that

using Eqgs. (2.2), (2.3)

this assignment of the label is done at random so that if

1
H; £
pﬂk/ﬁk’%k—l’ﬁk—l( e fre-v

assigned label may be H1.~ The updating may now be carried out using

k-l) is not zero for some Zy the

Eq. (2.6).

The reproducing form of the posterior density function as given
above is zero till the maximum absolute value of all zi's assigned the
label H°. If a > b this will converge to the largest observed sample
and in the limit converge to the correct value of a. Butifa <b, a
single assignment of a Z:, having a value greater than a (therefore it
came from the class Hl) to the class H® will rule out the correct value
of the unknown constant once and for all. Fig. 2.7 shows one such
sequence of computations. The observed 2y (> a) is from class Hl.

(u° £

5 2y zk-l’ for this observa-

The probability p
/20 310 €51

tion is 0. 5. Therefore with a probability of 0. 5, Lk = H°. When this

k-1)

happens the posterior density function rules out the correct value of a

at this stage. The probability of such an assignment is finite for the
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LPT scheme. Therefore the LPT scheme will not give the correct

result for this problem.



2-45

Appendix C - Block Diagram Structure of Solutions to Learning

Problems in Pattern Classification

The basic structure of various learning schemes considered

in this work can be described in terms of the following blocks

H “k
1. —E——» . This block accepts Hk as the input

and gives a z

K This happens in the system under observation in

such a way that zq is available. Hk can be available to the

"supervisor" or "teacher" only.

%K H /7
2. Compute Probabilities - —_y C —

This block accepts z, as the input and computes p . If some
k _Iik/Ek

x is unknown, it accepts p as the prior distribution of

x/past info

x and makes use of it in the computations.

1:)_1-_{_1(/_7i , past info class
3. Bayesian Decision =-- D

This block takes the bayesian decision of the class of Zy from

P . .
Hk/zk’ past info

H H
k k
4. Teacher -- —_— T
This block has access to Hk’ the correct class of Hk' It makes

Hk available at its output.
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5. Labelling - — L "

This block performs labelling.

prior density

“k
6. Updating -- U

posterior density

Hy

This block accepts the prior density, Zy {and Hk or ILk if available)

and computes the posterior density.

Based on these blocks, the structure of various schemes is

presented in Table 1.



TABLE 1

SCHEME

BLOCK DIAGRAM

CLASSIFICATION

LEARNING
WITH
A
TEACHER

4
!
t
t
!
1
]
-t

LEARNING
WITHOUT
A
TEACHER

DECISION
DIRECTED
LEARNING

LEARNING
WITH
A

PROBABILISTIC
TEACHER

T‘—_——
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CHAPTER 1III
APPLICATION OF THE LPT SCHEME TO

GAUSS MARKOV SEQUENCE

In all the estimation problems we have considered so far in
this work we wanted to estimate the unknown value of a parameter.

We were allowed to observe a sequence of "samples" which may or
may not contain information about the parameter. The unknown
value of the parameter remained fixed as we observed the sequence
of samples. Therefore we observed a sequence of independent iden-
tically distributed samples.

In various practical problems the parameter of interest is the
state of some dynamic system. For example we may be interested in
tracking the position of a satellite. The state of such a dynamic system
and hence the "parameter" we want to estimate, keeps on changing.

Let the dynamics of the system be defined by

Xip = Ay + Do
where w, is a gaussian purely random sequence of known mean and variance.

k

;sz and I‘k are known constants. X is the state of the system at the kth

stage. We note that Xy k=1,2,3,... is a Gauss Markov sequence.

We are interested in estimating X the state of this Gauss Markov

sequence at the kth stage.
We may adopt the Bayesian estimation philosophy for this esti-
mation. In that case some a priori knowledge of the state is required.

This may be in terms of the prior distribution for Xy - From this prior
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knowledge we can make the estimates of the states for all k. But if
we are allowed to observe some samples we may be able to improve
these estimates. If the state could be observed directly we can make
the perfect estimate. In practice the state of the system can be ob-
served but not directly or perfectly. At the kth stage we can observe
a zy which is some function of the state Xy - In addition z, may con=
tain some observation noise also. This observation can be used to
improve the estimate made from the prior information.

Let us consider the observation z, as an outcome of __z_k* where

2y = Hx t Y

and Yy

is a known constant,the Bayesian estimation of b making use of z

is a gaussian zero mean independent white sequence. When Hk

K is
like a supervised learning problem (Problem A) of Chapter I and can
be solved rather easily in terms of the well known Kalman=-Bucy filter
[4].

In some practical problems Hk cannot be considered as a constant.
For example in the tracking of a satellite some observations do not
contain the signal which results in H, , having a value 0 or Hk’ at random.
When we consider Ek as a random variable the estimation problem
becomes an unsupervised estimation problem. As we have seen in
Chapter I the Bayesian estimation leads to an infeasible solution to

this problem.

In Chapter II we noted that the LPT scheme leads to a feasible

solution of the unsupervised learning problem. Here we show how the

We are treating the variables as scalars in this chapter. The discussion

is valid if Xy and z, are vectors and g{k, Fk and Hk appropriate matrices.



LPT scheme can be used to estimate the state of a Gauss Markov
sequence.

The only work reported in literature on similar problems is by
Nahi [1]. He has constructed the best linear estimate for the problem
with _I-_i_k having a binary distribution. The inherent nonlinearity of the
problem suggests that some nonlinear estimate may be better than the
best linear estimate.

In this chapter we define a Problem D in which the unknown para-
meter Xy forms a Gauss Markov sequence. The observation process
is defined so that the estimation problem is an unsupervised learning
problem. We formulate a solution to Problem D using the LPT scheme.

An example is presented in which we compare the performance of the

LPT scheme solution to the best linear solution of Nahi.

II1.1. Problem Formulation - Problem D

Let us define Problem D as follows:

Consider a discrete Gauss Markov Process x,, k = 1,2,3,...
defined by
Xepn = At Do (3-1)

g{k and Ii( are known. w. is a Gaussian white noise sequence such that

k
E{wJ = w, (3.2)
E{(w, -~w, Nw, -w )}=0Q -0 , * (3.3)
& kTR, T ky Rk
*5 is the kroneker delta function, i.e.
klk2
5 . 1 if kl = kZ
k,k, ~

172 0 if kl;!kz
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We observe z, where

k
z, =Hx +v, (3. 4)
The observation noise Yy is an independent gaussian white noise
sequence and
E{y,} =0 (3. 5)
E{v, v, } =R_ .90 (3. 6)
kp k' Rk Kk
In addition to the additive noise Vi the observation 2y has a multipli-
cative noise _I-lk. —Iik is a random variable independent of all other

random variables and has the probability density function pﬁk(Hk).
This density function is known for all k.

We are given pzc_l(xl) ~ N(;l, M,) as the prior density function
for - At the kth stage after observing a sequence 31{ we have to
make an estimate of ¥, as ik. In Section 1. 3 we have seen that it is
sufficient to compute the posterior density functions to make such
optimal estimates. Here we accept the posterior density functions
as a solution.*

We note that Problem D is an extension of Problem B-1 (of
Chapter I) and Problem C-1 (of Chapter 1I). In all these problems the
observation process is the same. In B-1 and C-1 x was an unknown
constant. Its value was unknown but fixed for the observation sequence.

~ ForProblem D we allow the value of x to change as a Gauss Markov

sequence.

Deutsch [2] has shown that the mean of the posterior density function is
optimal for a general class of cost functions. Therefore when we have
to make an estimate we shall use the mean of the posterior density
function as the estimate.



II1. 2. General Solution

To solve Problem D we have to compute the posterior density
function p / (x ,-Z k). If we arrange the computations sequentially,
at the beg1nn1ng of the k stage (i.e. at the end of the k- 15¢ stage)

we have the density function P, We observe

(%, _13 1)
% 1/qp1 KV el
Zy and have to compute the density function pzk/ (x E! k). This
can be carried out in two steps.

(a) Dynamic Propagation - Using the system equation (3. 1) and the

Ex-1

and P, (w, _;) we compute p (%,;9,_1)-
Wy Ko EWEPN S )

This is a straightforward computation. As Eq. (3.1) shows,

density functions P, /%k_l(xk_l; %k-l)

%, is a weighted sum of two independent random variables x and

=k-1

are scalars™® the probability density function

=k

W

Wy _q- When X and z

k

can be computed as follows [3].

pﬁk/%k-l

(e8]
_ 1 Xk - 'E
Ek/%k_l(xkijk-ﬂ = S\_oo TP T 1] pik-l/%—k-l(rk-l ,31{_1)

_k<r5— (3.7)

The right hand side of equation (3. 7) is a convolution integral and can

el

be computed for any density function in principle, and easily for
gaussian distributions.

In Problem D the density function 22 (w,) is gaussian. If

)

is also gaussian the computations of this step become

P
ﬁk-l/%k-l

st
>

If Xy and z, are vectors this computation can still be carried out.

It is rather simple for multinomial distributions [4].
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very simple. The resulting P,

—k/ Fk-1

is also gaussian and

p§1<—1/%—k-1 ~ NG Preey) (3.9)
and

P ~ Nix,, M) (3.10)

5/ 351 Kk
where

*k T ¢k-1xk-1 a1 Wi-1 (3.11)
and

_ T T
My = B Pr1beer t Qe Ty (3.12)

(b) Static Updating - Given the probability density function
P (% ; _¢) and the observation z
we compute the posterior density function

P/ T

We note that as H, is a random variable this updating is the

k
same as a single step of the unsupervised learning problem, Problem
B, of Chapter I. We may use Eqs. (1.16), (1.17) and (1.18) to carry
out this updating. But as we have seen in Section I.4 no reproducing

densities are known to exist for this problem and the updating, there-

fore, requires that a complete nonparametric density function be

stored and manipulated. As a result the Bayesian estimation procedure

is infeasible for this step.
We note however, that if Hk is known the reproducing density

functions do exist. A gaussian prior density function results in a

gaussian posterior density. If

sz/%k_l(xks Fr-1) ~ N My) (3.10)



then

P (x,5%,.) ~Nx_,P.) (3.13)
where

% = x +PHTR'1( - H x ) 3.14

kT X TP Ry (7 - Hpexg (3.14)
and

-1 -1 T -1

P, =M +H R _H_ (3.15)

Egs. (3.11), (3.12), (3.14) and (3.15) define the well known Kalman
filter [4].

In Chapter II we have seen that the LPT scheme offers a solution
to the unsupervised learning problem of the type considered in step (b)
of Problem D. All the conditions required for the LPT scheme in
Chapter II are satisfied by the problem of this step. Let us see how the

LPT scheme can be used for this problem.

I111.3. The LPT Solution

We have seen above in Section IIl. 2 that if H, is known, the step

k

(b) computations become very simple. If the LPT scheme is used for
step (b) we generate a label Zk and treat it as the correct value of the

. . . t .
random variable _Ijk which was active for the k h observation. And as

we are treating Hk as known (Lk), the posterior density functions at any

stage remain gaussian. However, a label l’k has to be generated before

we can carry out the static updating of step (b). Therefore at the kth

stage we may proceed as follows:

Step (a) - We are given the probability densities p (% _1;
Ee-1/3p-10 8501 KL

fe-10Fp-1) and By (e g)-
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Using Eq. (3.1) we compute X, 3 - L
g Eq P pék/%-k—l’;e‘ (53 k-10% k1)

=k-1
as
P (%, 15311281 ~ N, _,P, ) (3.9a)
ﬁk“l/%'k-l"&k-l Xk 1’%1( 17" k-1 k=127 k=1
P (%, 5%, 1,%, ;) ~N(x , M) (3.10a)
—}Ek/-ﬁ—k-l"—g—k-l K Tk-1""k-1 Kk’ Tk
where
X = 1Fer F O Wi (3.11a)
and

_ T T
Mk_ F(k—lpk-lg{k—l * rk-le-lrk..l (3.12a)
Note that Egs. (3.1la) and (3.12a) are exactly the same as Eqs. (3.11)

and (3.12) respectively.

.

Step (bl) - Probabilistic Labelling - Having computed p_’ik/%-k-l’ﬁ (xk’

E5c-1

?k-l’ik-l) we observe z, and proceed to generate a label

!Lk for it.

For this
PH, /2 Fr-10E5-1

k

(H Jﬂk_l) is computed as

K %Kk k-1

follows. We write

(H £

; 2 =
p_I:I_k/Ek’ %‘k"l"é‘k-l k’ "k’ %k"'l’ k“].)

P (z,, H ;2, 1%, 1)
EN - /- WRNPF SUINRS s S § S5 L S

p (2,59, _1,%& 1)

(3.16)
As Hk is assumed independent random variable, we can write
P (H, ; z & )=
H/zo 3y pEp ¥ K Fk-10 k-1
P (25 Hys P 10 %o Py (H)
2/ -1 Be1 F R T T VP, P

P (2,53 _1,%7 _1)
Ek/%-k—l’é'—k-l 1 P10 k-1

(3.16a)
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Here
P (Z ; _ L - ):
—Z-k/%'k"l’£k—1 k’}k 1’ k 1
P (25 H _1p& 1Py (Hy )dH
]-S[‘ z‘k/ﬂk’%‘k‘l’i‘—k-l k’ k’}k 1" k-1 'I-—Ik k k
« (3.17)
and
p /Hk’%'k l’tk 1( k;Hk’sk"l’ik"l) =
§ pz /H £ (Zk;Hk,X,'sk_l,i,k_l)
2k =k T Fh-10 £
X
k
‘ d
p—’ik/ﬂk’%-k-l"—ﬁ—k-1(xk’ Y SRR PLUNRLLN
(3.18)

In the way the problem is formulated, we have

z, s H, ,x L =
pzk/ﬁk’zk’%-k—l’ék-l( kR k’%k-l’ k-l)

Pz, /H (215 Hy %)

= Tk
i.e. 2y is independent of 3k-1 and f-k_hgiven Xy and ‘Hk' Also Xy is

independent of H

K Hence we may write

p /H L (z ksHk’ak—]j:Ck_l):

250 Fk-10 Bk-1

2 3 )p ] 9 )d
:‘S;p /Hk,xkk Ho %k /%kl,klxk'?;kl k-1/9% -
3 (3.19)
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In generating the label Lk it is treated as a random variable _!Z_k which

has a probability density function

p
L2301 2 2, o -1 E k1)

Py, /2 o 210 e-12% 31 (3.20)

Zpo Fr-10%K-1
To generate the label we draw a random number from the probability

'ek k’?k 19 k_

density function p
L/ 2y 3x-10Ex-1

Step (b,) - Using the prior density function : £
b by g P Yy PZ{_ /%—k l’ﬁ'—k-l(xk,ak—l’ k"l)’

the observation Zy and the label Lk’ we compute the posterior

density function p (x,;9,,£,) as
'}‘(k/%'k’ ‘&k Xk %k k

P (x,;%,,%,) ~ N(x_,P.) (3.13a)

_}gk/%_k,gkxk Tk K k
where

~ _ T "1 - T

Xk_xk+Pk£kRk (zk kak) (3. 14a)
and

-1 -1 T, -1

Pk -Mk +£kRk ﬁk . (3.15a)

Figure 3.1 shows a block diagram for these computations. A
knowledge of p.?il(xl) is required to start these computations.

In Problem D we are interested in estimating X which is a random
variable and changes as a Gauss Markov sequence from stage to stage.
Therefore we cannot really talk about the convergence of any scheme
in terms of Eq. (2.1) (i.e. the posterior density function converging to

a delta function). In this case we say that a scheme leads to a converging

solution if the variance of the estimate remains finite.




LABELLING STATIC UPDATING

k .
Pxy| kit |Eds. (3.160),(3.17) [ Egs. (3.140)(3.150) =
T X | 31, L
(3.19), (3.20)| "Zk|Ek-11&kA1

DYNAMIC PROPAGATION

pl‘k‘ FORTI Egs.(3.110)(3.12q) Pxpet 310 L pe

FIG. 3-1 THE LPT SOLUTION OF PROBLEM D.

— S——— —— — S— - Sonirrrret Smsgant S
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If Eq. (3.1) represents a stable dynamic system, the variance
of Xy attains a finite constant value for large k. From Eq. (3.15a)
we note that Pk is either less than or equal to Mk' Therefore when

the randomness of £k is taken into account,the variance of ;{k will

be less than (or equal to) Mk’ the variance of ;k As Mk remains

finite if we make no observations, we conclude that the variance of
the estimate ;ik computed using the LPT scheme remains finite. Hence
the LPT scheme leads to a converging solution of Problem D.

In the LPT scheme solution of Problem D as discussed above,

we generate a label llk for the observation zy and treat it as the correct

value for the unknown value of the random variable _I_-I_k. Hence if an

estimate can be made for some system with H, known (i.e. the system

k

is observable [4]) the estimation can be carried out using the LPT scheme.

I1I. 4. The Implementation of the LPT Solution

We have to carry out the steps (a), (bl) and (bZ) at any stage to
implement the LPT solution of Section III. 3 for Problem D

The computations of step (a) and (bz) are exactly the same as
those of a Kalman filter [4]. The only difference is that the sequence
f, is not known in advance and has to be generated at every stage after

k

the sample value is observed. If H_is known, in a practical imple-

k
mentation the -hk sequence will have to be stored somewhere and the
. value Hk read in at the kth stage. In the present implementation the

corresponding value, Ilk, is provided by the computations of step (bl).
Therefore the implementation of step (a) and (bz) is no different from
the implementation of a Kalman filter. This implementation is simple

for a vector x, and z, case also [4].
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In step (bl) we have to generate a label !Lk which is used in the

step (bZ) as the correct value of the random variable _Ijk. The label

lk is generated after observing Zy and as an outcome of a random
variable £k' The random variable L, has a probability density which
depends on Zy - Therefore this probability density function has to be
computed first. This can be done easily using Egs. (3.16), (3.17),
(3.19) and (3.20). As a result of this computation we get the probability
density function P,

—k/Ek’ %—k"l"é'k"l
generate a random outcome from Hk space with this distribution.

(4 Zk’%k—l’ﬁ k-1)- We still have to

In generating such random outcomes on a general purpose digital
computer we make use of a pseudo random number generator which
gives a random number w having a uniform probability density on §2.
For a scalar f_k we may take 2 =10,1] and use the methods discussed
in Section II. 4 to generate lk

When Xy and z, are multidimensional vectors, Hk becomes a
multidimensional space. If this space is discrete, i.e. if H has a
finite number of allowed values only, the generation of lk from the
pseudo random number is simple and it has been discussed in Section
II. 4.

To consider the generation of £ whenH is a multidimensional
continuous space, let £ be the ith component of £ which is considered
as an n dimensional vector. Let £i be defined on the real line. We

know the density pl(l) =P 2 3 £, ... ,En). The marginal

4,4

PN

density function for &1 is computed as

2 3

1 1 n, .2 3
pl(l):g\‘sﬁ...gpl 2 3 n(l,l,z,.,,',!l)dll,d!l,...
L : LV LY.

(3.21)



3-14

1
Now £ may be treated as a scalar random variable with known
density function p 1(21) and its value may be generated using the
methods of Section II. 4. Having generated a value for gl as equal

to 17.1 we compute p , 1(12; 21) as
17/

1,2
P L, 0)
2 1. 4.4
P 5 1('251)"—"1
L7/L p (£)
L
1 2 3 3
(g‘ g‘pl 2 3 I UAPY SR AR 1 T Ve Tk
. L ,4°,47,...,L
- 1
p (L)
5!

(3.22)

A value for £2 may now be drawn from p > 1(22; 21) and we may pro-

L5/2

ceed to compute p
£/t e

the complete vector £.

2 and this may go on till we have generated

In principle the above computation can always be carried out.
It is very difficult however. But we note that it arises only when H is
a multidimensional continuous space. In this case Problem D in itself
is so difficult that above may still be an attractive solution.

Let us consider an example next.

1II. 5. Example

In defining Problem D in Section I1I. 1 we have specified the form

of all the density functions except Py (Hk)' In the subsequent discussion
=k
we assumed that the form of this density function is known, though we
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did not require the exact form. As an example let us consider a
specific form of Py and define Problem (D-1) as:
~k

Problem (D~1) - Let a scalar -I—{-k have a binary distribution, i.e.

1 with probability p
_Ijk = (3.23)
0 with probability 1 -~ p

We consider a Problem D with a scalar X and _:_z_k

and Ek with above binary distribution, as Problem

(D-1).
The LPT solution to this problem uses Eqs. (3.11la) and (3.12a)

for step (2) and Eqs. (3.14a) and (3. 15a) for step (b For the labelling

2)'

in step (bl) we use Eqs. (3.16a), (3.17), (3.19) and (3.20). When Hk

has a binary distribution the labelling step is exactly the same as for

Problem (C-1) of Chapter II. We may then write p (£ ;
b/ 3110 By o

21 Fe-17L-1) @8
l;z L =
pik/ﬁk’%k-l’ék-l( ’ k’?k'l’ k"l)
l;= L
pl—I_k/_z_ ’%—k-l’&'k-l( ’ k’zk'l’ k'l)
- 2
} (zy =%, )
- . 2(R, *M,)
i \/'Z.ar(Rk + Mk)
- 2 712 2
_ taexd 'k
o . 2(R _+M,) L d-p) 2R
Vv 217(Rk + Mk)' ZTTRk
=a say (3.24)

k
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and
p (0;2,,3 1,8, 1) =1-¢a
£k/Ek’%-k-l’£k-l ’ k’%k 127 k-1 k

To generate the label we make use of a pseudo random number w

having a uniform density on § = [0,1] and assign the label L as

S oy ho=1

w > a Zk =0 (3.25)

This label is used in Eqs. (3.14a) and (3.15a) and we get ;{k as the

estimate at the kth stage.

11I..5.1. The Best Linear Filter for Problem (D-1) (Nahi's Solution)

Nahi [1] has suggested a method of constructing the best linear

estimate.* If Q'k =Q, Rk =R, w, = 0, yfk = ¢4 and I'k = I'in Problem

(D~1), the estimate ;(11:11-1 can be computed as follows:

X1 = Ptk T ¥k (3.26)
where
Fly = 4 - PF,, (3.27)
pgP,
F, = 5 (3.28)

R +p Pk+p(1 -p)Sk

2 2
Sit1 =4 sk+P Q (3.29)
2
Poy1 = (8 - pF, )P g+ 17Q (3. 30)
P -5 -Exl} (3.31)
1 =5 T BEixg RS

Nahi has shown that Pk as used in the equations above is the variance of ;‘11:1

"By the linear estimate we mean that the estimate 5’(11:1 is a linear

function of the sequence of observations 31{.
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III. 5.2. Numerical Results

To compare the performance of various solutions of Problem

(D-1) we considered the following parameter values:

g{k=-o.8
I‘kzl 0
szz.o
Q =1.0
R, =1.0
p=20.5

%, = 10.0
M; = 5.0

We implemented the LPT solution and the Nahi's solution to this
problem on a digital computer. Along with these we also implemented
a 'learning with a teacher' type solution in which we considered _I_-I_k as
known and available. One way to compare the performance of these
schemes is to compute the mean square error (m.s.e.) of various

schemes. We repeated the simulation runs for k = 1to 25 enough number

of times that the sample m.s.e. gave consistent results.* These curves

are presented in Figure 3. 2.

Here, to get consistent results we had to repeat the simulation runs
500 times, whereas in Problems (C-1) and (C-2) of Chapter II we had
to repeat it only 60 times. When the simulation was repeated with no
process noise, we found that 80 runs were enough this time. There-
fore it seems that this difference is due to the presence of the process

noise _gv_k in Problem D.



MEAN SQUARE ERROR —

NAHI'S SCHEME (Experimental)

0 2 4 6 8 10 12 14 16 18 20 22 24 26

K —

FIG. 3-2 MEAN SQUARE ERROR OF ESTIMATES FOR PROBLEM (D-1).
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Figure 3.2 contains two curves of m.s.e. for Nahi's solution.
As we noted above Pk of Eq. (3.30) gives the theoretical variance of
the estimate illj We have plotted this along with the experimental
m.s.e. curve. We find that for small k these two curves are far
apart. As k increases they come closer but the experimental curve
remains above the theoretical curve at all times.

We further note that the mean square error is minimum for the
'learning with a teacher!' solution. The m.s.e. of the LPT estimate is
approximately twice the m. s.e. of the 'learning with a teacher' esti-
mate. This further confirms our observation of Section II. 6 that the
average m.s.,e. of the LPT estimate is twice the m. s.e. of the 'learning
with a teacher' estimate. The m.s.e. of Nahi's estimate, theoretical
as well as experimental, is much larger than the m.s.e. for the LPT

estimate.

III. 6. Summary

In this chapter an estimation problem is considered in which we
estimate the state of a Gauss Markov sequence. In addition to the
additive Gaussian white noise the observation process for this problem
has some multiplicative noise also. This is defined as Problem D.

After showing why the standard techniques will not lead to a feasible
solution to this problem, we proceed to formulate a solution using the
LPT scheme. The LPT scheme leads to a feasible solution. An example
is presented in which the results of this solution are compared with the
best linear filter proposed by Nahi [1]. We find that the mean square

error of the LPT estimate is always less than that of Nahi's estimate.
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CHAPTER IV

CONCLUDING REMARKS AND SUGGESTIONS FOR FUTURE WORK

The main contribution of this work is the 'learning with a
probabilistic teacher' scheme which can be used to solve a class of
unsupervised learning problems. The LPT scheme is formulated in
a Bayesian estimation framework. x is considered as an unknown
parameter. Some a priori knowledge about it is available as px(x)°

A sequence of observations 31{ = is given. The

ZiysZpy gy ey By
Bayesian estimation requires the computation of the posterior density

function px/ (x;} k)' In unsupervised learning problems the proba-
=¥k

bility density function for z has a mixture form;
p,(z) = S‘ PZ/H(Z;H)pH(H)dH

When the sequence of the correct classifications ‘flk = Hl’ HZ’ H3, ceey Hk

is given along with the sequence 31{, the computation of the posterior
density function is feasible for a class of problems. For that class,
without the knowledge of'ka, this computation becomes infeasible. In

the LPT scheme a label Zk is generated for z,, which is then treated

k’

as the correct value of H. . As a result, the computation of the posterior

k

density function now treats the observations as classified samples and
hence is feasible.

The géneration of the label lk for the LPT scheme requires com=-
puting the probability density function for H, , given the observation Zy
and the past information. (We have shown that this computation can be

carried out easily.) The label lk is treated as a random variable having



this density function and is generated on the digital computer using a
pseudo random number generator. We have shown that the posterior
density functions computed using the labels generated this way, con-
verge with probability one to a delta function at the correct value.
Also, if an estimate is made from the posterior density function of
the LPT scheme, the average variance of such an estimate is twice
the variance of an estimate made with the sequence 'ka known.

The unsupervised learning problems originating in Pattern
Recognition context require the estimation of a parameter which has
a constant value. The LPT scheme can also be used if the unknown
parameter value follows a Gauss Markov sequence.

The posterior density function pX/

(X;}k) may be expressed as
T

Py /%k(xs 1) = g Py /%k,ﬁk(x; 3 k’%k)pﬁk /%k(flk; ;k)dﬁk

where pz/ k’.gl_k(x; %k’%k) is the posterior density function given Fan
and the sequence of classifications ‘flk, and pf‘-k/ k(flk; %k) is the

probability of occurance of the sequence ka given e Therefore the

computation of p?s/ k(x; 3k) requires computing p?E/%-k’-L—k along all

possible P, and algebraically weighting these with the probability of

k?

occurance ofﬁk given 31(. In the LPT scheme we generate a sequence

of labels :ﬂk

which has the probability density p. (£,;2.). There-
fl—k/%-k k? %k
fore, while an algebraic weighing is used in computing px/ (X;%k)’
=Tk

the sequence of labels is made random in the LPT scheme such that the

expected value of the posterior density p is p . Doing this
: 2‘./ k? ék E/%.k

assures the convergence of the LPT scheme.



The introduction of a randomness to avoid the algebraic weighing,
while maintaining the expectation at the correct value, may be con-~

sidered the central idea of the LPT scheme.

IV.1. Suggestions for Further Work

The present work opens up a number of new problems. Some
of these are indicated below.

1. A General Convergence Proof

Consider two estimation procedures A and B. The estimation
procedure A gives an estimate S}ﬁ at the kth stage and is assured con-
vergence but does not lead to a feasible solution. Estimation procedure
B introduces an extra randomness é—k in the estimation process and

assures that

Under what conditions does the estimate 3"{1]3 converge?
In the work presented here the Bayesian estimation is the estima-
tion procedure A and the LPT scheme is the estimation procedure B.
We used the martingale theory to prove the convergence in this case.
A general convergence theorem may be proved in function theory context.

2. Application of the LPT scheme to Maximum Likelihood Estimation

and Stochastic Approximation Framework

The LPT scheme may be formulated in the maximum likelihood
and stochastic approximation framework. This formulation may be

straightforward but the convergence will have to be established separately.



3. Gauss Markov Sequences with Random 4. , Perfectly Correlated H,

etc.

In this work we have indicated how the LPT scheme may be used
to estimate the state of a Gauss Markov sequence when ﬁk is indepen-
dent white random sequence. The scheme may also be applicable if 4
is considered as a random variable. Can the LPT scheme be used if
H is perfectly correlated?

4. Efficient Ways of Generating Random Numbers from a Specified

Probability Density Function

The ease of implementation of the LPT scheme depends on the
easy generation of a random number from a specified probability density
function. We have considered some feasible methods for this purpose.
If Xy and z, are vectors this generation becomes very difficult. Are

there any efficient ways of generating random numbers from a speci-

fied multi-dimensional probability density function?
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