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NONCOHERENT DETECTION OF PERIODIC SIGNALS

R. M. Gagliardi
Department of Electrical Engineering

University of Southern California

ABSTRACT

In this paper the optimal Bayes detector for a general periodic

waveform having uniform delay and additive white Gaussian noise is

examined. It is shown that the detector is much more complex than that

for the well known cases of pure sine waves (i. e. classical noncoherent

detection) and narrowband signals. An interpretation of the optimal

processing is presented, and several implementations are discussed.

The results have application to the noncoherent detection of optical square

waves.
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Introduction

Various modulation techniques are presently under study for communi-

cating digital information over an optical channel. The most common

method is by the use of pulse position modulation (PPM) in which digital

words are transmitted as narrow optical pulses properly located within

a data frame. Such systems however are hampered by the requirement

to maintain a close tolerance on timing and synchronization in order to

perform detection over the narrow pulses. An alternative encoding scheme

that avoids the short pulse timing problem is by the use of coded frequency

division modulation (FDM). In this case information is sent as frequencies,

rather than pulse positions, and the synchronization problem is relaxed.

One possible implementation scheme is to transmit the digital words as

bursts of square waves of different frequencies, where the length of the

square wave is selected to generate sufficient energy levels for detection.

The encoded square wave is used to intensity modulate the optical beam.

(A square wave is used rather than a sin wave because it has maximum

baseband energy in a finite time for a fixed power contraint on the optical

transmitter.) Following direct (non-coherent) optical detection in the

photo detector the subcarrier square wave is detected (a decision is

made as to which square wave frequency is being received) in order to

decode the digital word. The timing need be maintained only to within

the length of the square wave signal, which is many times the length of

an optical pulse in a PPM system.

ii
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It is desired to implement the optimal detector for the set of square

waves. Although the bit timing problem has been considerably reduced,

there still exists a time referencing problem, since the square waves

will be received with random delays. Hence, coherent correlation

techniques cannot be used, and the optimal noncoherent FDM square

wave detector is required. Unfortunately, noncoherent detectors for

waveforms that are not narrowband are not known, even for the classical

additive Gaussian noise channel. In this report we present the results of

an initial study to derive the optical noncoherent detector for an arbitrary

periodic waveform not necessarily of the narrowband type; e. g., square

waves. Attention is confined to only an additive Gaussian noise channel.

The latter model is valid in an optical system when strong optical fields

are detected. Future work will extend the results to the low power optical

(poisson) channel.

iii
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Analysis

Classical non-coherent detection is generally understood to be the

detection of a sin wave with random phase or time delay in additive

gaussian noise. The problem is well documented in communication texts,

and the Bayes optimal detector has been derived as both a matched

envelope detector and a quadrature correlator-squaring device. These

results have been expanded to include narrowband bandpass signals as

well [1]. However, the extension to a general non-coherent problem involving

the detection of an arbitrary periodic signal with random time delay has

received little attention. Closest documentation appears in the radar liter-

ature where the problem is formulated as non-coherent detection of periodic

RF pulses [2], but in all cases the narrowband assumption is imposed in

order to derive an interpretable solution. Admittedly, the general non-

coherent problem may not be of great practical interest because of the

bandwidths required to transmit all harmonics. Also, perhaps, the

complexity of the general solution may have discouraged academic pursuit.

Nonetheless, in this paper the general non-coherent problem is re-examined

with the objective of interpreting the processing required by the optimal

detector.

Let p(t) be a general periodic, deterministic signal having period t O

and bounded energy. The signal is observed for T seconds with a random

delay T in the presence of additive white gaussian noise r(t). The observation

time T will be taken as an integer multiple of t O for convenience, although

our results become an accurate approximation if T >>t O . The observable

can therefore be written

-1-
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v(t) = p(t-T) + n(t) te(0, T) (1)

For the non-coherent problem we assume T is uniformly distributed over

(0, t ). The optimal (Bayes) detector for the signal is desired. Mathe-

matically, the Bayes detector is that which computes the generalized

likelihood ratio A obtained by averaging over T. For the observable of

(1) this becomes

A = CJ 0 expN v(t)p(t-T dt dT (2)

0 0

where N O is the one-sided noise level and C depends upon v(t) but not on

T. Since C can be computed without use of p(t) it is brought along simply

as a constant in subsequent equations. This property of C also requires

our assumption concerning the relation of observation time and signal

period. Since p(t) is periodic, it admits a Fourier expansion which allows

its delayed version to be written as

p(t-T) = aksin[k t + t k - kk (3)

k= 0

where (ak k ) are the harmonic amplitudes and phases of p(t), and 6 ZTTrrT/t 0

is the uniformly distributed phase variable over (0, 2Tr). The delay Ttherefore

introduces a random phase to each harmonic of p(t), but note that these phases

are related as rational multiples of each other. Using (3) in (2), and
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manipulating trigonometrically, yields

A = C J exp Xk cos kO+Y sinke dO

k=0

= Cf exp Ek cos(k + Cpk) dO (4)

where

Xk T v(t)cosk + 2 k dt (5a)

2a T

X00

Y = v(t)sin k t + dt (5b)
0 0 (tsi 0, 4

k NJ L \t 0  kJ

2 2 1
E k [X k+Y k2 (5c)

k k k

CPk = tan-1 [Yk/Xk ]  (5d)

Here (Xk Y k ) are the in phase and quadrature harmonic correlations, and

(E kk) are the corresponding harmonic envelope and phase variables.

Unfortunately, (4) does not appear to integrate to an immediately obvious

system implementation. In particular, it does not collapse down to a

simple in phase and quadrature correlation with p(t) and p[t-(t0/2)], as

might be conjectured from the well known bandpass case. The latter

correlator would develop only if sin 0 or cos 0 terms factored out of every

term in the exponent of (4). That this factorization does not occur in general

is simply a reiteration of the fact that a single sin wave is the only periodic

function satisfying the condition that shifted versions of itself are always

uniquely decomposable into in phase and quadrature components.
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Nevertheless, several analytical procedures are possible to reduce

(4). One is to define the random variable

z(e) Ek cos(ke +Cpk) (6)

k=0

and to note that A/C is the characteristic function of z evaluated at jw= 1.

Unfortunately, z is a sum of dependent random sin variables, and its

probability density is not easily computed. A more fruitable procedure

is to derive an infinite series solution by using the expansion

acCos - I (CL) cos mP (7)
e = mm

m=0

th
where E is the Nueman parameter and I (a) is the m order imaginary

m m

Bessel function. When used in (4), the latter expands to

A = C X Te mim E) cos miO + mIidO (8)
A m i m.i) i I

where m (m m,m 2 , ... is the vector of integer coefficients m. ,-- I.

m.e (-, -). Each vector m produces a different harmonic in the integrand.
1~

However, each such harmonic will integrate to zero in (8), except for those

in which

im. = 0 (9)

i=0
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This reduces (8) to

A = C -TTE I Imi (Ei)cos m (10)

m(0) m(0)

where m(0) is the set of integer vectors whose components satisfy (9).

The optimal detector therefore involves a search and summation over an

infinite number of integer vectors. Note that the detector makes use of the

envelope of each harmonic of p(t), but processes it in a rather complicated

way. At this point, all that can be concluded is that the general detector

involves a bank of matched envelope detectors producing [IE. ) and [CP.i ,

followed by a complicated computer processor that instantaneously computes

(10). Furthermore, the Bessel functions must be evaluated, unless one

appeals to high and low signal-to-noise ratio arguments to substitute limiting

forms.

Let us examine the implications of (10). Theoretically, one wonders

why the optimal detector utilizes such complex processing for detection.

If the harmonic random phase angles in (3) had been statistically independent

of each other (i.e., [kOI replaced by [(Ok , where the latter is an independent,

uniform sequence) then the A obtained by averaging over the sequence of

phase angles would be

CO

A = CT I (E) (11)
i= 1

as previously reported [3]. We see that this is one term of the sum in (10).

Thus the remaining terms of the sum must be takirg advantage of the integer

phase relation between the random phase angles. From a practical point of
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view, one may also inquire if any type of physically realizable system can

produce (10), precluding the use of infinitely fast computers.

A partial answer to those inquiries can be obtained by noting that (10)

is reminescent of the intermodulation terms arising when a sum of carriers

is passed through a nonlinearity[4]. In fact, (10) is proportional to the average,

or "'d.c.", value of the output of the nonlinearity ex when impressed with

the input

x(t) En cos(nt + pn) (12)

n=0

That is, if y(t) C exp[x(t)], then since x(t) in (12) is periodic with

periodic 2r,

T 2Tr
[Time average = lim 2-j exp[x(t)]dt = C exp[x(t)]dt (13)

of y(t) T40 -T 0

which is identical to the desired A in (4). The terms in (10) involve precisely

those output harmonic terms that contribute (beat down) to this average value.

The optimal processing implied is therefore used to take advantage of the

phase relation among the harmonics, making use of all beat frequencies that

contain useful information for detection. In the independent phase case of

(11), the harmonics are not phase related and the available beat frequencies

do not aid detection, on the average. Hence, only the zero order component

is used. Note that the processing is not simply angle shifting each harmonic

of p(t) so as to overlap in time, but instead using the nonlinearity to

intentionally generate all possible beat frequencies that cause harmonic overlap.
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Equation (13) also suggests a method of implementation. The receiver
x

must generate (10), then pass it through the nonlinearity e , followed by

averaging (low pass filtering), as shown in Figure 1. The processor

generating x(t) involves determination of (X , Y n from v(t), according to

(5), then adjusting the amplitude and phase of harmonically locked oscillators,

as shown in Figure 2. The computation of X and Y involve in phase and
n n

quadrature harmonic correlation over the T sec observation inverval. The

overall processor would then be a bank of such harmonic subsystems, one

for each signal harmori c. Since the averaging implied in (13) must be done

after these correlations, Figure 1 may be interpreted as a non-real time

implementation. The processor in Figure 1 can also be interpreted by

comparing (12) to (6), and noting that

x(t) = z(O) I = t  
(14)

However, z(e) is also the exponent in (2), with T = t 0/T2T. Thus

x(t) - v(P)pp -dp (15)
N.0JO V)[P (t/JH

When written as above, the processor output x(t) is the output of a filter at

the normalized time t(t 0 /2 ), when the input is v(t) and the filter impulse

response is p(-t), (tCO, T). This is simply a matched filter for the periodic

signal p(t), but the filter is non-causal since p(t) is not zero for negative t.

[The non-causality is indicative of the fact that all the observable over (0, T)

is used to generate x(t) at any t within (0, T). 1 The non-causality implies

11<
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again the non-real time implementation required for Figure 1. It is

interesting that a particular non-linearity (exponential) is specified by

the Bayes detector.

The extension to non-uniform densities on the delay T can be easily

accounted for in Figure 1. A non-uniform density, a(e), in the integrand

of (4) would convert to a correlation rather than an integration in (13). The

detector in this case would simply replace the low pass filter following the

non-linearity by a correlator of y(t) and a(t) over the 21rsec interval. The

receiver would therefore be required to locally generate this probability

density as a function of t.

It may be of interest to further examine why in phase-quadrature

(I-Q) correlation is not the optimal processor. The I-Q detector for an

arbitrary periodic p(t) is shown in Figure 3. The input v(t) is simultaneously

correlated for T sec with p(t) and p(t-t 0 /2), and the outputs are squared and

summed. Consider the behavior of the system when only the signal portion

of v(t) [i. e. p(t-T)I is impressed at the input. The output of the in phase

correlator is

T
X = p(t-T)p(t)dt

0

= TR pp(T) (16)

where R pp(T) is the correlation function of p(t) evaluated at the point T.

Similarly, the quadrature correlator produces

T
Y = p(t-r)p(t)dt

0

= TR (-) (17)
pp
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where ^(t) is the shifted version of p(t). Since p(t) is periodic, p(t) is also

the Hilbert transform of p(t). From a well known property of such transforms

R ^(F) = R (T) (18)
pp pp

Defining the complex correlation pre-envelope process 0(T) = R (I) +
APP

jR (T) allows us to express the I-Q correlator output asPP

A 2 2
q = R (T)+R ()

pp ppPP PP

= IQ(rT) 12 (19)

Since 0 (T) is a pre-envelope process, its magnitude equals r times the

magnitude of its real part [1, p.80]. Hence, we write q in (19) as

q = 21 R pp(T) 2  (20)

Thus, in the noiseless case the I-Q detector always produces an output

equivalent to sampling the squared correlation envelope at the delay T.

Since this T i s random it would be expected that a useful detection sys tem

should not depend on T. The output of the I-Q detector will not depend on T

only if the envelope of the correlation function of p(t) does not depend on T.

For a pure sin wave the correlation function is a cosine wave and its

envelope is indeed constant. For a narrowband bandpass p(t) the envelope

is approximately constant over the range of T [i. e., TE(0, t 0 ) and t < envelope

variations]. For both of these examples the I-Q detector is in fact optimal.
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However, for the general periodic function, q in (19) will depend on T, and

I-Q correlation is not a plausible detector.
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