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ABSTRACT

(]
The paper deals with the problem of estimating a discrete
time stochastic signal which is corrupted by additive

white measurement noise,

The first part of the paper shows how the stationary
solution to the fixed lag smoothing problem can be obtained.
The first step is to construct an innovation model for the
process. It is then shown how the fixed lag smoother can

be determined from the polynomials in the transferfunction
of the innovation model. In mahy applications the signal
model and the characteristics of the noise process are
unknown. The paper shows that it is possible to derive an
algorithm which on-line finds the optimal fixed lag smoother,

a self-tuning smoother.

The self-tuning smoother consists of two parts: An on-line
estimation of the parameters in . the one-step-ahead predictor
of the measured signal, and a computation of the smoother
coefficients by simple manipulation of the predictor para-
meters. The smoother has good transient as well as good
asymptotic properties.
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1. INTRODUCTION

The received signals in many applications are corrupted by
noise. The objective of a receiver is therefore to eliminate
the influence of the measurement noise as well as possible.
The received signal is often filtered in order to get the
best estimate of the desired signal at a certain time, t,
pased on the measurements up to and including the same time
t. In some situations it is possible to get a substantial
improvement by making a smoothing of the received signal,

i e the signal at some time back, t - k, is estimated
based on measurements up to the present time t. This is
called fixed lag smoothing. Such an extra time lag is,
especially in one way communication, of almost no disadvan-

tage.

The filter and the smoothing cases of discrete time signals

are illustrated in Figure 1l.1l.

Q. & Recieved signal b? Recived signal

& Estimated signal & Estimated

signat

——

t-k t

Fig 1.1 The filter (a) and the fixed lag smoothing (b)

cases for discrete time signals.



The fixed lag smoothing is quite complicated to implement
for continuous time signals, but straight forward in the
discrete time case. A substantial number of papers are
published during the last years giving different mechani-
zations and derivations [41],(51,[61,[91,(10],[11],[12].
Optimal estimation requires that the statistics are known
both for the signal and the noise. The problem can then

be solved using a Riccati-equation. However, the parameters
of the process are in most cases unknown. In this paper we
will discuss the stationary discrete time fixed lag smoother

for a white noise corrupted unknown signal.

Let the desired signal be described by the model

-1
2(t) = L) ) .
A(g~1)
where
A(q_l) =1 + alq"1 + azq-z + ...+ anq_n
C(q—l) e clq"JL + czq—2 + c3q-3 + ...+ cnq-n c; =1
1

are polynomials in the backward shift operator g ~. The
coefficients in the A and C polynomials are assumed to be
unknown except ¢y which is known to be equal to 1.

The measurement of z(t), y(t), is corrupted by noise i e

y(t) = z(t) + e(t) (1.2)

The noise processes, v(+) and e(-), are independent white
noise processes with zero mean value and the standard
deviations Oy and Ta respectively. It is assumed that

o d :
v an oelare unknown

The problem can nowbe formulated as to f£ind the best
estimate of z(t-k), in the sense of mean square error,
given data y(t), y(t-1),... . This estimate is denoted by
Q(t-klt). I e we want to minimize the lossfunction

E [(z(t-k)-2(t-k|t)) 23|y (t),y(t-1),...] (1.3)

with respect to 2(t-k|t).



For the derivation of the smoother it is also convenient
to introduce the reciprocal polynomials A*(g) and C*(q)

respectively
A*(q) = an(q_l) = g + alqn"l + ..+ ay
C*(q) = an(q‘l) = qn—l + czqn-2 + ...+t cp

The self-tuning smoother is derived for the case where e(t)
is white noise. If e(t) is coloured noise then it is neces-
sary to have further information about the signal or the
measurement noise. For instance if the covariance function
of e(t) is known then y(t) could be filtered using the
inverse of the noise model. The smoothing problem is then
transformed to the problem discussed in this paper. If the
covariance of the signal is known the problem can also be

solved in an equivalent way.

The paper is organized as follows. In Section 2 the optimal
fixed lag smocther is derived when the process is known.
The first step 1s to construct the innovation model for the
process. It is then shown how the stationary fixed lag
smoother can be determined using polynomial operations on
the polynomials in the innovation model.

The simple structure of the optimal smoother then indicates
how to derive a self-tuning filter, when the parameters in
the process are unknown. This is done in Section 3. The
filter can be separated into two parts. First the parameters
in the innovation model are estimated using a real time
estimation method. Based oﬁ the estimated parameters the
smoother is determined. These two steps are repeated at
each step of time, when a new measurement is obtained. In
Section 3 it is shown that if sufficiently many parameters
are estimated then the self-tuning filter will converge to
the optimal fixed lag smoother derived in Section 2. The
algorithm is analyzed and aspects on the implementation are

also discussed in Section 3.

N



Section 4 contains some simulated examples which illustrate
the properties of the self-tuning algorithm. Section 5
summarizes the properties and discusses the usefulness of
the self-tuning filter for fixed lag smoothing. References
are given in Section 6.



2. THE OPTIMAL FIXED LAG SMOOTHER

Many different formulas and derivations for the smoothing
problem have appeared during the last few years. Using the
Wiener-formulation [15] the problem is conceptually very

simple, but unfortunately nontrivial to mechanize.

When the recursive techniques for filters were introduced,
e g Kalman filters [7] there appeared a number of papers
on "state space smoothing", e g Bryson and Frazier [4],
Rauch, Tung and Striebel [12], Mayne [9]. The theory is
surveyed e g in Van Trees [14], Meditch [10] and Kailath
and Frost [6]. Especially the fixed lag smoothing problem
caused considerable difficulty.

I+ should be noted that there is most often a considerable
difference in complexity between the problem posed by e g
Wiener: "Find a signal in noise", as compared to the
problem: "Find the smoother estimate of the state in a
state space system"., It is in fact for the former case
possible to derive and mechanize the stationary fixed-lag

smoothing estimator using shift operator polynomials.

The fact that the one step ahead prediction error, §(t|t—l),
constitutes innovations for the process y(t) defined by
(1.1) and (1.2), makes it straight forward to obtain the
k-lag smoother, Q(tlt+k), as a modification of the predic-

A
tion estimate z(t|t-1):

A A t+k N i
Blt|t+k) = 2(t]t-1) + ¥ E { Z(t|t-1) ¥ (s|s-1) } -
s=t
- { E ¥(s]s-1) '{,"T(sls-l)}"l v(s|s-1) (2.1)

where
T(elt-1) = z(t) - B(t]t-1) = F(t|t-1) - e(t)

See for instance Kailath and Frost [6].



The formula (2.1) is valid also for multioutput, timevarying
systems, and it describes the optimal start up of the

estimator.

In the present context with only one signal, 2z, in noise,
the structure of (2.1) is very simple, especially after that
the start up transients have died off. The estimator is

then most easily described using shift operator polynomials.

In order to get the stationary one step ahead predictor from
the A and C polynomials given in (l.1) it is required to
solve a stationary Ricecati-eguation or to make a spectral

factorization.

The innovations representation of y can be written as
-1 -1
Alg ™) y(t) = D(q 7) el(t) (2.2)

where the innovations e(t) = §(t[t-l) have the variance

ci and where

~1

p(g t) =1 + S R dnq”n.

The coefficients di and the variance og are obtained from

the spectral factorization

n-1
X

1 +.1.+dn) =

2 n n
Ue(l+dlx+"'+dnx ) (x'+d4

=l 4c ) +
n

_ 2 n
= cv(clx+...+cnx )(clx
2 n n ' v
+ oe(l+alx+...+anx ) (% +...+an) (2.3)
or

o2 D(x) D*(x) = 02 Cx) CX(x) + of Alx) A*(x)

If it is required that D(x) has all its zeroes outside the

unit circle, eg (2.3) has a unigue solution.

The one step ahead predictor is now obtained as

pigl) (t|t-1) = (p(a™h) - algH 1 ye) (2.4)



The computational work to get the stationary coefficients
in (2.1) from A and D is the easy part as compared to the

spectral factorization to obtain D from A and C.

Theorem 2.1: Let z and y be defined by (1.1) and (1.2}).
Then, Q(t|t+k), the stationary k-step smoothing estimate of

z(t), can be obtained by

2
a )
2(t|t+k) = y(t) - ~§ F ()« [y (£) - 2(tle-1)1 (2.5)
: _
€

where Fk is defined as

k )
F(x) = I fixl (2.6)
i=0
F(x) = % fixi (2.7)
i=0

and computed from A and D of (2.2) using
A(x) = D(x) F(x) (2.8)

and where

2
g d
GE an

Proof: The smoothing estimate Q(t1t+k) is defined as

2(tit+k) = E [2(£)Iy(0) ...,y (t+k)]

and it can be rewritten using the fact that the innovations
e (t) are independent and form a sufficient statistics for y.

% (tlt+k) = E [y(t)=e(t)te(0), ..., e{t+k)] =
t+k
= y(t) - £ E [e(t)le(i)] (2.10)
i=0

The equations (1.1), (1.2) and (2.2) give

il

Al Dy(t) = pigHe(t) = (@ Hv(t) + Alg Delt)

Xe)



orx
cigh agh
e(t) = ==L v() + =2 e(t)
D(g ™) D(g ™)

But C/D and A/D are two stable systems, so that e(t) can
also be expressed using their impulse responses, Say

(g,}7 ana {£,}7 :

e(t) = £ £, q“j e(t) + I g. q"j v(t)
j=0 j j=0 J
Thus
2 .
= £. . +c izt
Ele(t)e(i)] = Ele(t) & f.e(i~j)] = { e S (2.11)
3=0 J i<t
so that
U2
2 F ce(d) izt
. 2,1 o2 Sl
Ele(t) le(1)] = Ele(t)e(i)) [Be“(1)] ~ e(i) = €
0 i<t

and therefore

Q
N

i

lo

2(tit+k) = y(t) -
i

. fi g e(t)

WM~

0

Q
@ N

The equations (2.7) and (2.8) are another way of defining
the impulse response, and the definition (2.6) completes
the proof of (2.5). The equation (2.10) follows immediately
from (2.3) with % = 0. |

o
It should be noted that aj # 0 by the definition of the
order n, and the order of C is less than or equal to n.

This means that there must be no "white noise component" in
the signal z. If there were, dn/an would not give the
relative contribution of the measurement noise, and such

information would have to he supplied in some other wav.

The interpretation of the weighting coefficients fi as the

first k values of the impulse response of the whitening

10
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filter A/D is very appealing, and they can be calculated

using a simple recursion.

Most of the improvement with smoothing is obtained by the
first few lags. The number of lags that should be used in

a certain application depends on the C and A polynomials

and the signal to noise ratio, cf for instance Chirarattananon
and Anderson [5], and Van Trees [14, p 497].

The variance of the smoothing estimate can however also be

expressed in the fi coefficients:

Theorem 2.2: The error variance of the estimate %(tlt+k) of

(2.5) is given by

o k
a, = vayr [z(t)-é(tlt+k)] = 02 [l-——— z f2 ] (2.12)

2
k e

Proof: The proof is straightforward calculations using (2.5) .
and (2.11)

2 og k 12
O = E [e(t) - —— ¥ fi g (t+1i) =
2 1i=0 /
€
5 og k 15 ol x
= B {e Hﬂ+[ — ¥ £. e(t+i) ~2e(t)— I f.c(t+i)} e
2 s 1 ] 2 . 1
cf i=0 ¢ i=0
£ )
2 oi k o2 k
- o + -3 b3 fi s gl = 2 -3 T fi Ele(t)e(t+i)] =
. 1=0 o i=0
£ €
2
g k
= cz [l ~ —% T fi]
ge i=0

The limit of ci

62 = g2 [1 - - ¥ fz] = g2 [1 - -£. 1]
1=0

as k tends to infinity



12

where I can be calculated directly from A and D using

complex integrals:

S 3§A_t_z_>,§>_<_2.i)_dz
mi

2 b(z)D(z 1) Z

which is most easily computed according to Astrém [1, p 121].

Thus k can be chosen so that oi is less than for instance

5 % larger than ci:

k
I- % fi
(ci-ci)/oi = 1=0 < 0.05
2, 2
cE/oe - I
or
k
Y £2 5 1.05 I - 0.05 02/a°
i=0 1 € e

which is easy to test, while the fi’s are computed.

The mechanization of the equations (2.4) and (2.5) can be
done in a number of ways. It immediately follows that

a -1 -1
Blelesk) = y(t) —-—%-Fk(q)[l—D(q )’A{q )] y(t) =
o D(g™ ™)
1 o2 1
Dlg )-—% Fk(q)-A(q )

ie

]

y(t) (2.13)

1y

g0 that the minimal order, stable, k-lag smoother has a

D(qg

realization with a state dimension n +Kk.

These state variables have however no physical meaning, and

it is more attractive to retain the original structure of (2.4)
and (2.5). This will requirc k old v and k o]d‘Q(tlt~l) or €
values, provided that k is larger than n. Otherwise 2n

values would be required. The order is thus 2+'max(n,k).



In the self-tuning algorithm in the next chapter n y-values
and n e -values have to be stored anyhow for the identifi-

cation algorithm.

A slight modification of the smoother (2.5) shows how it
approaches "the unrealizable Wiener filter", see
[14].

. 2
A Ye A '
lim Z(tlt+k) = lim [y(t)-—§ Fk(q)[y(t)fz(tlt-l)]] =
ko ke N
a0 el a@  AED
= y(t) == = e(t) = y(t) ~— . =) y({t) =
of DI(q) o D(q) D(g )
o2 p(a)p(q™h) - ol A(QA(g )
= yi(t) =

o2 D(@)D(g D)

o2 clrcia™ / at@alg )]
= 5 = 2 =1 =1 Y(t) =
[0 Cla)C(g 7) + o A(q)A(g D) 1/[Aa(q)Aa(g )]

= —— e y(t)

where S, and S, are the spectral densities of the signal =z

and the measurement noise respectively.

13



14

3. A SELF-~-TUNING SMOOTHER

TIn section 2 the fixed lag smoother was derived for known
processes. In this section we will show how it is possible
to make a self-tuning smoother which automatically adjusts
its parameters when the process and the variances of the

noise processes are unknown.

To synthesize the optimal smoother we have to know the
process, i e the polynomials A and C and the residuals. The
idea is now based on the observation that the one step ahead
prediction of z(t) is the same as the one step ahead pre-

diction of y(t), 1 e

2(tit-1) = §(tit-1)

The predictor of y(t) is given by

_ pg"H-agh y(t) = p(g”1)-A(g"") e(t) (3.1)

Selt-1)
y(elt- :
D(g~1) NCE)

In Wittenmark [16] it is shown how it is possible to
construct a self-tuning predictor of an unknown process of
the form (2.2). The predictor consists of two parts. First
the parameters of the unknown process are estimated using
some recursive estimation method. Secondly the prediction is
done using (3.1). In [16] the polynomials A and D-A were
estimated directly. In this application the parameters in
the A and D polynomials will be estimated using the method
of Extended Least Squares (ELS) or the Real-time Maximum
Likelihood method (RML). Different recursive identification
methods are compared in [13]. The choice of identification

method will be discussed later in this section.

The algorithm

The self-tuning smoother can now be described in the following

steps:



A
Step_l: Estimate the parameters a; and d,, i=1l,...,n in
the polynomials A and D using ELS or the RML identification
A A
method. The estimated polynomials are denoted by A and D.

A A A A
Step_2: Compute Fk(q) from A(g) = F(qg) D(g) and compute
the smoothing estimate from

4,

Z2(t=klt) =y (t=k) - 22 F, (q) ©(t-k) (3.2)
o)
where
A A N
€ (t~k) = y(t-k) - z(t-kit-k-1) = %igjil y(t-k)
(g )

(Compare eq (2.5) and (3.1).)

The two steps of the algorithm are repeated at each step of
time, The estimation routines and (3.2) are well suited for

recursive calculations.

Notice that the algorithm estimates the parameters in the
process (2.2) and not in the process (1.2). Thus it is not
necessary to make any spectral factorization. Further the
guotient 02/05 can be computed directly using (2.9).

Estimation method

The estimation of the A and D polynomials in the innovation
model (2.2) can be done using different estimation routines.
The extended least squares method has the advantage that it
is easy to implement. Further the computations in each step
of time will be moderate. It has, however, been shown in [8]
that the ELS method does not always converge. If the ELS
method cohverges then it will converge to the true parameter
values provided that the order of the model is sufficiently
high.

15



It has been shown that the RML method always converges for
ARMA~-processes (2.2) [3]. The convergence rate can, however,
be rather slow and different modifications can be done in
order to speed up the rate of convergence. Further the RML
algorithm is more complex than the ELS algorithm. The simu-
lations presented in Section 4 have been done using the

ELS method.

1f the process has time varying parameters it is possible
to modify the estimation routines in such a way that old
data will be forgotten. This can easily be done by intro-
ducing a forgetting factor, A. If A = 1, all data have the
same weight. If A < 1, olda data will be exponentially
forgotten. The forgetting factor will also influence the
rate of convergence and a time varying ) can be used in

RML to increase the rate of convergence.

Asymptotic properties

Theorem 3.1: Assume that the self-tuning smoother defined

by Step 1 and 2 above is used on unknown processes of the
type (1.2). Further it is assumed that the real time
maximum likelihood method is used with the order of the
model i = n. The self-tuning smoother will then converge
to the optimal smoother (2.5) that can be derived for known

processes.,

Proof: Using the result in [3] it is found that the
estimates always converges, i e £-+A and s-+D as t oo
and the result follows.

Remark 1: If fi>n the estimated polynomials A and D will
contain a common factor. If this factor is not equal to
szero then Lhe algorithm will still converge to the optimal
smoother. The common factor will be zero only if an==dn==0,
which can be tested for.

1le



Remark 2: If the ELS-method is used for the estimation
then the theorem has to be modified. It is then possible
to state that if the estimation converges then the

parameter estimates will converge to the true values in
the innovation model, and the optimal smoother will thus
be obtained. There are, however, processes for which the

estimates do not converge.

Parameters of the algorithm

In order to use the self-tuning smoother some parameters

have to be chosen. These are:
o The order of the estimated model, A
o The initial values of the parameter estimates

o The covariance matrix of the initial errors of the

parameter estimates
o The forgetting factor, A

o The lag in the smoother, k.

The order of the model can be chosen by testing different
orders and comparing the accumulated sum of the squares of

the prediction error, i e by comparing Z[y(t)—g\/(tlt—l)]2 =

=5 dy?

for different orders of ﬁ. Statistical methods
for choosing the order of the model are discussed for

instance in [2].

The initial estimates of the parameter estimates are not
crucial. The estimation routines use to get parameter
estimates that are not too bad fairly quickly, especially
if the covariance matrix of the initial values of the

parameters is large or if a forgetting factor is used.

In Section 2 a way of determining the lag k was discussed.
This procedure can be used on-line in order to get a good

value of k. Simulations have indicated that a good way to

17



start up the algorithm is to start with k =0 and change k
according to the rule in Section 2 when the parameter
estimates have stabilized. The tuning of k has however
not been fully analyzed and tested.

18
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4. EXAMPLES

In this section some simulations are shown which illustrate.
the properties of the self-tuning smoother.

Example 4.1

Consider the process

1
l1+aq

z(t) v(t=-1) v € N(O,ov)

1

y(t) = z(t) + e(t) e € N(0,0,)

where a = -0.95, 03 = 1, and 02 = 10, This process is used

in [5]. In this case the variance of the filter estimate
(k 0) is equal to 2.41 and the minimal error variance
oi = 1.58. The self-tuning smoother has been compared

with the optimal smoother for different values of k. In
this case the innovation model has the form

-1
y(t) = 1+dg — e (t)

1+ag”

Figure 4.1 shows the parameter estimates 4 ana & when the
ELS method has been used. The straight lines show the true
values. The estimation routine finds fairly good estimates
after approximately 75 steps of time. The jump in the
estimates at t ~ 575 is due to the noise realization.:

Figure 4;2 shows the accumulated loss V, = % [z(s)-g(sls)]z,
i e k = 0,when the self-tuning and the B0

optimal smoother have been used. Apart from the initial

loss the self-tuning smoother will give approximately the
same loss as the optimal smoother.

In Table 4.1 a comparison is done between simulations of the
self-tuning and the optimal smoother for different values
of k.



5 500 1

4.1 Parameter estimates for Example 4.1 when the

method is used.

4000 ,

Self-tuning

| 2000

500 10

4.2 Accumulated loss Z[z(t)-"z\(tlt)]2 when the self-
ning and the optimal smoother are used on Example 4.1.

20



Vio00 ~ V201 V2000 ~ Viool
K 800 1000
Self-tuning Optimal Self-tuning Optimal
0 2,22 2.08 2,17 2.20
1 1.84 1.74 1.85 1.87
2 1.65 1.57 1.66 1.68
4 1.44 1.40 1.51 1.51
6 1.37 1.34 1.45 1.45
8 1.33 1.31 1.43 1.43
Table 4.1 Average loss for one simulation during the
intervalls 201-1000 and 1001-2000 when the optimal and

the self-tu

From the ta
self-tuning
the optimal
self-tuning

ning smoother are used.

ble it can be seen that in stationarity the
smodther will have as good performance as
smoother. It might be surprising that the
smoother gives a lower loss than the optimal

smoother in the interval 1000-2000. This can be explained

by the fact

that the variances of the noise processes €

and v are not exactly 10 and 1 respectively in this

particular

Example 4.2

Consider th

z(t)

i

y(t)

where the v

By making a

simulation. .

e process

1
1-1.6q

v(t-1)

1 -2

+ 0.8qg

z(t) + e(t)

ariances of v and e are 1 and 12 respectively.
spectral factorization it is found that the

innovation model 1is given by

21



1

1 - 1.2415q" % + 0.5264q >

y(t) = -
1 - 1.6q"L+0.8q2

e(t)

22

(4.1)

The variance of ¢ is 18.24. For this example different
ways of estimating z(t) has been investigated. Table 4.2
shows the expected error variance for different methods.

var ;(t)
No smoothing 2(t) = y(t) 12.00
One step ahead predictor £(t) =$(tlt-1) 6.24
Optimal filter estimate (k=0) 4.10
Optimal smoothing estimate (k = eo) 2.69

Table 4.2 Expected variance of Z(t) = z(t) - Z(t), for

different methods.

In this example it is seen that substantial improvements
can be obtained by using a fixed-lag smoother. By using the
self-tuning smoother it is possible to obtain good
smoothing estimates. Table 4.3 gives a comparison between

a simulation when the optimal and the self-tuning smoother

have been used.

2000 .
o5 I lz(t) - A tlt+k) 12
1001
k
Optimal Self-tuning
(based on (4.1))
0 3.91 3.78.
il 3.09 2.98
3 2.86 2.78
1) 2.83 2.73 .

Table 4.3 Comparison between the optimal

smoother based on eq (4.1) and the self-
tuning smoother. The table shows the average

loss per step for different values of k.



Also in this example it is found that the self-tuning
smoother adapts to the realization of the noise processes.
In the derivation of (4.1) it was assumed that the
variances were 1 and 12 for v and e respectively. In the
simulations the variance of e was about 10% higher than
prescribed during the interval 1001~2000. This explains
the fact that the self-tuning smoother gives a lower loss
than the optimal smoother.
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5. CONCLUSIONS

In this paper the optimal fixed lag smoother is derived

for a discrete time signal which is corrupted by white
noise. In Section 2 the smocther is derived for the case
when the model of the signal is known. The smoother is
determined in two steps. First the innovation model of

the measured signals is determined by solving a Riccati
equation or by making a spectral factorization. When the
innovation model is known it is straight forward to compute
the smoothing estimator. In Section 3 it was shown that it
is possible to make a self-tuning smoother when the model
of the signal is unknown. The self-tuning smoother esti-
mates the parameters of the innovation model in real time.
Based on the estimated parameter values the smoothing
estimates are obtained. The self-tuning smoother will con-
verge to the optimal smoother which would have been obtained
knowing the process. Further it is not necessary to make
any spectral factorization when using the self-tuning
smoother. The computations in each step of time are
moderate and the self-tuning smoother is well suited for

real time applications.

There are many areas in the fields of communication and
control where the self-tuning smoother can be used.
Examples are transmission of digital signals, guality and
production control, and measurements with low signal to

noise ratic.
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