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Abstract

This paper presents improved bounds for A(n,d), the maximum number of
codewords in a (linear or nonlinear) binary code of word length n and mini-
mum distance d, and for A(n,d,w), the maximum number of binary vectors of
length n, minimum distance d, and constant weight w, in the range n < 24
and d < 10. Some of the new values are A(9,4) = 20 (which was previously
believed to follow from the results of Wax), A(13,6) = 32 (proving that the
Nadler code is optimal), A(17,8) = 36 or 37, and A(21,8) = 512. The upper
bounds on A(n,d) are found with help of linear programming, making use of

the values of A(n,d,w).
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1. INTRODUCTION

The main purpose of this paper is to present tables of two of the most

basic functions in coding theory, namely

A(n,d) = maximum number of codewords in any
(linear or nonlinear) binary code of length n

and minimum distance d between codewords,

and

A(n,d,w) = maximum number of codewords in any
binary code of length n, constant weight w and

minimum distance d,

in the range n < 24, d < 10. We also give a table of the function

T(Wl’nl’w ,nz,d) = maximum number of codewords

2

in a binary code of length n, +n, and minimum

distance d with exactly w, ones in the first

n, coordinates and exactly w, ones in the last

n, coordinates,

2

for n +n, < 24, d = 10.*)

All of the upper bounds on A(n,d) outside the Plotkin range n < 2d are
obtained from modifications of Delsarte's linear programming method, making
use of the values of A(n,d,w) (see §3). The tables of A(n,d,w) are important
because they lead to bounds on A(n,d), and in their own right for giving the
size of the largest constant weight codes. They also give the solution to
the following widely studied packing problem (ERDUS & HANANI [17],
KALBFLEISCH & STANTON [36], SCHONHEIM [51], STANTON, KALBFLEISCH & MULLIN

[597): What is D(t,k,v), the maximum number of k-subsets of a v-set S, such

*)

We would appreciate hearing of any improvements to the tables. (Send them

for example to N.J.A, Sloane, Math. Research Center, Bell Labs, Murray

Hill, N.J. 07974 U.8.A..)
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that every t-subset of S is contained in at most one k-set? The answer is
D(t,k,v) = A(v,2k-2t+2,k), so that table 2 is also a table of values of
D(t,k,v).

Two recent papers which also use the linear programming approach are
BEST & BROUWER [3] and McELIECE, RODEMICH, RUMSEY & WELCH [43].

Earlier tables of bounds on A(n,d) were given in JOHNSON [33], McELIECE
et al. [42] and SLOANE [53]. No table of A(n,d,w) seems to have been pub-
lished before, although unpublished tables of upper bounds exist (e.g.
DELSARTE et al. {123, JOHNSON [32]). A table of A(n,d,w) was promised in
STANTON et al. [59] but has never appeared. A table of upper and lower bound
on linear codes appeared in HELGERT & STINAFF [29].

The following notation is used in this paper. All codes are binary. An
(n,M,d) code consists of M(=1) binary vectors (called codewords) of length
n such that any two codewords differ in at least d places, i.e. are at
(Hamming) distance at least d apart. A code has comstant weight w if each
codeword contains w 1's,i.e. has weight w. An optimal code is a code with the
maximum number of codewords for the given n and d (and for the given w, in
the case of a constant weight code).

Let C be an (n,M,d) code. The weight distribution of C with respect to
a vector u is the (n+l)-tuple of integers (Ai(u), i=0,...,n), where Ai(u)
is the number of codewords v ¢ C such that d(u,v) = i. The distance distrib-

ution of C is the (n+1)-tuple of rational numbers (AO,AI,...,Ah) defined by

A, (u), i=0,0..,n.
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0 and 2 Ai =M < A(n,d).
i

2. BOUNDS ON A(n,d)

The first theorem is immediate, while the second gives A(n,d) exactly

if n < 2d.

THEOREM 1.

A(n~1,26~1) = A(n,28),
A(n,d) < 2A(n~1,d).




THEOREM 2. (PLOTKIN [481 & LEVENSHTEIN [391). Provided certain Hadamard

matrices of order < n exist,*)
ol 28 1 e
A(n,28) = 2[46—n] if 48 > n = 26, (1)
A(46,28) = 85, A(n,28) =1  if n < 28. (2)

The linear programming approach is based on the following theorem.

THEOREM 3. (DELSARTE [8]-[10]). Let C be an (n,M,d) che with distance dis-

tribution (A "’An)' Then the quantities B .,Bn are nonnegative, where

0°" 0°"

n
B =M ) AK (1) (k=0,1,...,0),

k i=0
and K 18 a Krawtchouk polynomial, defined by
k et
R (t) = on CDIEINE) k= 0,1,.,0).

For later reference we give a short proof.

PROOF. Let w be a word in {0,]}n of weight i. Then it is easily checked that

CORMGEEE S CHN

xe{0,1}1"
wt (x)=k

Consequently by the definition of Ai’

o] E A K (i) = M2
k ) i /)=
1=0

>}
]

) (-1 STV

0 u,veC xe{0,1}"
wt(u-v)=1i wt(x)=k

1

V) b2 > 0, (3)

xe{0,1}* ¥
wt(x)=k

* . .
)Hadamard matrices are known to exist for all orders < 264. In any case the

r.h.s. is an upper bound on both (1) and (2).
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where

<u,x>
b= L (D . (3a)

uel

NOTE. 1f C is a linear code, then bx equals M or O depending on whether x

belongs to the dual code or not, and BO,...,Bn is the weight distribution

of the dual code.

To apply Theorem 3 let C be an optimal code of length n and minimum

distance d. Then

M= A(,d) =1 +Ad +Ad+1 + .. +An.
Suppose L*(n,d) is the optimal solution to the following linear programming
problem.
Choose real variables Ad’Ad+1""’An so as to maximize
L = Ad + Ad+1 + ...+ An subject to the constraints

v
<
>

Ai i=d,...,n,
By

v
o
-
=

= 0,000,404

where

n
B =M (K (0) + } AK (D).
i=d

Then plainly
*
A(n,d) <1 + L (n,d).

This is the simplest version of the Linear programming bound for binary
codes (DELSARTE [81).

Often it is possible to impose additional constraints on the B.. Cer-
tainly

B, < A(n,d,i), (4)

so bounds on A(n,d,w) can be used (see Table 2). Sometimes several such

bounds can be combined, as the following example illustrates.

THEOREM 4. A(13,6) = 32, and so the Nadler code is optimal.




PROOF, In 1959 R.F. STEVENS & W.G. BOURICIUS [60] found (13,32,6) and
(14,64,6) codes, showing that A(13,6) > 32, The former code was rediscovered

by NADLER [45], and is usually referred to as the Nadler code. (See also
VAN LINT [411.)

To prove A(13,6) < 32 we proceed as follows.

First observe that if we shorten a (13,M,6) code and then add an overall
parity check, we get a (13,M,6) code C in which all distances are even.

If (Ai) is the distance distribution of C then AO = 1 and the remaining
Ai's are zero except (possibly) for A6’ A8’ A10 and AIZ' The inequalities

Bk > 0 become

13 + A6 - 3A8 - 7A10 - 11A12 20
(13) . 6a - 2a + 18A.  + 54A.. > 0.
\ 2 6 8 10 12 ©
13 - 6A, + 14A_ - 14A = 154A 20
3 6 8 10 12 - 7
13 )
(4.> + 15A6 - 5A8 - 25A10 + 275A]2 > 0.
13
<£5) + lSA6 - 25A8 + 63A]O - 197A12 > 0.
13Y _ 50a + 20A. - 36A,  + 1324._ > 0.
6 ) 6 8 10 12 ©
Furthermore we have
A,(W) < A(13,6,12) = A(13,6,1) = 1,
AIO(u) < A(13,6,10) = A(13,6,3) = 4.
However, these can be combined. For if A]Z(u) = ] then Alo(u) = 0, So
AlO(u) + 4A]2(u) < 4,
and averaging over u gives
A -+ 4A ) < 4, (6)

10 12

Actually (6) and the first two comstraints of (5) turn out to be enough, and

so we consider the problem:




Maximize A6 + A8 + A]0 + A12

subject to

Ag 20, Ag 20, A0 >0, 4,20
and
13 + A6 - 3A8 - 7A10 - llA]2 > 0. ‘
78 - 6A6 - 2A8 + 18A10 + 54A12 >0, (7)
4 AIO - 4A12 2 0.

The dual problem is:

Minimize 13u, + 78u, + 4u

1 2 3
subject to
u, > 0, u, 2 0, uy 20
and
1 + u, - 6u2 < 0,
1 - 3ul - 2u2 < 0, ®
I - 7ul + 18u2 - Uy < 0,
1 - llu1 + 54u2 - 4u3 < 0,
Feasible solutions to these two problems are
Ao =24, Ag =3, A,=4,A,=0, ' 9)
1 16
up = u, =g, Uy = (10)

In fact since the corresponding objective functions are equal:

4 .-]— .-!— l.lé:
2 + 3+ 4 +0 =13 5+78 5+4 5 31,

&




it follows that (9) and (10) are optimal solutions. (These solutions are
easily obtained by hand using the simplex method - see [18] or [52].) It
follows that A(12,5) = A(13,6) < 32. [

REMARK. The following argument shows that (9) is the unique optimal solution.
Let Xes Xgs X s Xy be any optimal solution to the primal problem. The u,
of (10) are all positive and satisfy the first three constraints of (8) with
equality but not the fourth. Hence from the theorem of complementary slack-
ness (SIMONNARD [52]) the X, must satisfy the primal comstraints (7) with

equality, and x ., = 0, These three equations have the wnique solution

12

Thus (9) is the unique optimal solution. Therefore the distance distribution
of a (13,32,6) code in which all distances are even is unique. This result
has been used by GOETHALS [19] to show that the code itself is unique and
that there are exactly two nonequivalent (12,32,5) codes. (cf. NADLER [45],
VAN LINT [41]).

If A(n,d) # 0 (mod 4), the right hand side of the Delsarte inequalities

Bk 2 0 can sometimes be increased, as shown by Theorems 5 and 8.

THEOREM 5. Let C be an (n,M,d) code with M = A(n,d), and suppose that M is
odd. Then

~2(n) _
Bk > M (k) (k =0,1,...,n).

PROOF. If M is odd, then bx (Eq. (3a)) is odd, and hence non-zero. From (3)

we get

B >M2 § b2 > M_z(n).
xe{0,11"
wt(x)=k

X k




) n
REMARK. The first term in Bk =M ! .z AiKk(i) is M 1Kk(O) = M_I(E). Hence

Theorem 5 shows that, in all the Delfarte inequalities, the constant term may
be multiplied by (M-1)/M. That means that - if no extra inequalities have
been added z the optimal solution is simply (M-1)/M times the original one,
and hence iZJ A; < M-1, lowering the bound by exactly one. If extra inequal-
ities are added, the gain is in general less.

As an application we prove:

THEOREM 6. A(9,4) = 20.

-

PROOF. GOLAY {21] found a (9,20,4) code, thus A(9,4) = 20. A cyclic
(8,20,3) code is given in SLOANE & WHITEHEAD [57]. To prove A(9,4) < 20, as
usual let C be an (8,M,3) code with M = A(8,3) = A(9,4); and let C be the
(9,M,4) extended code, having distance distribution (Ao""’Ag) with A0 = 1

and Al = A2 = A3 = A5 = A7 = A9 = 0.

. . . . S S <
First we maximize A4 + A6 + A8 subject to Ai z 0, Bk 2 0 and A8 <1,

obtaining A, + A, + A_ < ZOL, hence M < 21.

4 6 8 3 1 /9

Suppose M = 21, Then by Theorem 5 we can replace Bk =z 0 by Bk > ZZT(k/'
Moreover, it is obvious that A8 < %%u Hence in this case, in spite of the

extra inequality, all constant terms occurring in the inequalities are mult~-

iplied by %%3 so

20 * ZOL < 21,

Ms 1+ 3

Hence A(9,4) 20. O

If A(n,d) 2 (mod 4), then a positive lower bound for B, can be ob-

k

tained by noting that bx cannot be zero too often. For example if U, Uy,
u,+u, are distinct them b , b , b cannot all be zero. The following
172 Uy u, u1+u2

linear inequality can be obtained in this way.

THEOREM 7. Let C be an (n,M,d) code with M = A(n,d), and suppose that M = 2

(mod 4). Then

4 n\
5, = {2),
k 3M2k}




th

If (1) k Zzs even and 0 < k <

1
<
En <k £ n.

, or (ii1) Zf d 28 even, k € n (mod 2), and

w:gim

A slightly stronger result is:

THEOREM 8. Let C be an (n,M,d) code with M = A(n,d), and suppose that M = 2
(mod &4). Then there existe an £ ¢ {0,1,...,n} such that

B, > 2M“2((1‘:) +R (@), (k=0,1,...,0).

(Since lKk(K)l < (E), this also improves Theorem 3.)

PROOF. Since M is even,bu is even for each u ¢ {0,1}“. Let ej be the j-th

unit vector in {O,l}n. Then
b_-b = )} (=(-1)

p:< x+e.
3 ueC

ey (1),

Hence, for fixed j, the residue class of bx - bX+e (mod 4) is even and

independent of the choice of x. J

i
N

Let J be the set of those j ¢ {1,2,...,n} for which bX - bx+e
(mod 4), and let £ = |J| and & = Z e.. Then v
. J
jed
bX - bx+ej = 2 <ej,€> (mod 4)

By induction on the weight of x it follows that, since b, = M = 2 (mod 4),

0
bX =2+ 2 <x,E> (mod 4)
Now for each k ¢ {0,1,...,n}
Bk = M_2 n b}z{ = 2M—2 z (]+(—])<X,£>) =
xe{0,1} xe{0,1}"
wt(x)=k wt (x)=k

=204 + K @). O
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We mention the following immediate consequence of Theorem 8, which is

weaker but easier to apply.

I
N

COROLLARY. Let C be an (n,M,d) code with M = A(n,d), and suppose that M
(mod 4). Then

B > zm'z((;‘) + min K (£)).

Le{0,1,...,n}
E.g. B, > —(( )- h D

For example, this corollary can be used to prove the upper bound in

Theorem 9; the lower bound comes from [56]1, [57].
THEOREM 9. A(17,8) = 36 or 37. [

Table 1 gives the bounds on A(n,d). Many values come from Theorems 1
and 2. Otherwise the unmarked upper bounds are obtained by linear programm-—
ing, as illustrated in Theorems 4 and 6. Other entries are explained by the
key. The bounds A(9,4) < 20, A(10,4) < 39, A(11,4) < 78, and A(12,4) < 154
were claimed by WAX [63] in 1959. However, as we shall see in the next sec—
tion, such bounds cannot be obtained by his method.

We conclude this section by repeating Elspas's question [16]: can

A(n,d) be odd and greater than 1? From Theorem 2 and Table 1 we have:

THEOREM 10. If A(n,d) s odd (and > 1) then A(n,d) 2 37. If Hadamard ma-

trices exist of all orders, then A(n,d) is even whenever n < 2d. [

3. THE END OF THE WAX BOUND

In 1959 N.WAX [63] computed a number of upper bounds for binary codes
by a method derived from sphere packing in Euclidean spaces as developed

by R.A. RANKIN [49] (see alsoc ROGERS [50]). Most of the bounds obtained

were rather weak, but there were three special cases in which his "soft

sphere model" seemingly yielded astonishingly good results. These were:




B

A(8,3) < 20,
A(9,3) 39 (and hence A(10,3) < 78),
A(11,3) < 154,

A

IA

* The first bound is confirmed by Theorem 6, but no proof of the other bounds
is knowm.

We were unable to duplicate Wax's calculations, and in fact in this
section we shall establish a lower bound on the best upper bound that can
be achieved with the soft sphere model, no matter which weight function is
used, Since this lower bound is inconsistent with the data found by Wax, we
may conclude that Wax's results are — at least in the interesting cases
mentioned above - erroneous.

We are now left with the following bounds for A(8,3), A(9,3), A(10,3)
and A(11,3):

A( 8,3) = 20
38 < A( 9,3) < 40
72 < A(10,3) < 80

144 < A(11,3) < 160

A

3.1, THE SOFT SPHERE MODEL

Consider an (n,M,d) code as a subset of the vertices of the hypercube
[0,1]n in Euclidean n—space R". The Euclidean distance between two code-
points is at least Yd. Therefore the spheres with centers in the codepoints
and radii R = 4/d are disjoint. If V denotes the volume of the intersection
of each sphere with the hypercube [0,l]n (by symmetry these volumes are all
equal), then the number of codepoints evidently cannot exceed 1/V. Hence
A(n,d) =< [1/v].

This method, called the "hard sphere model", yields very modest results,
e.g. A(9,3) < 566 (and not 56,7 as in WAX [63]) or A(10,4) < 401.

In order to sharpen the bounds, the hard spheres are replaced by larger
ones with variable mass density. As basic conditions it is required that

(i) the density p(r) associated with a single sphere is non-negative and

depends only on the distance r to the center of that sphere
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and that
(ii) in any configuration of (partly overlapping) spheres with centers at
least 2R apart, the total density at each point does not exceed unity.
1)

If p is the mass of the intersection of each sphere with the hypercube s

we now obtain:
A(n,d) < [1/ul.

The main problem is to determine a suitable density which satisfies the
basic conditions (i) and (ii), and optimizes the mass u. R.A. RANKIN studied
this problem in [49]. In order to simplify computations, he required in

addition:

(iii) The spheres have radius R/E, i.e. p(r) = 0 if r > RY2,

The model described, with the conditions (i), (ii) and (iii), is called
the "soft sphere model'". We shall denote the least upper bound for A(n,d)
that can be achieved with this model by Aw(n,d). Our aim is to give a lower
bound for Aw(n,d).

3.2. A LOWER BOUND FOR A_(n,d)

First we derive an upper bound for p. We define for each positive in-

teger m:
Yy = v2(m~1)/m

(note: v, = 0, Yy = 1), and the function o: [0,»] » [0,1] by

1)

In case d £ 4 one may instead define u by 2" times the mass of the whole

sphere, since the configuration may be continued with period 2 in all

. . . n . .. .
directions in R . But even this extended model is included in our re-~

sults, since we estimate u by that number.
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g{r) = — if Rym £r< Rym+l (m=1,2,...,0),

I .
o if Ryn_,_1 << R/E,

0 if r = R/2.

Then we have:
LEMMA I1. p < g.

PROOF. We have to prove that p(r) < I/m if r 2 Rym form=1,2,...,n+l. Let
me {1,2,...,n+1}. Suppose m spheres with density function p are arranged
such that their centers form the vertices of an (mrl)-dimenéional regular
simplex in R" with edges of length 2R. Then the distance from the center

of gravity of the simplex to each of the vertices equals
RV2(m~1)/m = Rym.

(Proof by induction.)

The total density at the center of gravity equals mp(Rym). Hence
p(Rym) < 1/m and a fortiori p(r) < 1/mif r = Rym. 0

This estimate for p immediately gives rise to an upper bound on the

mass u:

Poj—

/ﬂeRz\%n 1 ( E 1 / m \ n \

1
\'n/ ;%E I n(m+l) \m+1/ * n+l)’

PROOF. We denote the volume of the intersection of the n~dimensional hyper-

LEMMA 12, p <
m:

sphere with radius r and center 0 in R" and the n-dimensional hypercube
[0,1]? by B(r). The volume of the n-dimensional unit sphere will be denoted

by Jn. It is well known that

J = ﬂ%n < n%ne%n - /2ﬂe\%n 1
n (3n)! (%n)%n/EE' \ 0/ o
Hence
R/2 RV/2
u o= J p(r) dB(r) < J o(r) dB(r) =
0 0
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RV2 RV2

= - J B(r) do(r) < - [ 2™ J r” do(r) =
0 0

- n+1 n 1 /“n\

= n\mz ( )(Rym) + =7 (RV2) ) <

(R\® (2me\!® 1 /“‘i‘ 1 (2D, 2
\2/ \n ) /H_n.\m m-Dm \ m =y

IA

Nl—
N
Nojomn
[=}
N’
il

n

Nl

.-\

&\ 1 (3 (m\™®, 1
n ) /-\m m(m+l) \m/ n+1/'

This leads to the lower bound for Aw(n,d):
1 1

THEOREM 13. A (n,d) = [(zh;>2 ™ (mgl ERE%HT'(E%T>En + E:T} }.

PROOF. R = %/ﬁ-and Aw(n,d) = [1/u] for some density function p. 0

EXAMPLES. AW( 8,3) = 45, W( 9,4) = 27,
w( 9,3) > 101, W(10 4) = 56,
w(10 3) = 238, w(11 4) =2 119,
w(l] 3) = 579, W(12 4) = 259,

4. BOUNDS ON A(n,d,w)

The first two theorems are well-known.
THEOREM 14. Let d,w,n be integers, d # 0, w < n. Then
(i) A(n,d-1,w) = A(n,d,w) Zf d is even,

(i1) A(n,d,w)

A(n,d,n-w),
(iii) A(n,d,w) =1 Zf d > 2w,

e

(iv) A(n,d,w)

THEOREM 15. If a 2d x 2d Hadamard matrix exists,
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A(2d-2,d,d-1) = d,
A(2d-1,d,d-1) = 2d-1,
A(2d,d,d) = 4d-2.

Theorems 16—-18 are due to JOHNSON [231, [24].

THEOREM 16.

dn
An,d,w) < [m]

provided the denominator is positive.
A slightly stronger result is:

THEOREM 17. Suppose A(n,d,w) = M,and define q and r by
wM=nq + r, 0 <r <n,

Then
nq(q-1) + 2qr < (w-3d)M(M-1),

THEOREM 18.

A(n,d,w) < {§~A(n~l,d,w—l)] (n2w=1)
n
A(n,d,w) < {ETG A(n—l,d,w)] (n>w=0)
THEOREM 19.
n -1 n—-t+1]
A(n,d,w) < el E:T Ceee T A{n-t,d,w-t) (nzw=t).

If equality holds then any-optimal constant weight code with parameters

n,d,w 78 a t-design. In particular

n(n-1)...(n-w+8)

A(n,28,w) =

w(w-1)...8
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if and only if a Steiner system S(w-8+1,w,n) exists.

(For a bibliography of Steiner systems up to 1973 see DOYEN and ROSA [141).

4.1. OPTIMAL CONSTANT WEIGHT CODES

As noted in the introduction the determination of A(n,d,w) is equiva-
lent to determining D(t,d,v), where v =n, k = wand t =k + 1 - 3d (if d is
even). But this requires the construction of (maximal partial) Steiner t-
designs, which is trivial for t = 1, while for t = 2 the recursive tech-
niques of HANANI and WILSON are available (see e.g. WILSON [64,65]). For
larger t almost nothing is known (the best studied case being t = 3, k = 4).

The known results are as follows:

1. t = 1.
This is Theorem 14 (iv): A(n,2w,w) = L%J.

2. t =2,
In this case we must look for a maximal collection of w-subsets of an n-
set such that no 2-subset is covered twice (in other words: an edge-dis-
joint packing of w—cliques in the complete graph on n points). If a BIBD
(b,v=n,r,k=w,A=1) exists (that is, an S$(2,w,n)) then obviously
A(n,d,w) = b = (2)/(;); otherwise we must look for the nearest approxi-

mation to this Steiner system.

2.1d =4, w= 3.
It has been shown by KIRKMAN [38] in the cases n = 0, 1, 2 or 3 (mod 6)
and by SCHONHEIM [51] in the remaining cases that

[%.{E%l]] for n £ 5 (mod 6)
A(n’4’3) = -
[%'[Efl]] -1 for n = 5 (mod 6?

l or 3

il

(see also GUY [22], SPENCER [58] and SWIFT [61]). The cases n

(mod 6) correspond to Steiner triple systems.

2.2d =6, w= 4,
As has been shown by HANANI [26] there exist Steiner systems 5(2,4,n) iff
n =1 or 4 (mod 12). In BROUWER & SCHRIJVER [7] group divisible designs
GD(4,1,2;n) are constructed for each n = 2 (mod 6), n # 8. In BROUWER

&
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[5] pairwise balance designs PBD({4,7*};n) are constructed for each

n=7o0r 10 {mod 12), n # 10,19. Using these and similar constructions

it follows that if

[%-[E%l]]- 1 for n = 7 or 10 (mod 12)
JB(n,6,4) := -
[%-[Egl]] otherwise

then A(n,6,4) = JB(n,6,4) for all n with the exception of
n=8,9,10,11,17,19. The values of A(n,6,4) for n>= 8,9,10,11 are easily
determined by hand, that of A(17,6,4) was determined in BROUWER [4], and
the lower bound on A(19,6,4) follows from a construction of H.R. PHINNEY
£47].

We conjecture that for t = 2, w fixed and n sufficiently large (i.e.

nZnO(W)) A(n,d,w) equals the Johnson bound (obtained by applying

Theorems 14 and 18) (cf. WILSON [64]).

2.3d =8, w= 5,
As shown by HANANI [26,27] there exist Steiner systems S(2,5,n) iff

0 or

n =1 or 5 (mod 20). Shortening these gives optimal codes for n
4 (mod 20).

A(n,8,5) for n < 15 follows from the following observation:

THEOREM 20. If d is even, A = w-id, M < 3;\’- + 1 then A(n,d,w) = M iff
n WM - A(y).
Many more values of A(n,8,5) are known, but most lie outside the range

of the table.

3.1t=23,d=4, w=4,
As is shown by HANANT [25] Steiner quadruple systems exist for each
n = 2 or 4 (mod 6). Hence for these values of n we have A(n,4,4) =
= 3.
Shortening these codes once gives A(n,4,4) =.§Zn(n-1)(n_3) for
n =1 or 3 (mod 6). Using triplewise balanced designs TBD({4,6};n) in

which the blocks of size 6 form a partition it follows that A(n,4,4) =
1 2
Ezn(n -3n-6) for n = 0 (mod 6) (cf. BROUWER [6]). Exact values for

the case n = 5 (mod 6) are not yet known.

s
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4,2, THE LINEAR PROGRAMMING BOUND FOR A(n,d,w)

This is based on:

THEOREM 21. (DELSARTE [91,[10]). Let C be an (n,M,28) code of constant

weight w < in, having distance distribution (A AZW)' Then the quanti-

ARRE
ties BO,...,B2w are nonnegative, where now
] w
By =% L ApiQ(i>m,w) k=0eeeuw,
i=0 .
the coefficients Qk(i,n,w) are given by
. _ n—2k+l] n, , W, O-w
Qk(l,n,W) = ke Ei(k)(k)/(i)( i )5 (11)

and Ei(x) 18 an Eberlein (or dual Hahn) polynomial defined by
i .. . .
= 173wy WeR, newH] X
E, (%) _ZO DTGP ED T,
J
(See DELSARTE [9], EBERLEIN [15], HAHN {23] and KARLIN & McGREGOR [37] for

these polynomials.)

As in the case of A(n,d) we obtain a bound on A(n,d,w) by maximizing

A0+A2+...+A2W subject to the constraints

AZiZO (i=28,...,w), AO:I’A2=A4="'=A26—2=0’ (12)
and

BZk 20 (k = 0,...,W). (13)

Additional constraints on the Ai can be expressed in terms of the func-
tion T(w],n],wz,nz,Zé) defined in section 1 (see Table 3). Let u ¢ C and con-
sider the codewords v € C such that dist(u,v) = 2i. By a suitable permutation

of the coordinates we may assume that

w € n-~w >
ua = Jlees] 11ses] 00...0 OO..«O
v = 1lless] 00-.-0 lleesl 00"’0

— L —]—>
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The number of such ;'s is Azi(u), and by definition of T we have
AZi(u) < T(i,w,i,n~w,248), i=68,...,w,
so that

Ay, < T(i,w,i,n-w,28), i=28,...,W. (14)

Sometimes it is possible to say more, as the following example illustrates.

-

THEOREM 22.

A(17,8,7) < 31,

PROOF. Let C be a code of length 17, distance 8 and constant weight 7. Suppose
C contains M = A(17,8,7) codewords. For u ¢ C, the only nonzero components

of the weight distribution with respect to u are Ao(u) =1, AB(u), Alo(u),
AIZ(U)’ A14(u)’ and then

1 .
A, =5 L A (w), i=0,8,10,12,14.
uel
We have
A]4(u) < A(10,8,7) = A(10,8,1) = 1,
A,() < T(6,7,6,10,8) = T(1,7,4,10,8) = 5,

These imply A12 <5, A, <1 as in (14). But we can say more. For if
)

14
Alé(u) = 1 then Alz(u <

2. Therefore, for all u € C,
AIZ(u) + 3A14(u) < 5 and A14(u) <1,
and so

A+ 3A

12 14 1. (15)

< 5 and Alas

Linear programming with the constraints (12), (13), (15) gives the stated

result, a*
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Table 2 gives the bounds on A(n,d,w). Upper bounds marked with an L
are obtained by linear programming, as illustrated by Theorem 22. Unmarked
lower and upper bounds are from Theorems 14-20. A useful technique for
getting lower bounds is the following. Let C be an (n,M,d) code, and
C* = a+ C= {atu: ueC} any translate of C, with weight distribution Ai(g).
Then

A,(0) < A(n,d,i).

This technique works well for example with the (shorténed) Nordstrom-
Robinson and Golay codes. Other entries in the table are explained by the
key. Letters on the left of an entry refer to lower bounds, on the right to

upper bounds.

5. BOUNDS ON T(w,,n ,W,,n,,d)

T(w],nl,wz,nz,d) is the maximum number of binary vectors of length

nl + nz,

exactly W, onmes in the first n, coordinates and exactly w, ones in the last

n, coordinates. For example, T(1,3,2,4,6) = 2, as illustrated by the vectors

having mutual Hamming distance at least d, where each vector has

1001100, 0100011. Properties of this function are given in the following

theorems.

THEOREM 23. (JOHNSON [341).
(a) T(wl,nl,wz,nz,d) = T(wz,nz,wl,nl,d).
(b) T(w],nl,wz,nz,d) = T(nl—w],n],wz,nz,d),
(c) T(O’nl’WZ’nZ’d) = A(n2,d,w2),
(d) T(w],nl,wz,nz,d) < A(nz,d-Zwl,wz),
(e) If d = 2w, + 2w, then

1 2 n n
. 1 2
T(wl,nl,wz,nz,d) = mln{{ LI 1},

Lw, 17w, |

n
1

(£) T(wl,nl,wz,nz,d) < {;— T(wl—l,n1~l,w2,n2,d)},
1

n

n

1

(g) T(wl,nl,wz,nz,d)'s [ T(WI’nI_I’WZ’HZ’d)}’
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(h) T(Wl,nl,wz,nz,Zd) <

NN
“

w2
1.
n

'.:ilﬂ

] +6—w1—w2

[\*]

provided the denominator is positive.
A slightly stronger result than Theorem 23 (h) is:

THEOREM 24. Suppose T(wl,n],w ,n2,26) = M, and define QT (i =1,2) by

2
Mw, = q.,n, + r., 0<r., <nm,.
1 1 1 1 1 1 ks
Then
2
izl {n,q,(q;-1)+2q;r,} < (w +w,~8)M(M-1),

with equality if and only if all distances are 28.

There is also a linear programming bound for T(wl,n],wz,n2,25), based
on Theorem 25. Define the left and right weights of a vector

u = (ul,...,un +n2) to be WL(E) = wt(u],...,unl) and WR(E) =
U ).

p* ny

THEOREM 25. Let C be an (n1+n
for all u ¢ C, and let

u
wt( L

2,M,26) code such that WL(E) =W, WR(B) =,

A2i,2j(u) = |{v ¢ C: WL(u+V) = 2i, wR(u+V) = 23},
1
A, .= — 2 A, ..(w).
21,23 M ueC 21,2]
Then
, Vi Yo
Bok,2¢ = ™ iZO Jz 891,2i Q (1,n,,w,)Q(j,n,,w,) 20,

where Qk(i,n,w) z8 given in (11).

), ;) R(v)

PROOF., For v = 1,2 suppose (X 7 R0 seees ) is an association scheme

n
. . . i v, v
with intersection numbers pgy) incidence matrices D§ )

; ™)
i3k’ , idempotents Ji R

r
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and eigenvalues P(i), Q(;’)(i) (c£. DELSARTE [9], [10], SLOANE [541). Then
D e x@ g rMW gD i cn,
1] 1 k| 1 2
scheme (the product scheme) with intersection numbers p
(1) 4 (@) (1) ¢ ;2
1 J 1 J
(1 ,..,(2),. (D
Johnson schemes. The result now follows from Theorem 3.3 of DELSARTE [9]

) is an association
(1 _(2)
ikr Pjls
, and eigenvalues

0<j<n
, incidence

matrices D , idempotents J

(i)Q(é)(j). Hence C is a code in the product of two

and Theorem 21 above. [

Table 3 gives upper bounds on T(wl,nl,wz,nz,IO). Entries marked with

an asterisk (%) are exact.
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TaBLE L
values of Aln,d)
,’ - =
n G=" d=6 d- d=10
O i 2 { ]
/ & 2 | |
8 *16 1 2 2 J
§ 9 doob L 0" |
10 - ¢38 - Lo 6 2 2
11 470 _30, 19 2 ?
12 tiuy 160 2l L 2
13 2EG 32° ! 2
14 512 Bl & 2
15 102+ 128 1f b
16 | *oobg Yo56 30 I
17 °L2560 -3276 256-340 36 —3-;"”' 6
15 5120 -6552 512-680 Gl 10
19 19726 -13104% | 1024-1288 128~k 20
20 39456 -n6208 52048 -2372 256-2/5 Lo
\ 01 (‘36%"’ ~43690 Yo550 _Loog 519 LiC-55
’ 22 47 38 ~87380 | 4096-5000 1020 Ju&a-go
23 dl‘f7456~\7373"' 81o2-13/74 | 20u4s 64-150
o “Bhan-3h 36 133 o6 | Tmooe |28 280

)
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KEY TO TABLE 1|

a. Hamming code (HAMMING [24]).

b. Theorem 6.

d. Constructed in GOLAY [21], JULIN [35] or SLOANE & WHITEHEAD [57].
e, Theorem 4.

f. Nordstrom-Robinson code, NORDSTROM & ROBINSON [46].

g. Constructed in SLOANE, REDDY & CHEN [551].

h. Theorem 9.

i. Golay code (GOLAY {201).

j. From a (24,48,12) Hadamard code.

k. Constructed by ALLTOP [1].
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KEY TO TABLE 2

a. 84.1

b. SHEN LIN [40].

c. H.R. PHINNEY [47].

d. Miscellaneous constructions.

é. From Theorem 9 and the Steiner systems S(5,6,12), S(3,5,17), S$(3,6,26),
$(5,6,24), $(5,7,28), S(5,8,24) (DENNISTON [13], DOYEN & ROSA [14], WITT
[661). -

f. From Theorem 6 and the nonexistence of Steiner systems S(4,5,15), S$(4,6,18)
(MENDELSOHN & HUNG [44]1, WITT [661]).

g. A cyclic code.

h. From the 3-design with t = 3, v = 16, k = 6, A = 4 obtained from the
Nordstrom-Robinson code {NORDSTROM & ROBINSON [461).

i, From translates of the (16,256,6) Nordstrom—-Robinson code (NORDSTROM &
ROBINSON [46]).

j. From the (24,4096,8) Golay code (GOLAY [201]).

k. From translates of the (16,32,8) Reed-Muller code.
L. From linear programming.

m. From a conference matrix (SLOANE & SEIDEL [56]).
n. A quasi-cyclic code.

q. JOHNSON [311, [34].

r. W.G. VALIANT [621.
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