
inequality in information theory, and where I(l,n) is the mutual The code C is the set of vectors satisfying XH =O. In many 
information betwen [ and n. Using a slight modification of a applications it is desirable to know, for a given weight w, 
technique of Lipster [7], we obtain whether C contains any words of weight w, i.e., whether there is 

a vector of weight w satisfying XH = 0. Again, the best general 
algorithm known for deciding this requires an exponential 
search, in this case through all 2k codewords, and a faster 
algorithm would be highly desirable. 

In this correspondence we will show that it is unlikely that 

~;+a$ E,t 
anyone will ever discover substantially faster algorithms for 

<+ log - 
+2aZ 

either of these problems, by showing that both of them belong to 
t+J$ N a large class of difficult combinatorial problems, the NP-com- 

with ,&(.$) = E[A,(X,&$1&$]. Hence from (26) and (27) we have 
plete problems. 

II. NP-COMPLETE PROBLEMS 

Pt > --$$- exp ( - j3t). The following discussion will describe in heuristic language a 
X : set of results that can be made quite precise. We refer the 

Therefore (24) actually attains this lower bound and thereby is 
interested reader to [1, Ch. lo], [3], [4], or [5] for details. 

optimal over all admissible nonlinear codings. 
The class P is defined to be the set of computational problems 

which can be solved by an algorithm which is guaranteed to 
REFERENCES terminate in a number of steps bounded by a polynomial in the 

111 T. Berger, Rate-Distortion Theory: A Mathematical Basis for Data Com- length of the input. Thus P corresponds to the class of pob- 
pression. Englewood Cliffs, NJ: Prentice-Hall, 1971. nomial-time algorithms. Problems in the class P are generally 

PI S. Ihara, “Optimal coding in white Gaussian channel with feedback,” in 
Proc. 2nd Japan-USSR Symp. Probability Theory, (Lecture Notes in Math. 

regarded to be tractable; conversely those not in P are consid- 

330) New York: Springer-Verlag. 1973, pp. 120-123. 
ered intractable. The class P includes such problems as solving 

[31 H. Sakai, T. Soeda, and H. Tokumaru, “A note on feedback communica- linear equations, finding the minimum cut in a flowgraph, cer- 
tion with noisy side information at the receiver,” IEEE Tram. Inform tain scheduling problems, etc. 
Themy, vol. IT-23, pp. 384-386, May 1977. The class NP is defined to be the set of computational 
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Information Transmission, vol. 10, pp. 279-288, 1974. This repeated splitting may lead to an exponentially growing 

number of copies; the algorithm is said to solve the given 
On the Inherent Intractability of Certain Codiig Problems problem if any one of these copies produces the correct answer. 

ELWYN R. BERLEKAMP, FELLOW, IEEE, ROBERT J. McELIECE, 
This description explains the notation: NP corresponds to the 

MEMBER, IEEE, AND HENK C. A. VAN TILBORG 
class of nondeterministic polynomial-time algorithms. 

The class NP is quite extensive; it contains many classic 
Abstract-The fact tbat the general decoding problem for linear codes combinatorial problems, such as the traveling salesman’s prob- 

and the general problem of rmding tbe weights of a linear code are both lem, the O-l integer programming problem, and the Hamiltonian 
NP-complete is shown. This strongly suggests, but does not rigorously circuit problem. It also contains the two coding problems de- 
imply, that no algorithm for either of these problems which lulls in scribed in Section I, as the reader can easily verify for himself. 
polynomial time exists. The class NP clearly contains the class P as a subclass: 

I. INTRODUCH~N 
NP> P. It is conversely intuitively evident that NP is “much 

Let C be an (n, k) binary linear code which is to be used on a 
larger” than P; however, no one has yet succeeded in proving 

binary symmetric channel. If y is the received word, then the 
this and the query NP# P? is currently one of the central 

syndrome is s = yH, where H is the n x (n - k) parity-check 
problems of computer science. Recently a circle of results has 

matrix, and the receiver’s best estimate of the transmitted 
been developed that strongly suggests, though does not 

codeword is x =y + ~a, where z0 is a minimum-weight solution to 
rigorously imply, that NP# P. We now describe these results. 

the equation s = zH [2, Ch. 11. Unfortunately for a general code 
In 1971 Cook (see [ 1, Theorem 10.31) proved that a certain 

it is apparently necessary to search through the entire set of 2k 
problem in NP (called the satisjabiZity problem) has the follow- 

solutions to zH = s in order to find one of least weight. In other 
ing curious property. Any problem (p) in NP can be reduced to 

words, the best general algorithm known which, given a matrix 
the satisfiability problem, in the sense that if a polynomial-time 

H and a vector s, finds a minimum-weight solution to ZH = s, 
algorithm could be found for the satisfiability problem, then that 

has a running time which is an exponential function of the 
algorithm could be modified to yield a polynomial-time algo- 

number of inputs. The discovery of an algorithm which runs 
rithm for problem (p). Thus while it is possible that satisfiability 

significantly faster than this would be an important achievement. 
might possess a polynomial-time algorithm, if it did, then so 
would the traveling salesman’s problem, the integer program- 
ming problem, and indeed any problem in NP. But researchers 
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have worked on these NP problems for many years without 
one phase of research sponsored by the National Aeronautics and Space finding a polynomial-time algorithm for any of them. This is 
Administration under Contract No. NAS 7-100, carried out at the Jet Propul- strong evidence that satisfiability does not possess a 
sion Laboratory, California Institute of Technology, Pasadena, CA. polynomial-time algorithm and that NP# P. 
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In a later paper Karp [4] reversed things and showed that the 
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of these NP-problems possesses a polynomial time algorithm, 

cal University of Eindhoven, Eindhoven, The Netherlands. then so does every NP-problem, and hence NP= P. NP-prob- 
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lems with this property are now called NP-complete problem. 
The forthcoming book by Garey and Johnson [3] contains 
literally hundreds of problems known to be NP-complete; and if 
the “obvious” assertion NP# P is true then no NP-complete 
problem can have a polynomial-time algorithm. 

In the next section we shall show that the two decoding 
problems described in Section I are NP-complete by reducing to 
them a known NP-complete problem. 

III. NEwNP-COMPLETEPROBLEMS RELATEDTO~ODING 

Here are two decision problems which we will show are 
NP-complete, and which correspond to the coding problems 
given in Section I. 

A. COSET WEIGHTS 
Input: A binary matrix A, a binary vector y, and a nonnega- 

tive integer w. 
Properv: There exists a vector x of Hamming weight < w 

such that xA = y. 

B. SUBSPACE WEIGHTS 
Input: A binary matrix A and a nonnegative integer w. 
Proper@: There exists a vector x of Hamming weight w such 

that XA -0. 
In the theory of NP-completeness, problems are always stated 

in this format. The input must be encoded into a binary string of 
length N, for example, and fed into a deterministic computing 
machine, which outputs 0 when the input does not have the 
property and 1 when it does. If there is such a device for which 
the time for this computation is bounded by a polynomial in N, 
the problem is in P; otherwise it is not. 

The SUBSPACE WEIGHTS problem corresponds exactly to 
the problem of deciding whether a linear code has a vector of a 
given weight, but the exact connection between the minimization 
problem cited in Section I (i.e., to find the minimum weight 
among all solutions to XA = y) and the decision problem COSET 
WEIGHTS is perhaps unclear. Note, however, that a poly- 
nomial-time algorithm for the minimization problem im- 
mediately implies a polynomial-time algorithm for the decision 
problem (since there exists a solution with weight < w iff the 
minimum weight solution has weight < w), and conversely (by 
running the decision problem for w = 0, 1,2,. . . until the first 
affirmative answer is obtained, the minimum weight solution will 
be found). 

It is easy to see that both COSET WEIGHTS and SUB- 
SPACE WEIGHTS are in NP. We  will now show they are 
NP-complete by reducing the following combinatorial decision 
problem, which is known to be NP-complete (it is problem 17 on 
Karp’s list in [4]), to each of them. 
C. THREE-DIMENSIONAL MATCHING 

Input: A subset UC TX TX T, where T  is a finite set. 
Property: There is a set W  c U such that ] W ] = 1 T], and no 

two elements of W  agree in any coordinate. 
The elements of U are ordered triples from the set T. As an 

illustration, consider the following two examples, each with 
T={1,2,3,4} and ]U]=6: 

Example 1 Example 2 
1) (L2, 1) 

:; 
Ki 
(21 1: 4) t :’ x 

4) 

i; 
$3 
(41414) 

g: $ ;; 

(4: 4: 4). 
The first set of triples has the desired property, the four triples 
numbered 2,4, 5, and 6 being a “matching”. The second set does 
not, as the reader may easily verify. 

For our purpose it is convenient to encode the set U of triples 
into a / UI x3lTI binary incidence matrix, in which each row 
corresponds to one of the triples and haE weight three, with each 
1 corresponding to a component of tsa, .;iple. For example, the 
first set above yields the following 6 x 12 incidence matrix. 

In terms of this matrix, a  solution to the THREE-DIMEN- 
SIONAL MATCHING problem is the existence of ITI rows 
whose mod 2 sum is ill... 1111. 

We  will now show that our two coding problems are also 
NP-complete by reducing THREE-DIMENSIONAL MATCH- 
ING to each of them. Here are the reductions. 

THREE-DIMENSIONAL MATCHING can be reduced to 
COSET WEIGHTS: Suppose we had a polynomial-time algo- 
rithm for COSET WEIGHTS. Now given an input U c T  x T  x 
T  for the THREE-DIMENSIONAL MATCHING problem, let 
A be the I UI x3lTI incidence matrix described above. Then 
running the putative COSET WEIGHTS algorithm with inputs 
A, y=(lll... ill), w = I TI, we would discover, in polynomial 
time, whether the matching existed. That is, a  polynomial-time 
algorithm for COSET WEIGHTS implies a polynomial-time 
algorithm for THREE-DIMENSIONAL MATCHING, which 
in turn implies a polynomial-time algorithm for every NP-prob- 
lem. This proves that COSET WEIGHTS is NP-complete. 

THREE-DIMENSIONAL MATCHING can be reduced to 
SUBSPACE WEIGHTS: The idea is again to construct an A 
for the SUBSPACE WEIGHTS algorithm from the triple inci- 
dence matrix, but here the construction is more complicated. Let 
B be the triple incidence matrix described above, and assume its 
dimensions are t X 3n. The matrix A is formed from B as shown 
below. 

~ 3n copies 

In words, A is a (3nt + 3n + t) x (3nt + 3n) matrix with the top t 
rows consisting of B followed by 3n copies of the t x  t identity 
matrix, and the lower 3nt +3n rows forming a large identity 
matrix. 

Let us assume that we have a polynomial-time algorithm for 
SUBSPACE WEIGHTS. If we apply this algorithm to the 
matrix A, and set w = 3n2+4n, we will find out in polynomial 
time whether the original set of triples has a matching. For 
suppose x is a vector with XA =O. Let xc denote the vector of 
length t formed from the first t components of x, let y=xOB, 
and let x, be the vector formed from the last 3n(t + 1) compo- 
nents of X. Then clearly jxr( =I y] +3n]xe], where Ix] denotes the 
‘Hamming weight of x. Adding 1x0] to both sides of this equation, 

I4=lvl+(3~+W 0 l~ 
Since 0 < I y] < 3n, this means that Ix,,] and ) y] can be uniquely 
determined from Ix]: they are the remainder and quotient when 
Ix] is divided by 3n+ 1. I n  particular, if IxI=3n +4n, we get 
]xs] = n and ] y( =3n. So the code with parity-check matrix A has 



a word of weight 3n2+4n if and only if the set of triples admits 
a matching. This shows that SUBSPACE WEIGHTS is NP- 
complete, as asserted. 

IV. CONCLUDING REMARKS 

1) One can argue that for the coding problem, one always 
knows that the parity-check matrix has full rank. Thus one 
might for example wish to consider the following “easier” ver- 
sion of SUBSPACE WEIGHTS. 

Input: A binary matrix A with linearly independent columns 
and a nonnegative integer w. 

Property: There exists a vector x of weight w such that xA =O. 
It is, however, quite easy to show that this problem is also 

NP-complete. The trick is to find (in polynomial time, by stan- 
dard methods of linear algebra) a subset of columns forming a 
basis for the column space of A. If A’ denotes the matrix formed 
from these columns, then xA’=O will have a weight w solution 
iff XA =0 does. Similar considerations show that one may 
assume that the matrix COSET WEIGHTS has full wlumn rank 
without disturbing its NP-completeness. 

2) The corresponding problems stated in terms of the genera- 
tor matrix are also NP-complete, since one can go from the 
parity-check to the generator matrix (or vice versa) in poly- 
nomial time. 

3) It would be very desirable to replace the phrase “of weight 
w” in SUBSPACE WEIGHTS with the phrase “of weight < w,” 
for (see the discussion in Section III) this would show that the 
problem of finding the minimum weight of a general code is 
NP-complete. While we conjecture that this is the case, we have 
not been able to prove it, and propose it as a research problem. 

ACKNOWLEDGMENT 

We wish to thank one of the referees for pointing out to us the 
relation between the “weight < w” decision problem and the 
minimum weight problem for linear codes. 

REFERENCES 

[I] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Analysis and Design of 
Computer Algorithm. Reading, MA: Addison-Wesley, 1974. 

[2] E. R. Berlekamp, Algebraic Coding Theory. New York: McGraw-Hill, 
1968. 

[3] M. R. Gamy and D. S. Johnson, Coquters and Intractability: A Guide to 
the Theory of NP-Completeness, San Francisco: Freeman, 1978. 

[4] R. M. Karp, “Reducibility among combinatorial problems,” in Complex- 
ity of Computer Computations, R. Miller and J. Thatcher, Eds. New 
York: Plenum, 1972, pp. 85-103. 

[5] R. M. Karp, “On the computational complexity of combinntorialproblemr,” 
Networks 5, pp. 45-68, 1975. 

Interlacing Properties of Shift-Register Sequences with 
Generator Polyuomials Irreducible over GF(p) 

FRANZ SURBikK AND HANS WEINRICHTER 

Abstruc-Interlacing properties of shift-register sequences with genera- 
tor polynomials irreducible over GF(p)-ke.iu called elemenhuy 
scquen-are analyzed. lltc most important elementary sequences are 
maxbnd-length sequeuees (m-sequences). If tbc period q of aa elemekuy 
sequence is not prime, the sequence can always be amshcted by hterlac- 
iog shorter elementary sequences of period qi, provided qi divides q. It is 
proved that all intdaced elementary sequences are generated by one and 
the same irredudble polynomial. Some relationships between equal-length 
elementary sequences are derived, including some rather unexpected 
croascorrelation properties. As 811 example of ao application of the theory, 
a new timedivision multiplex tedmique for generating high-speed m- 
sequences is presented. 
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I. I~R~DUCTION 

Shift-register sequences with elements from GF(p) have 
proved useful in coding theory and in many other applications. 
The properties of these sequences have been studied extensively, 
and many interesting results have been found [lH3]. Neverthe- 
less, there are still unsolved problems. In the binary case (p =2), 
for instance, it is difficult to decide which of all the possible 
maximum-length sequences of a given period simulates a truly 
random binary sequence best. 

In this paper, we present some new properties of the time-divi- 
sion multiplex structure of shift-register sequences with a non- 
prime period. In particular, we shall be concerned mainly with 
shift-register sequences with generator polynomials that are irre- 
ducible over GF(p). Such sequences will be called elementary 
sequences. The most important class of elementary sequences are 
maximum-length sequences (m-sequences) with primitive genera- 
tor polynomials. In the sequel, a method will be presented to 
further decompose a certain type of elementary sequence. It will 
be shown that every elementary sequence with a nonprime 
period can be constructed by interlacing several shorter elemen- 
tary sequences, all with the same irreducible generator poly- 
nomial. 

The concept of interlacing sequences is closely related to the 
more popular concept of sequence sampling. It is well-known 
that uniform sampling of an m-sequence will yield either a 
shifted version of the same m-sequence again or another m- 
sequence of the same length, if the sample interval is prime to 
the period of the m-sequence (proper decimation). In contrast, 
this paper is concerned with improper decimation only, i.e., the 
sample interval is assumed to be a factor of the period of the 
sampled sequence. When an elementary sequence is sampled in 
this way, the resulting sample sequences may be different from 
each other depending on their sample phase. Lempel and East- 
man [4] pointed out that each of these sample sequences can be 
generated by a linear shift-register with the same, or even a 
smaller, number of stages as the original shift-register. They 
described how to generate any given linear shift-register 
sequence of maximal length at a rate considerably faster than 
the shift pulse rate generated by interlacing these sample 
sequences. In this paper, we will show that these sample 
sequences all have the same generator polynomial and thus can 
be generated by the same feedback shift register. Similar wn- 
cepts of interlacing m-sequences have already been used in 
several cases [SHl 11. For instance, they have proved valuable in 
describing the response of digital data scramblers to special 
m-sequences [5], and in generating high-speed m-sequences by a 
certain time-division multiplex technique [6], [lo], [ 111. 

II. ELEMENTARY SEQUENCES GENERATED BY 
POLYNOMIALS IRREDUCIBLE OVER GF(p) 

The D-transform of a sequence fo,f,,f2,+ - . , consisting of ele- 
ments of GF(p) withp prime, is defined by 

F(D)= 5 fkDk. 
k=O 

Then any sequence generated by a linear feedback shift-register 
with a feedback polynomial N(D) with coefficients in GF(p) 
can be written as 

H(D) F(D)=-, 
N(D) 

(2) 

where H(D) depends on the initial state of the register. If N(D) 
is irreducible over GF(p), F(D) will be called an elementary 
sequence. If N(D) factors into, mutually distinct irreducible 
polynomials N,(D)-N,(D)--., then the sequence F(D) is merely 
the sum of elementary sequences with the generator polynomials 
N,(DW,(D),- * . , as follows from the partial-fraction expan- 
sion of (2). If N(D) factors into several irreducible polynomials 
which are not all mutually distinct, the partial-fraction expan- 
sion of (2) is still applicable, resulting in a superposition of 
elementary sequences some of which may be spread in time [5], 
[7]. Therefore, our analysis will be concerned primarily with 
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