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Axiomatic Derivation of the Principle of
Maximum Entropy and the Principle
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Abstract—Jaynes’s principle of maximum entropy and Kullback’s prin-
ciple of minimum cross-entropy (minimum directed divergence) are shown
to be uniquely correct methods for inductive inference when new informa-
tion is given in the form of expected values. Previous justifications use
intuitive arguments and rely on the properties of entropy and cross-entropy
as information measures. The approach here assumes that reasonable
methods of inductive inference should lead to consistent results when there
are different ways of taking the same information into account (for
example, in different coordinate systems), This requirement is formalized
as four consistency axioms. These are stated in terms of an abstract
information operator and make no reference to information measures. It is
proved that the principle of maximum entropy is correct in the following
sense: maximizing any function but entropy will lead to inconsistency
unless that function and entropy have identical maxima. In other words,
given information in the form of constraints on expected values, there is
only one distribution satisfying the constraints that can be chosen by a
procedure that satisfies the consistency axioms; this unique distribution
can be obtained by maximizing entropy. This result is established both
directly and as a special case (uniform priors) of an analogous result for
the principle of minimum cross-entropy. Results are obtained both for
continuous probability densities and for discrete distributions.

I. INTRODUCTION

E PROVE THAT Jaynes’s principle of maximum

entropy and Kullback’s principle of minimum
cross-entropy (minimum directed divergence) are correct
methods of inference when given new information in
terms of expected values. Our approach does not rely on
intuitive arguments or on the properties of entropy and
cross-entropy as information measures. Rather, we con-
sider the consequences of requiring that methods of in-
ference be self-consistent.

A. The Maximum Entropy Principle and the Minimum
Cross-Entropy Principle

Suppose you know that a system has a set of possible
states x; with unknown probabilities g(x,), and you then
learn constraints on the distribution ¢': either values of
certain expectations E,.q’f(x,-) i (x;) or bounds on these
values. Suppose you need to choose a distribution ¢ that is
in some sense the best estimate of ¢' given what you
know. Usually there remains an infinite set of distribu-
tions that are not ruled out by the constraints. Which one
should you choose?
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The principle of maximum entropy states that, of
all the distributions g that satisfy the constraints, you
should choose the omne with the largest entropy
- 2,9(x)log(g(x;)). Entropy maximization was first pro-
posed as a general inference procedure by Jaynes [1],
although it has historical roots in physics (e.g., Elasser
[67]. It has been applied successfully in a remarkable
variety of fields, including statistical mechanics and ther-
modynamics [1]-[8], statistics [9]-[11, ch. 6], reliability
estimation [11, ch. 10], [12], traffic networks [13], queuing
theory and computer system modeling [14], [15], system
simulation [16], production line decisionmaking [17], [18],
computer memory reference patterns [19], system modu-
larity [20], group behavior [21], stock market analysis [22],
and general probabilistic problem solving [11], [17],
[23]-[25]. There is much current interest in maximum
entropy spectral analysis [26]-[29].

The principle of minimum cross-entropy is a generaliza-
tion that applies in cases when a prior distribution p that
estimates ¢’ is known in addition to the constraints. The
principle states that, of the distributions ¢ that satisfy the
constraints, you should choose the one with the least
cross-entropy Z,g(x,)log(g(x;)/p(x;)). Minimizing cross-
entropy is equivalent to maximizing entropy when the
prior is a uniform distribution. Unlike entropy maximiza-
tion, cross-entropy minimization generalizes correctly for
continuous probability densities. One then minimizes the
functional

H(q.p)= [dxq(x)log(q(x)/p(x)). 0]

The name cross-entropy is due to Good [9]. Other names
include expected weight of evidence [30, p. 72], directed
divergence [31, p. 7], and relative entropy [32]. First pro-
posed by Kullback [31, p. 37], the principle of minimum
cross-entropy has been advocated in various forms by
others [9], [33], [34], including Jaynes [3], [25], who ob-
tained (1) with an “invariant measure” playing the role of
the prior density. Cross-entropy minimization has been
applied primarily to statistics [9], [31], [35], [36], but also
to statistical mechanics [8], chemistry [37], pattern recog-
nition [38], [39], computer storage of probability distribu-
tions [40], and spectral analysis [41]. For a general discus-
sion and examples of minimizing cross-entropy subject to
constraints, see [42, appendix B]. APL computer programs
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for finding minimum cross-entropy distributions given
arbitrary priors and constraints are described in [43]. Both
entropy maximization and cross-entropy minimization
have roots in Shannon’s work [44].

B. Justifying the Principles as General Methods of Inference

Despite its success, the maximum entropy principle
remains controversial [32], [45]-[49]. The controversy ap-
pears to stem from weaknesses in the foundations of the
principle, which is usually justified on the basis of en-
tropy’s unique properties as an uncertainty measure. That
entropy has such properties is undisputed; one can prove,
up to a constant factor, that entropy is the only function
satisfying axioms that are accepted as requirements for an
uncertainty measure [44, pp. 379-423], [50], and [51].
Intuitively, the maximum entropy principle follows quite
naturally from such axiomatic characterizations. Jaynes
states that the maximum entropy distribution “is uniquely
determined as the one which is maximally noncommittal
with regard to missing information” [1, p. 623], and that it
“agrees with what is known, but expresses ‘maximum
uncertainty’ with respect to all other matters, and thus
leaves a maximum possible freedom for our final deci-
sions to be influenced by the subsequent sample data” [25,
p- 231}. Somewhat whimsically, Benes justified his use of
entropy maximization as “a reasonable and systematic
way of throwing up our hands” [13, p. 234). Others argue
similarly [S]-[9], [11]. Jaynes has further supported en-
tropy maximization by showing that the maximum ent-
ropy distribution is equal to the frequency distribution
that can be realized in the greatest number of ways [25],
an approach that has been studied in more detail by
North [52].

Similar justifications can be advanced for cross-entropy
minimization. Cross-entropy has properties that are desir-
able for an information measure [33], [34], [53], and one
can argue [54] that it measures the amount of information
necessary to change a prior p into the posterior g. Cross-
entropy can be characterized axiomatically, both in the
discrete case [8], [S4]-[56] and in the continuous case [34].
The principle of cross-entropy minimization then follows
intuitively much like entropy maximization. In an interest-
ing recent paper [58] Van Campenhout and Cover have
shown that the minimum cross-entropy density is the
limiting form of the conditional density given average
values.

To some, entropy’s unique properties make it obvious
that entropy maximization is the correct way to account
for constraint information. To others, such an informal
and intuitive justification yields plausibility but not proof
—why maximize entropy; why not some other function?

Such questions are not answered unequivocally by pre-
vious justifications because they argue indirectly. Most are
based on a formal description of what is required of an
information measure; none are based on a formal descrip-
tion of what is required of a method for taking informa-
tion into account. Since the maximum entropy principle is
asserted as a general method of inductive inference, it is

reasonable to require that different ways of using it to
take the same information into account should lead to
consistent results. We formalize this requirement in four
consistency axioms. These are stated in terms of an ab-
stract information operator; they make no reference to

information measures.
We then prove that the maximum entropy principle is

correct in the following sense: maximizing any- function
but entropy will lead to inconsistencies unless that func-
tion and entropy have identical maxima (any monotonic
function of entropy will work, for example). Stated dif-
ferently, we prove that, given new constraint information,
there is only one distribution satisfying these constraints
that can be chosen by a procedure that satisfies the
consistency axioms; this unique distribution can be ob-
tained by maximizing entropy. We establish this result
both directly and as a special case of an analogous result
for the principle of minimum cross-entropy; we prove
that, given a continuous prior density and new con-
straints, there is only one posterior density satisfying these
constraints that can be chosen by a procedure that satis-
fies the axioms; this unique posterior can be obtained by
minimizing cross-entropy.
Informally, our axioms may be phrased as follows.

L Uniqueness: The result should be unique.

II.  Invariance: The choice of coordinate system
should not matter.

III. System Independence: It should not matter
whether one accounts for independent informa-
tion about independent systems separately in
terms of different densities or together in terms of
a joint density.

IV. Subset Independence: It should not matter
whether one treats an independent subset of sys-
tem states in terms of a separate conditional
density or in terms of the full system density.

These axioms are all based on one fundamental principle:
if a problem can be solved in more than one way, the
results should be consistent.

Our approach is analogous to work of Cox [59], [60],
[11, ch. 1] and similar work of Janossy [61], [62]. From a
requirement that probability theory provide a consistent
model of inductive inference, they derive functional equa-
tions whose solutions include the standard equations of
probability theory. Emphasizing invariance, Jeffreys [63]
takes the same premise in studying the choice of priors.

C. Outline

The remainder of the paper is organized as follows. In
Section II we introduce some definitions and notation. In
Section III we motivate and formally state the axioms.
Their consequences for continuous densities are explored
in Section IV; a series of theorems culminates in our main
result justifying the principle of minimum cross-entropy.
The discrete case, including the principle of maximum
entropy, is discussed in Section V. Section VI contrasts
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- axioms of inference methods with axioms of information
measures and contains concluding remarks. A more de-
tailed exposition of our results is contained in [42].

II. DEFINITIONS AND NOTATION

To formalize inference about probability densities that
satisfy arbitrary expectation constraints, we need a con-
cise notation for such constraints. We also need a nota-
tion for the procedure of minimizing some functional to
choose a posterior density. We therefore introduce an
abstract information operator that yields a posterior den-
sity from a prior density and new constraint information.
We can then state inference axioms in terms of this
operator.

We use lowercase boldface roman letters for system
states, which may be multidimensional, and uppercase
boldface roman letters for sets of system states. We use
lowercase roman letters for probability densities and up-
percase script letters for sets of probability densities.
Thus, let x be a state of some system that has a set D of
possible states. Let D be the set of all probability densi-
ties ¢ on D such that ¢(x)>0 for x€D and

f dxq(x)=1. 2
D

We use a superscript dagger to distinguish the system’s
unknown “true” state probability density g*€D. When
S C D is some set of states, we write g(x € §) for the set of
values ¢g(x) with x €S.

New information takes the form of linear equality con-
straints

J dxa'(Dax)=0 3)
and inequality constraints

[ dxq'(x)e(x)>0 @

D

for known sets of bounded functions @, and c;. The
probability densities that satisfy such constraints always
comprise a closed convex subset of . (A set § C9 is
convex if, given 0<A <1 and g,r€9, it contains the
weighted average 4q +(1— A4)r.) Furthermore, any closed
convex subset of 9 can be defined by equality and
inequality constraints, perhaps infinite in number. We
express constraints in these terms, using the notation
I=(g"€9), to mean that g' is a member of the closed
convex set § C6D. We refer to I as a constraint and to § as
a constraint set. We use uppercase roman letters for con-
straints.

Let p €D be some prior density that is an estimate of gt
obtained, by any means, prior to learning I. We require
that priors be strictly positive:

p(xeD)>0. )
(This restriction is discussed below.) Given a prior p and
new information I, the posterior density g€ 9 that results
from taking [ into account is chosen by minimizing a

functional H(q,p) in the constraint set §:

H(q,p)= ;pg; H(q',p). (6)

We introduce an “information operator” ° that expresses
(6) using the notation

g=p°l. (M
The operator ° takes two arguments—a prior and new
information—and yields a posterior. For some other func-
tional F(q,p), suppose ¢ satisfies (6) if and only if it
satisfies

F(q,p)= min F(q’,p).
gEI

Then we say that F and H are equivalent. If F and H are
equivalent, the operator ° can be realized using either
functional.

If H has the form (1), then (7) expresses the principle of
minimum cross-entropy. At this point, however, we
assume only that H is some well-behaved functional. In
Section III we give consistency axioms for ° that restrict
the possible forms of H. We say that a functional H
satisfies one of these axioms if the axiom is satisfied by the
operator ° that is realized using H.

In making the restriction (5) we assume that D is the set
of states that are possible according to prior information.
We do not impose a similar restriction on the posterior
q=p ° I since I may rule out states currently thought to be
possible. If this happens, then D must be redefined before
q is used as a prior in a further application of °. The
restriction (5) does not significantly restrict our results,
but it does help in avoiding certain technical problems
that would otherwise result from division by p(x). For
similar reasons—avoidance of technically troublesome
singular cases—we impose on the information I the re-
striction that there exists at least one density g€ % with
H(g,p)< 0.

For some subset § C D of states and x€ S, let

g(x|xES)=q(x)/ fs dx'q(x') (8)

be the conditional density, given x € S, corresponding to
any g€%). We use
q(x|xES)=¢g=S

as a shorthand notation for (8).

When D is a discrete set of system states, densities are
replaced by discrete distributions and integrals by sums in
the usual way. We use lowercase boldface roman letters
for discrete probability distributions, which we consider to
be vectors; for example, g=g¢,,- -+ ,q,. It will always be
clear in context whether, for example, the symbol r refers
to a system state or a discrete distribution and whether s,
refers to a probability density or a component of a dis-
crete distribution.

©)

III. THe AxiIOMS

We follow the formal statement of each axiom with a
justification. We assume, throughout, a system with possi-
ble states D and probability density g" €.
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Axiom I (Uniqueness): The posterior g=p oI is unique
for any prior p€) and new information I=(q'€9),
where § C9D.

Justification: If we solve the same problem twice in
exactly the same way, we expect the same answer to result
both times. Actually, Axiom I is implicit in our notation.

Axiom II (Invariance): Let T' be a coordinate transfor-
mation from x€D to yeD’ with (Tg)(y)=J q(x),
where J is the Jacobian J=29(y)/0(x). Let T'D be the set
of densities T'q corresponding to densities g€, Let
T9)C@D) correspond to § CD. Then, for any prior
PED and new information I=(g'€ 9),

(Tp)°(XI)=T(p°I)
holds, where FI=((T'q") €(T9)).
Justification: We expect the same answer when we
solve the same problem in two different coordinate sys-
tems, in that the posteriors in the two systems should be
related by the coordinate transformation.

Suppose there are two systems, with sets D,, D, of states
and probability densities of states gf €D,, gJ €D,. Then
we require the following axiom.

Axiom III (System Independence): Let p, €%, and p,€
), be prior densities. Let I,=(g{€94,) and I,=(g]€Y,)
be new information about the two systems, where 9, CD,
and 9, CD,. Then

(PP (WNAL)=(p1°1})(py° 1)

(10)

(11)

holds.

Justification: Tnstead of ¢ and g}, we could describe
the systems using the joint density gt €D,,. If the two
systems were independent, then the joint density would
satisfy

(12)

Now the new information about each system can also be
expressed completely in terms of the joint density ¢'. For
example, /, can be expressed as I, =(q"€9{), where 4, C
9),, is the set of joint densities g€, such that ¢, €9,
where

qT(xl,xz) = qf(xl)q;r(xz).

ql(xl)=j;)dx2q(xl,x2).
2

I, can be expressed similarly. Now, since the two priors
together define a joint prior p =p, p,, it follows that there
are two ways to take the new information 7/, and I, into
account: we can obtain separate posteriors g, =p, ° I, and
g,=p,°I,, or we can obtain a joint posterior g=p ° (I, A\
I,). Because p, and p, are independent, and because 7,
and 7, give no information about any interaction between
the two systems, we expect these two ways to be related
by g = g,4,, whether or not (12) holds.

Axiom IV (Subset Independence): Let S,,---,S, be dis-
joint sets whose union is D, and let p€% be any known
prior. For each subset S, let I,=(¢'+S,€9,) be new
information about the conditional density ¢'+S,, where
9,CS, and §, is the set of densities on . Let M=(qt€
91) be new information giving the probability of being in
each of the n subsets, where N is the set of densities ¢

that satisfy
J dxa(x)=m, (13)
S;

for each subset §;, where the m, are known values. Then
(po(UAM))+S;=(p*S)°1, (14)
holds, where I=I),ALA--- AL,

Justification: This axiom concerns situations in which
the set of states D decomposes naturally into disjoint
subsets §;, and new information I; is obtained about the
conditional probability densities g'+S; in each subset (see
(8) and (9)). One way of accounting for this information is
to obtain a conditional posterior g,=(p+S;)° I, from each
conditional prior p*S;. Another way is to obtain a post-
erior g=p ° I for the whole system, where I=I,A\--- AL,
The two results should be related by g*8;,=g; or

(poI)+S;=(p*S)°1,. (15)
Moreover, suppose that we also learn the probability of
being in each of the n subsets. That is, we learn M =(g'€
M), where I is the set of densities g that satisfy (13) for
each subset §;. The known numbers m; are the probabili-
ties that the system is in a state within §;. The m; satisfy
3,m;=1. Taking M into account should not affect the
conditional densities that result from taking 7 into
account. We therefore expect a more general version of
(15) to hold, namely (14).

IV. CONSEQUENCES OF THE AXIOMS

A. Summary

Since we require the axioms to hold for both equality
and inequality constraints (2) and (3), they must hold for
equality constraints alone. We first investigate the axioms’
consequences assuming only equality constraints. Later,
we show that the resulting restricted form for H also
satisfies the axioms in the case of inequality constraints.

We establish our main result in four steps. The first step
shows that the subset independence axiom and a special
case of the invariance axiom together restrict H to func-
tionals that are equivalent to the form

F(g,p)= fD dxf(q(x),p(x)) (16)

for some function f. We call this the “sum form.” In the
axiomatic characterizations in [34], [55], and [56], the sum
form was assumed rather than derived. Our next step
shows that the general case of the invariance axiom re-
stricts H to functionals that are equivalent to the form

F(g,p)= f,, dxq(x)h(q(x)/p(x)) (17)

for some function 4. Our third step applies the system
independence axiom and shows that if H is a functional
that satisfies all four axioms, then H is equivalent to
cross-entropy (1). Since it could still be imagined that no
functional satisfies the axioms, our final step is to show
that cross-entropy does. We do this in the general case of
equality and inequality constraints.



30 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-26, NO. 1, JANUARY 1980

B. Deriving the Sum Form

We derive the sum form in several steps. First, we show
that when the assumptions of the subset independence
axiom hold, the posterior values within any subspace are
independent of the values in the other subspaces. Next, we
move formally to the discrete case and show that invari-
ance implies that H is equivalent to a symmetric function.
We then apply the subset independence axiom and prove
that H is equivalent to functions of the form F(q,p)=
2 ,f(q;p;), where p and q are discrete prior and posterior
distributions, respectively, and we return to the continu-
ous case yielding (16).

We begin with the following lemma concerning subset
independence.

Lemma I: Let the assumptions of Axiom IV hold, and
let g=p°(IAM) be the posterior for the whole system
(gED). Then g(x€S,) is functionally independent of
q(x & 8;), of the prior p(x € S;), and of n.

Proof: Let

g;=(p*S)°]; (18)
be the conditional posterior density in the ith subspace
(¢, €S,;). Since p+S; depends on p only in terms of p(x €
S;) (see (8) and (9)), so does g;. Furthermore, since g, is the
solution (18) to a problem in which x €S; only, g; cannot
depend on g(x &S;). Now, (14) states that g(x)=m,g(x)
for x €;, where we have used (8) and (13). Since the m;
are fixed, it follows that g(x € .8)) is independent of g(x &
S} and p(x & S)), proving Lemma I.

Our next step is to transform to the discrete case.
Lemma II: Let S,,S,, - ,S, be disjoint sets whose un-
ion is D. For a prior p and a posterior g=p-°1 let

pj=f‘gla’xp(x), and qj=fs'dxq(x).

Suppose that p(x €8)) is constant for each subset §;, and
let the new information I be provided by constraints (3)
and (4) in which the functions g, and ¢, are also constant
in each subset. Then the posterior g=p 1 is also constant
in each subset, and H is equivalent to a symmetric func-
tion of the n pairs of variables (g;,p;) (We refer to this
situation as the discrete case.)

Proof: Since the g, and ¢, are constant in each sub-
set, the constraints have the form

2 gja,, =0 (19)
J

or
2 gy >0, (20)
J

where g, = a,(x €S)), ;= (x ES)), and

g'= [ dxq'(x)

Now, let T’ be a measure-preserving transformation that
scrambles the x within each subset §,. This leaves the

prior and the constraints (19) and (20) unchanged. It
follows from invariance (10) that T also leaves ¢ un-
changed, which will only be the case if ¢ is constant in
each S, In the discrete case, H becomes a function
H(q,p) of 2n variables q,;---,q, and p,- -+ ,p,. To show
that H is equivalent to a symmetric function let # be any
permutation. By invariance, the minima of H and 7#H
coincide, where

'”H(q’p) = H(q,,(,), e

Therefore the minima of H and F coincide, where F is the
mean of the #H for all permutations 7, and H is equiv-
alent to the symmetric function F. This completes the
proof of Lemma II.

»u(ny Py "~ ,Pw(n))-

We now prove that H is equivalent to functions with
the discrete sum form.

Theorem I: In the discrete case let H(q,p) satisfy
uniqueness, invariance, and subset independence. Then H
is equivalent to a function of the form

F(g.p)= 2 f(4:p))

for some function f.

2y

Theorem I is proved in the Appendix. The proof rests
primarily on the subset independence property (Lemma
I).

We return to the continuous case by taking the limit of
a large number of small subspaces S;. The discrete sum
form (21) then becomes (16).

C. Consequence of General Invariance in the
Continuous Case

Although invariance was invoked for the special case of
discrete permutations in deriving (21), the continuous sum
form (16) does not satisfy the invariance axiom for arbi-
trary continuous transformations and arbitrary functions
f. The invariance axiom restricts the possible forms of f as
follows.

Theorem II: Let the functional H(g,p) satisfy unique-
ness, invariance, and subset independence. Then H is
equivalent to a functional of the form

F(g,p)= f,, dxq(x)h(q(x)/p(x))

for some function A.

(22)

Proof: From previous results we may assume H to
have the form (16). Consider new information I consisting
of a single equality constraint

deq"(x)a(x) =0.

Then, by standard techniques from the calculus of varia-
tions, it follows that the posterior ¢ =p © I satisfies

A+ aa(x)+g(q(x),p(x))=0, 24
where A and a are Lagrangian multipliers corresponding
to the constraints (2) and (23) and where the function g is

(23)
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defined as

8(6,0)= o2 f(byc). (25)

Now let T be a coordinate transformation from x to y in
the notation of Axiom II. Then the transformed prior is
P'(y)=J ~p(x) and the transformed constraint function is
a’'(y)=Ta=a(x). The posterior ¢’ = p’ o (I'I) satisfies

N+a'd(p)+g(g(»).r'(#)=0, (26)
where A’ and o’ are Lagrangian multipliers. Invariance
(10) requires that ¢'(y)=J ~!g(x) holds, so (26) becomes

N +a’a(x)+g(J ~'g(x),J “'p(x))=0. 27
Combining (24) and (27) yields
g(I ~'q(x),7 ~'p(x)) =g(a(x).p(x))
+(a—a)a(x)+A—N. (28)

Now let §,,---,S, be disjoint subsets whose union is D
and let the prior p be constant within each ;. It follows
from Lemma II that g is also constant within each §,
which in turn results in the right side of (28) being
constant within each ;. (The primed Lagrangian multi-
pliers may depend on the transformation I', but they are
constants.) On the left side, however, the Jacobian J(x)
may take on arbitrary values since I' is an arbitrary
transformation. It follows that g can only depend on the
ratio of its arguments, i.e., g(b,c)=g(b/c). Equation (25),
therefore, has the general solution f(a,b)= ah(a/b)+ v(b),
for some functions 4 and v. Substitution of this solution
into (16) yields

F(g,p)= fD dxq(x)h(g(x)/p(x))+ f,, dxo(p(x)).

Since the second term is a function only of the fixed prior,
it cannot affect the minimization of F and may be
dropped. This completes the proof of Theorem II.

D. Consequence of System Independence

Our results so far have not depended on Axiom III. We
now show that system independence restricts the function
h in (22) to a single equivalent form.

Theorem III: Let the functional H(q,p) satisfy unique-
ness, invariance, subset independence, and system inde-
pendence. Then H is equivalent to cross-entropy (1).

Proof: With i=1,2, consider two systems with states
x, € D,, unknown densities g/ € %),, prior densities p, €D,,
and new information I, in the form of single equality
constraints
[ dxal(x)a(x)=0. (29)
D;
From Theorem II, we may assume that H has the form
(22). It follows that the posteriors g; = p, © I, satisfy

A+ o (x) + u(r(x)) =0, (30)

where A; and o; are Lagrangian multipliers corresponding
to the constraints (2) and (29), where r(x,)= g,(x,)/p(x))

and where

&y

The two systems can also be described in terms of a
joint probability density ¢'€D,,, a joint prior p=p, p,,
and new information 7 in the form of the three constraints

ffdxldeqT(xl’xZ)r'la
D\YD,

u(r)=h(r)+ -5 h().

(32)

[ [ dxdngi(x,x)a(x)=0 (=12). (3)
D\ D,

The posterior g =p ° I satisfies
N+a'1a)(x) + aza(x) + u(r(x, x;)) =0,  (34)

where the multipliers A’, &}, and o} correspond to (32) and
(33), and r=¢q/p.

Now, system independence (11) requires g = gq,4,, from
which follows r=r,r,. Combining (30) and (34) therefore
yields

u(ryry) —u(r) — u(ry) =(ay — aj)a,
+(a2—a,2)az+xl+xz_x'- (35)

Consider the case when D, and D, are both the real line.
Then, differentiating this equation with respect to x; and
differentiating the result with respect to x, yields

(36)

By suitable choices for the priors and the constraints, r,r,
can be made to take on any arbitrary positive value s. It
follows from (36) that the function u satisfies the differen-
tial equation u'(s)+ su”(s)=0, which has the general solu-
tion u(s)=Alog(s)+ B, for arbitrary constants 4 and B.
Combining this solution with (31) yields

w’(rir)rry+u'(rry) =0.

W)+ r-2 h(r)= Alog()+ B,
which in turn has the general solution

h(r)=Alog(r)+C/r+ B—A.
Substitution of (37) into (22) yields

F(g.p)=A [ drq(x)log(a(x)/p(x)) +(C+B—4),
(38)

since p integrates to one. Since the constants 4, B, and C
cannot affect the minimization of (38), provided A >0,
this completes the proof of Theorem IIL

(37

E. Cross-Entropy Satisfies the Axioms

So far we have shown that if H(gq,p) satisfies the
axioms, then H is equivalent to cross-entropy (1). This still
leaves open the possibility that no functional H satisfies
the axioms for arbitrary constraints. By showing that
cross-entropy satisfies the axioms for arbitrary constraints,
we complete the proof of our main result.

Theorem IV: Cross-entropy (1) satisfies uniqueness, in-
variance, system independence, and subset independence.
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Every other functional that satisfies the axioms is equiv-
alent to cross-entropy.

Proof: We need only show that cross-entropy satis-
fies the axioms.

Uniqueness: Let 9 be any closed convex set § CD,
and let densities ¢,r€9 have the same cross entropy
H(q,p)= H(r,p) for some prior p €. We define g(u)=
ulog(u), with g(0)=0, so that H can be written as

H(g,p)= f,, dxp(x)g(g(x)/p(x))-

Now since g”(u#)=1/u>0, g is strictly convex. It follows
that

ag(u) +(1—a)g(v) >g(au+(1-a)v),
for 0<a<1 and u#v. We set g(x)/p(x) for u and
r(x)/p(x) for v, multiply both sides by p(x), and integrate,
obtaining

H(q,p)=H(r,p)
=aH(g,p)+(1—a)}H(r,p)
>H(ag+(1—a)r,p).

The inequality is strict unless ¢=r. (We write g=r when
q(x)=r(x) for almost all x, since in this case ¢ and r
define the same probability distribution.) Thus, if g##r
and H(q,p)= H(r,p) both hold, there is a density ag+
(1—a)r that belongs to § (since ¢ is convex) and has
cross-entropy smaller than H(q,p). Therefore, there
cannot be two distinct densities g, €9 having the mini-
mum cross-entropy in §. For the existence of one such
density see Csiszar [66, theorem 2.1]. This proves that
cross-entropy satisfies Axiom I.

Invariance: Let T be a coordinate transformation
from x to y in the notation of Axiom II. A change of
variables in (1) shows that cross-entropy is transformation
invariant:

H(q,p)=H(T'q,Tp).
The minimum in 'Y therefore corresponds to the mini-
mum in §, which proves that cross-entropy satisfies
Axiom IL
System Independence: We use the notation in
Axiom III. Consider densities g,,p, €%, and g,,p,ED,.
Let g€, satisfy g%#q¢,4,,

fdxlq(xlsxz)’_‘qz, and fdxzq(xbx2)=ql;
D, D,

ie, g and q,q, are different densities with the same
marginal densities. A straightforward computation of the
cross-entropy difference between ¢ and g,4, for the same
prior p, p, yields

H(q,p\p))— H(9,9,,P1P2) = H(4,9,9,)-
Now, cross-entropy has the property that H(q,p) > 0 with
H(q,p)=0 only if g=p (for example, see {31, p. 14]). It
follows that
H(q.p,py)>H(4195P1P,) (39)

holds, since g#4q,4, by assumption. This means that of all

the densities ¢ € %D,, with given marginal densities ¢, and
g,, the one with the least cross-entropy is ¢,q,. Since I,
and I, restrict only the marginal densities of ¢ in ¢g=
(pipy) ° (I;\I,)—see Axiom III and its justification—the
density ¢ with the least cross-entropy in the constraint set
is of product form g,4,. But the cross-entropy of a density
of this form satisfies

H(4,9,,p,P,)= H(q,,p)) + H(q2,P,) (40)

and so assumes its minimum when the two terms on the
right assume their individual minima—the first subject to
I, and the second to I,. Thus we have g=(p,p,) ° (I, A1)
=q,49,=(p,°I)(p,°I,), and we have proved that cross-
entropy satisfies Axiom III.

Subset Independence: We use the notation in
Axiom IV. We also define g=p°(IAM), q;=g+S;, and
p;=p*S,. (Equation (14) then becomes g,=p,°1.) The
cross-entropy of ¢ with respect to p may be written

=3 fenaions{ 253

= 2, m,H(q,,p;)+ 2} m,.log(%), (41)

where the s; are the prior probabilities of being in each
subset,

. s,-=fs‘dxp(x):

The second sum on the right of (41) is a constant and has
no effect on minimization. Minimizing the left side of (41)
subject to (/A M) is equivalent to minimizing each term
of 2,m,H(g,,p;) individually subject to I;. This proves that
cross-entropy satisfies subset independence and completes
the proof of Theorem 1V,

V. THE DisCRETE CASE

A. Principle of Minimum Cross-Entropy for
Discrete Systems

Theorem IV states that if one wishes to select a post-
erior g=p° I in a manner that satisfies Axioms I—IV, the
unique result can be obtained by minimizing the cross-
entropy (1). Although the equivalent result for the discrete
case can be obtained in the usual informal way by replac-
ing integrals with sums and densities with distributions, it
can also be obtained formally as follows.

Suppose a system has a finite set of n states with
probabilities ¢'. Let p be a prior estimate of g" and let
new information I be provided in the form

2 ‘IiT a; =0 (42)
i

or

2 gle,; >0, (43)

for known numbers g,; and ¢;. Then it is clear that there
exist problems with continuous states and densities for
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which the foregoing finite problem is the discrete case as
defined in Lemma II. It follows from Lemma II and
Theorem IV that the cross-entropy functional becomes a
function of 2n variables and that the posterior g=pe°l
can be obtained by minimizing the function H(q,p)=
2.,4:10a(q;/p;), subject to the constraints (42) and (43).

B. The Maximum Entropy Principle

Using transformation group arguments, Jaynes [25] has
shown that a uniform prior p,;=n""! is appropriate when
we know only that each of the n system states is possible
(as distinct from “complete ignorance” when we do not
even know this much). It follows that, given a finite state
space and constraints of the form (42) and (43), the
posterior is obtained by minimizing the function

H(q)= X g/log(g;) —log(n).

This is equivalent to maximizing the entropy
—2,q;log(g,). Thus, entropy maximization is a special
case of cross-entropy minimization.

It is also possible to obtain the maximum entropy
principle formally and directly. We show how in the
following although we omit some of the formal details.
The first step is to rewrite the axioms so that they refer to
the discrete case in which no prior is available. In this
case, given new information 7 in the form of constraints
(42) and (43), the unary operator © selects a posterior
distribution g=(° I) from all distributions that satisfy the
constraints. The operator is realized by minimizing some
function H(q). The axioms become (see Section III) the
following.

L Uniqueness: The posterior g=(°I) is unique.

II.  Permutation Invariance: °(LI)=TI(°I) for any
permutation I

III.  System Independence: (°(I;\1))=(°1,)°1I)).

IV. Subset Independence: (c(INM)*S,=(°1). (44)

Theorem I goes through in a straightforward way with the
prior deleted. This shows that, if H(q) satisfies uniqueness,
permutation invariance, and subset independence, it is
equivalent to a function of the form

H(q)= 2 f()

Next we assume this form and apply system indepen-
dence in a manner analogous to the proof of Theorem III.
Consider a system with n states and an unknown distribu-
tion g%, and another system with m states and an un-
known distribution r'. New information is provided in
terms of single constraints:

n
Z‘Iifi‘_‘

i=1

(45)

m

> rib,=0.
k=1

The posteriors ¢ and r satisfy
u(g;r,) =u(g) + u(r) +(a—a)g
+(B—B)b +A +A—N,

where u(x)=f'(x) and «a, o', B, B’, A, Ay, and X are
Lagrangian multipliers. This is the discrete analog of (35).
It leads to

u(g;n) — u(gr,) = u(q,r) —u(q,r,)
= G(rk’ rv) (46)

for some function G. Since the right side of (46) does not
depend on g, we pick an arbitrary value for g; on the left
side. This shows that G satisfies

G(x,y)=s(x)—s(») (47)
for some function s. (We note that G satisfies Sincov’s
functional equation G(x,y)= G(x,z)+ G(z,y) which has
the general solution (47) [64, p. 223].) Some manipulation
of (46) and (47) yields

u(xy) = s(x) = s(y) = u(wz) — s(w) — s(2).

Since the two sides are independent of each other, they
must be equal to some constant. Thus, u satisfies u(xy)=
g(x)+ g(»), for some function g. Using standard tech-
niques of functional equations [64, pp. 34, 302], we obtain
the general solution for u, namely u(x)=Alog(x)+ B,
where A and B are constants. Combining this with u(x)=
f'(x) and integrating yields the solution for f in (45),
f(x)=Axlog(x)+ Bx — A, which in turn yields

H(q)=43 g;log(g)—nd +B. (48)
1

This function has a unique minimum provided that A is

positive.

Minimizing the function H in (48) is equivalent to
maximizing the entropy —2X,q;log(g;). This proves that if
one wishes to select a discrete posterior distribution ¢=
(°I) in a manner that satisfies the axioms (44), the unique
result can be obtained by maximizing entropy.

V1. CONCLUDING REMARKS

Our approach has been to axiomatize desired properties
of inference methods rather than to axiomatize desired
properties of information measures. Yet it might seem that
the axioms in Section III are no more than a thinly
disguised characterization of cross-entropy. In this view
Axioms I and II might correspond to axioms requiring
that H have unique minima and be transformation in-
variant, and Axioms III and IV might correspond to
axioms requiring that H be “additive” [34] and satisfy
something like the “branching property” [65]. These corre-
spondences are meaningful and not surprising—after all,
inference methods should relate to information measures
—Dbut it is important to realize that there are significant
differences as well. For example, if we knew that H itself
must be transformation invariant, the deduction of (22)
from (16) would be direct (Theorem II). But Axiom II
implies only that the minima of A must be transformation
invariant, so the proof of Theorem II reasons in terms of
invariance at the minima.



34 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-26, NO. 1, JANUARY 1980

As another example, consider the following axiom.
Additivity:

H(4,95,P1P2) = H(q1,p1) + H(4,:P,)
(49)

This can be used [34] in characterizing the directed diver-
gences. In Section IV we showed that if H has the sum
form (22) and satisfies system independence, then H is
equivalent to cross-entropy (Theorem III). When we
proved, as part of Theorem IV, that cross-entropy itself
satisfies system independence, we used the fact that
cross-entropy satisfies additivity (49) (see (41)). It might
seem that any functional that satisfies additivity also
satisfies system independence. But Johnson [34] proved
that the information measures H(g,p) of the form (22)
that satisfy additivity (49) are those of the form

H(g.p)=A | dxq()log(a(x)/p(x))

for all g, p, €D, and ¢,p,ED,.

+B dxp(x)log(p(x)/4(x)), (50)

for some constants 4,B >0, not both zero. That is, (22)
and additivity (49) of H yields the linear combination of
both directed divergences, whereas (24) and system inde-
pendence of © yields only one of the directed divergences,
cross-entropy. The key to the difference is the property
expressed by (39)—for all densities g€,, with given
marginal densities g, and gq,, H(q,p,p,) has its minimum
at g=q,q,. This property is necessary if H is to satisfy
system independence; it is satisfied by the first term in
(50) but not by the second, even though the second term
satisfies additivity.

In summary, we have proved that, in a well-defined
sense, Jaynes’s principle of maximum entropy and Kull-
back’s principle of minimum cross-entropy (minimum di-
rected divergence) provide correct general methods of
inductive inference when given new information in the
form of expected values. When Jaynes first advocated the
maximum entropy principle more than 20 years ago, he
did not ignore such questions as “why maximize entropy,
why not some other function?” We have established the
sense in which the following conjecture [1, p. 623] is
correct: “deductions made from any other information
measure, if carried far enough, will eventually lead to
contradictions.”

ACKNOWLEDGMENT

The authors would like to thank A. Ephremides, W. S.
Ament, and J. Aczél for their reviews of an earlier version
of this paper.

APPENDIX
PROOF OF THEOREM |

After showing that 8H /dg; has the form

%g =2(q,p) + 8(41P)s(a.P), (A1)

we show that (Al) results in H being functionally dependent on
F(q.p)=2,f(q;p;), where f satisfies g=0f(b,c)/db. We then
show that the functional dependence is monotonic so that H and
F are equivalent.

In realizing the operator °, the only relevant values of H(q,p)
are at points ¢ that satisfy the discrete form of (1):

n
> g=1

Jj=1

(A2)

We refer to the hyperplane of such points ¢ as the normalization
subspace. In selecting posteriors by minimizing H, we are further
restricted to the positive region in which ¢; >0 fori=1,---,n.On
the normalization subspace (A2), H(q,p) is a function of only
n—1 independent variables g; (the prior p is assumed fixed). For
convenience, however, we consider H to be extended off the
normalization subspace to a well-behaved function of » indepen-
dent variables that is symmetric under identical permutations of
¢ and p (see Lemma II). This enables us to express the gradient
VH as

o OH
VH= ) —é,
,'gl aqx’ !
where {é,,- - ,é,} is a standard orthonormal basis. The operator

o can be realized by minimizing the extended H in the positive
region provided that (A2) is always imposed as a constraint. In
the continuous case we have assumed that the functional H(q,p)
is well-behaved. We take this to mean, in particular, that the
function H(g,p) is continuously differentiable in the interior of
the positive region of the normalization subspace and that the
projection of V H into the normalization subspace is zero only at
minima of H.

Now let N be the set {1,---,n}, let MCN be a set of m
integers from N, and let M-N be the set that remains after
deleting M. Let g,, comprise the components g; with i€ M and
let gx_ » comprise the rest. We refer to points g,, as points in
the M-subspace. We assume both n > 6 and m > 4. Suppose new
information comprises a set of constraints (19) that satisfy a,;=0
either for all j€ M or for all j& N — M, including the constraint

> qf=r (A3)
JEM
Any constraint satisfying a,;=0 for j€ M can be written as a
constraint

2 aql= 2 ak,-(q}/r)=0

jeM JEM

on the conditional distribution given j € M: (q,,/r). Similarly,
constraints that satisfy @,;=0 for jE N— M can be written as
constraints on the conditional distribution gy _ 5, /(1 — r). There-
fore, the system decomposes into two subsets (M and N— M)
with new information that satisfies the assumptions of Axiom IV
(subset independence). It follows from Lemma I that, when
H(q,p) is minimized over the constraint set, the resulting g,, are
independent of the gy _ s, of the py_ 4, and of n.

Now, the constraint (A3) requires that the solution g,, be
found on the m—1 dimensional hyperplane defined by (A3).
Therefore, finding this solution depends not on the projection of
V H into the M-subspace,

(VH)y= 2

JEM

o,
9g; K

but on its projection onto the (m—1) dimensional hyperplane
defined by (A3). This projection is given by By, =(VH), —(#
(V H),)A, where A is a unit vector normal to the hyperplane. By,
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has components

(A4)

for ie M. Now, since H is symmetric (Lemma II),

oH

‘a"; = h(q, 9N PPy - ) =h;
holds for some function h, where gy _; is any permutation of ¢
with ¢; deleted and py_; is the same permutation of p with p;
deleted. Hence, (A4) becomes

Bygi=B(q,qn— i-PsPN-i)s
for some function B.

To find the solution for g,,, one moves on the constraint
hyperplane opposite the direction of maximum change in
H—i.e., opposite the direction of B,,—until no further move-
ment is possible within the constraint set (19). Since the solution
cannot depend on gy, OF py_ s, neither can the direction of
B,,. This direction is also independent of n, since the subspace
solution g,, is independent of n (Lemma I). If Uy, is a unit
vector in the direction of B,,, with components U, it follows
that

By '
Uni= 1o = U4 9 - PPy -1)» (AS5)
| Bl
for some function U, where g,,_; is any permutation of ¢,, with
g; deleted, etc. The function U is well-defined everywhere on the
constraint hyperplane except at a point at which H is minimized
subject only to (A3). Such a point is characterized equivalently
by By, =0 and by k;= h; for all i,j € M. By uniqueness, there is at
most one such point. For if there were more, H would reach its
minimum value at more than one point or would have local
minima in addition to an absolute minimum. In either case, one
could define convex constraint sets in which the minimum of H
would occur at more than one point, thereby violating unique-
ness.

The point at which (AS5) is ill-defined is also characterized by
the equality of the ratios (g;/p;)=(q;/p;) for all i,j € M. To see
this, we apply the subset independence axiom. Minimizing H
subject only to (A3) means that (14) applies without the addi-
tional information /. Then, given

b = 2 pjr
JEM
(14) becomes (q;/r)=(p;/b) so that q;/p; is a constant indepen-
dent of j for j€ M. In the case of n=m, the constraint hyper-
plane becomes the entire positive region of the normalization
subspace; (A3) becomes equivalent to (A2) and r=5b=1 holds.
This shows that there is only one point at which all of the 4, are
equal, namely the point g=p. Similarly, by taking m=2 and
M={i,j}, one can show that the condition A; = &, is equivalent to
the condition (¢;/p;)=(g;/p)-
From (A5) we obtain
Upi— Uy

- (A6)
BMk - BMI UMk - UM/

By — By

for i,j,k€ M. But

Byi—Byy h—h
Mi Mj g (A7)

Byi—Bry  h—hy

follows from (Ad4). Since the right-hand side of (A7) cannot
depend on the definition of M, neither can the right-hand side of

(A6). It follows that

h—h,
=ty ~ (0% GoPory ) =W (A9)
holds for some function W. By this construction W is well-
defined when ¢;+ ¢;+ g, <1 and A, 7h; however,

h—h W

=_ Y _w.
h—h Wiy 0

holds, and further manipulation yields
I/Viru - ijru

ka_ u/;

= Wij. (A9)
Since ‘(A9) is independent of g¢,, q,, p,, and p,, we may take
arbitrary values of these variables and use (A9) to extend the
definition of W. By the discussion following (A8), the numerator
and denominator on the left of (A9) are defined as long as
(q,/p.)#(q,/p,) holds and then the fraction is well-defined
whenever (g,/pc)+#(q;/p;) and 0<q, <1—gq,— ¢, hold, where
¢=1i,j,k. But we can make 1— g, — ¢, arbitrarily close to 1 so
that we may extend the domain of Wy to include all arguments
such that g;, ¢;, and g, are between 0 and 1 and (g/p) = (g;/p)
holds. Moreover, (A9) continues to hold on this extended
domain.

Now we may write g(g;,p;)=g; for
fixed values of ¢,,q, and obtain

hi—h g(a,p) —8(q;.p)
he—b  8(qpe)— g(qjypj)

ne With some particular

(A10)

for some function g. It follows that A, =3H /dq; has the form
(Al) for some functions z, s, and g. This implies that s is given
by

=k

§=— (Al1)

8i— &
For a particular point ¢, the right-hand side may be ill-defined
for certain values of i and j. Since s is independent of i and j,
however, s is well-defined unless g;=g; for all i,j. But from the
construction of g, the condition g;=g; is equivalent to A =4,
and therefore to (gq;/p;)=(q;/p)). It follows that s is well-de-
fined everywhere in the positive region of the normalization
subspace except perhaps at the single point where g=p holds.
The function z is likewise well-defined except perhaps at this
point.

Furthermore, s and g are continuous except perhaps at g=p.
Since H is continuously differentiable, the derivatives h; are
continuous and finite everywhere in the positive region of the
normalization subspace (except possibly on the boundary, at
points that satisfy ¢, =0 for some i). It follows that each of the
functions (VH)y, By, U, W, s, and g is continuous except
perhaps at certain “obvious” points where it is ill-defined be-
cause of a vanishing denominator in the construction.

Let ¢ parameterize some curve g(?) in the positive region of the
normalization subspace. It follows from (Al) that

d . .
S H@O.p) =52 4g+23 4;
holds, where ¢, =dg;/dt. But (A2) implies X ;4;=0, and
d d
7 H(a(0).p)=s(4().p) ; F(a(0).p), (A12)

where

F(q.p)= ﬁl faip) (A13)
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for some function f related to g by g(g,p;)=9g,r;)/%4;
Suppose the curve g(f) lies in a level surface of H. Then
dH /dt=0 and (A12) shows that F is also constant on any such
curve, unless perhaps s is zero. However, (Al11) shows that, in
the interior of the normalization subspace, s is not zero unless
k= h; for all i,j, which is true only at the point g =p. It follows
that F is constant on connected components of level surfaces of
H and that F and H are functionally dependent—locally, F can
be written as a function of H, with dF/dH =1/s(q,p). Next we
show that the functional dependence is monotonic. If it were
not, then dF/dH would change sign at a point ¢ and, therefore,
in some neighborhood of ¢ along a level surface of H, but we
have seen that s is continuous and nonzero in the interior of the
normalization subspace except perhaps at one point (g=p); it
follows that s is of constant sign. Hence, the functional depen-
dence of F on H is monotonic. The function F in (Al3) is
therefore equivalent to H, as stated in Theorem I.
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Lower Bounds for Constant Weight Codes

R. L. GRAHAM aAND N. J. A. SLOANE, FELLOW, IEEE

Abstract—Let A(n,24,w) denote the maximum number of codewords in
any binary code of length 7, constant weight w, and Hamming distance 235.
Several lower bounds for A(n,26,w) are given. For w and & fixed,
A(n,28,w)zn* %+ /w! and A(n,4,w)~n*"1/w! as n->co. In most
cases these are better than the “Gilbert bound.” Revised tables of
A(n,26,w) are given in the range #n <24 and § < 5.

L LowER BOUNDS FOR A(n,4,w)

Theorem 1:

A(n,4,w)>7ll-($).

Proof: Let F}, denote the set of ( (L) binary vectors of
length n and weight w, and let Z,=7Z/nZ denote the
residue classes modulo n. Consider the map

T: F—Z,
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whose value at a=(a,," -

- T(a)=

<,a,_)EF, is

> (modn)

a=1

n—1
= % iq; (modn). (1)
i=0
For 0<i<n—1 let C, be the constant weight code T ~'(i).
We claim that the Hamming distance between any two
distinct codewords of C, say a and b, is at least four. For
suppose it is two. Since @ and b have weight w this means
that @ and b agree everywhere except for two positions,
one (say the rth) where g is one and b is zero and another
(say the sth) where a is zero and b is one. But T(a) = T(b)
=i, so from (1)

Ta)=x+r=i (modn),
T(b)=x+s=i (modn)

for some x €Z,. This implies »=s(modn), which is impos-
sible. Thus C; has a Hamming distance of at least four
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