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I. INTRODUCTION 

W  E PROVE THAT Jaynes’s principle of maximum 
entropy and Kullback’s principle of minimum 

cross-entropy (minimum directed divergence) are correct 
methods of inference when given new information in 
terms of expected values. Our approach does not rely on 
intuitive arguments or on the properties of entropy and 
cross-entropy as information measures. Rather, we con- 
sider the consequences of requiring that methods of in- 
ference be self-consistent. 

A. The Maximum Entropy Principle and the M inimum 
Cross-Entropy Principle 

Suppose you know that a system has a set of possible 
states xi with unknown probabilities qf(xi), and you then 
learn constraints on the distribution qt: either values of 
certain expectations ZZiqt(xi)fk(xi) or bounds on these 
values. Suppose you need to choose a distribution q that is 
in some sense the best estimate of qt given what you 
know. Usually there remains an infinite set of distribu- 
tions that are not ruled out by the constraints. Which one 
should you choose? 
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The principle of maximum entropy states that, of 
all the distributions q that satisfy the constraints, you 
should choose the one with the largest entropy 
- Z  ,q(x,)log(q(x,)). Entropy maximization was first pro- 
posed as a general inference procedure by Jaynes [l], 
although it has historical roots in physics (e.g., Elasser 
[67]). It has been applied successfully in a remarkable 
variety of fields, including statistical mechanics and ther- 
modynamics [ l]-[8], statistics [9]-[ 11, ch. 61, reliability 
estimation [ 11, ch. lo], [ 121, traffic networks [ 131, queuing 
theory and computer system modeling [ 141, [ 151, system 
simulation [ 161, production line decisionmaking [ 171, [ 181, 
computer memory reference patterns [19], system modu- 
larity [20], group behavior [21], stock market analysis [22], 
and general probabilistic problem solving [ll], [17], 
[23]-[25]. There is much current interest in maximum 
entropy spectral analysis [26]-[29]. 

The principle of minimum cross-entropy is a generaliza- 
tion that applies in cases when a prior distributionp that 
estimates qt is known in addition to the constraints. The 
principle states that, of the distributions q that satisfy the 
constraints, you should choose the one with the least 
cross-entropy Ziq(xi)log(q(xi)/p(xi)). Minimizing cross- 
entropy is equivalent to maximizing entropy when the 
prior is a uniform distribution. Unlike entropy maximiza- 
tion, cross-entropy minimization generalizes correctly for 
continuous probability densities. One then minimizes the 
functional 

H(w) = ~~q(x)los(P(x)/p(x)). 0) 

The name cross-entropy is due to Good [9]. Other names 
include expected weight of evidence [30, p. 721, directed 
divergence [31, p. 71, and relative entropy [32]. First pro- 
posed by Kullback [31, p. 371, the principle of minimum 
cross-entropy has been advocated in various forms by 
others [9], [33], [34], including Jaynes [3], [25], who ob- 
tained (1) with an “invariant measure” playing the role of 
the prior density. Cross-entropy minimization has been 
applied primarily to statistics [9], [31], [35], [36], but also 
to statistical mechanics [8], chemistry [37], pattern recog- 
nition 1381, [39], computer storage of probability distribu- 
tions [40], and spectral analysis [41]. For a general discus- 
sion and examples of minimizing cross-entropy subject to 
constraints, see [42, appendix B]. APL computer programs 
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for finding minimum cross-entropy distributions given 
arbitrary priors and constraints are described in [43]. Both 
entropy maximization and cross-entropy minimization 
have roots in Shannon’s work [44]. 

B. Justifying the Principles as General  Method of Inference 

Despite its success, the maximum entropy principle 
remains controversial [32], [45]-[49]. The controversy ap- 
pears to stem from weaknesses in the foundations of the 
principle, which is usually justified on the basis of en- 
tropy’s unique properties as an uncertainty measure. That 
entropy has such properties is undisputed; one can prove, 
up to a constant factor, that entropy is the only function 
satisfying axioms that are accepted as requirements for an 
uncertainty measure [44, pp. 379-4231, [50], and [51]. 
Intuitively, the maximum entropy principle follows quite 
naturally from such axiomatic characterizations. Jaynes 
states that the maximum entropy distribution “is uniquely 
determined as the one which is maximally noncommittal 
with regard to missing information” [ 1, p. 6231, and that it 
“agrees with what is known, but expresses ‘maximum 
uncertainty’ with respect to all other matters, and thus 
leaves a maximum possible freedom for our final deci- 
sions to be influenced by the subsequent sample data” [25, 
p. 2311. Somewhat whimsically, Benes justified his use of 
entropy maximization as “a reasonable and systematic 
way of throwing up our hands” [13, p. 2341. Others argue 
similarly [5]-[9], [ll]. Jaynes has further supported en- 
tropy ma ximization by showing that the maximum ent- 
ropy distribution is equal to the frequency distribution 
that can be realized in the greatest number of ways [25], 
an approach that has been studied in more detail by 
North [52]. 

Similar justifications can be advanced for cross-entropy 
minimization. Cross-entropy has properties that are desir- 
able for an information measure [33], [34], [53], and one 
can argue [54] that it measures the amount of information 
necessary to change a prior p into the posterior q. Cross- 
entropy can be characterized axiomatically, both in the 
discrete case [8], [54]-[56] and in the continuous case [34]. 
The principle of cross-entropy minimization then follows 
intuitively much like entropy maximization. In an interest- 
ing recent paper [58] Van Camper&out and Cover have 
shown that the minimum cross-entropy density is the 
limiting form of the conditional density given average 
values. 

To some, entropy’s unique properties make it obvious 
that entropy maximization is the correct way to account 
for constraint information. To others, such an informal 
and intuitive justification yields plausibility but not proof 
-why maximize entropy; why not some other function? 

Such questions are not answered unequivocally by pre- 
vious justifications because they argue indirectly. Most are 
based on a formal description of what is required of an 
information measure; none are based on a formal descrip- 
tion of what is required of a method for taking informa- 
tion into account. Since the maximum entropy principle is 
asserted as a general method of inductive inference, it is 

reasonable to require that different ways of using it to 
take the same information into account should lead to 
consistent results. We  formalize this requirement in four 
consistency axioms. These are stated in terms of an ab- 
stract information operator; they make no reference to 
information measures. 

We  then prove that the maximum entropy principle is 
correct in the following sense: maximizing any function 
but entropy will lead to inconsistencies unless that func- 
tion and entropy have identical maxima (any monotonic 
function of entropy will work, for example). Stated dif- 
ferently, we prove that, given new constraint information, 
there is only one distribution satisfying these constraints 
that can be chosen by a procedure that satisfies the 
consistency axioms; this unique distribution can be ob- 
tained by maximizing entropy. We  establish this result 
both directly and as a special case of an analogous result 
for the principle of minimum cross-entropy; we prove 
that, given a continuous prior density and new con- 
straints, there is only one posterior density satisfying these 
constraints that can be chosen by a procedure that satis- 
fies the axioms; this unique posterior can be obtained by 
minimizing cross-entropy. . 

Informally, our axioms may be phrased as follows. 

I. 
II. 

III. 

IV. 

Uniqueness: The result should be unique. 
Inuariance: The choice of coordinate system 
should not matter. 
System Independence:  It should not matter 
whether one accounts for independent informa- 
tion about independent systems separately in 
terms of different densities or together in terms of 
a joint density. 
Subset Independence:  It should not matter 
whether one treats an independent subset of sys- 
tem states in terms of a separate conditional 
density or in terms of the full system density. 

These axioms are all based on one fundamental principle: 
if a  problem can be solved in more than one way, the 
results should be consistent. 

Our approach is analogous to work of Cox [59], [60], 
[ll, ch. I] and similar work of Janossy [61], [62]. From a 
requirement that probability theory provide a consistent 
model of inductive inference, they derive functional equa- 
tions whose solutions include the standard equations of 
probability theory. Emphasizing invariance, Jeffreys [63] 
takes the same premise in studying the choice of priors. 

C. Outline 

The remainder of the paper is organized as follows. In 
Section II we introduce some definitions and notation. In 
Section III we motivate and formally state the axioms. 
Their consequences for continuous densities are explored 
in Section IV; a series of theorems culminates in our main 
result justifying the principle of minimum cross-entropy. 
The discrete case, including the principle of maximum 
entropy, is discussed in Section V. Section VI contrasts 
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axioms of inference methods with axioms of information 
measures and contains concluding remarks. A more de- 
tailed exposition of our results is contained in [42]. 

II. DEFINITIONS AND NOTATION 

To formalize inference about probability densities that 
satisfy arbitrary expectation constraints, we need a con- 
cise notation for such constraints. We also need a nota- 
tion for the procedure of minimizing some functional to 
choose a posterior density. We therefore introduce an 
abstract information operator that yields a posterior den- 
sity from a prior density and new constraint information. 
We can then state inference axioms in terms of this 
operator. 

We use lowercase boldface roman letters for system 
states, which may be multidimensional, and uppercase 
boldface roman letters for sets of system states. We use 
lowercase roman letters for probability densities and up- 
percase script letters for sets of probability densities. 
Thus, let x be a state of some system that has a set D of 
possible states. Let 9 be the set of all probability densi- 
ties q on D such that q(x) > 0 for x ED and 

J 
dxq(x)= 1. 

D 
(2) 

We use a superscript dagger to distinguish the system’s 
unknown “true” state probability density qt E 9. When 
S c D is some set of states, we write q(x ES) for the set of 
values q(x) with x ES. 

New information takes the form of linear equality con- 
straints 

/ dxqt(n)ak(x) =0 
D 

and inequality constraints 

(3) 

$ dx.q+(x)c,(x) > 0 
D 

(4 

for known sets of bounded functions ak and c,. The 
probability densities that satisfy such constraints always 
comprise a closed convex subset of 9. (A set !I c %  is 
conuex if, given 0 <A < 1 and q,r E 5, it contains the 
weighted average Aq + (1 - A)r.) Furthermore, any closed 
convex subset of 6iJ can be defined by equality and 
inequality constraints, perhaps infinite in number. We 
express constraints in these terms, using the notation 
I=(qt E$), to mean that qt is a member of the closed 
convex set 9 C 9. We refer to Z as a constraint and to 9 as 
a constraint set. We use uppercase roman letters for con- 
straints. 

Let p E 9 be some prior density that is an estimate of q+ 
obtained, by any means, prior to learning I. We require 
that priors be strictly positive: 

p(x~D)>0. (5) 

(This restriction is discussed below.) Given a prior p and 
new information I, the posterior density q E $ that results 
from taking I into account is chosen by minimizing a 

functional H(q,p) in the constraint set $: 

H(cLP) = y$ H(q’7p). (6) 

We introduce an “information operator” 0 that expresses 
(6) using the notation 

q=po I. (7) 
The operator 0 takes two arguments-a prior and new 
information-and yields a posterior. For some other func- 
tional F(q,p), suppose q satisfies (6) if and only if it 
satisfies 

Then we say that F and H are equivalent. If F and H are 
equivalent, the operator 0 can be realized using either 
functional. 

If H has the form (l), then (7) expresses the principle of 
minimum cross-entropy. At this point, however, we 
assume only that H is some well-behaved functional. In 
Section III we give consistency axioms for 0 that restrict 
the possible forms of H. We say that a functional H 
satisfies one of these axioms if the axiom is satisfied by the 
operator 0 that is realized using H. 

In making the restriction (5) we assume that D is the set 
of states that are possible according to prior information. 
We do not impose a similar restriction on the posterior 
q =p 0 Z since Z may rule out states currently thought to be 
possible. If this happens, then D must be redefined before 
q is used as a prior in a further application of 0. The 
restriction (5) does not significantly restrict our results, 
but it does help in avoiding certain technical problems 
that would otherwise result from division by p(x). For 
similar reasons-avoidance of technically troublesome 
singular cases-we impose on the information I the re- 
striction that there exists at least one density qE $l with 
H(w) < 00. 

For some subset S c D of states and x ES, let 

be the conditional density, given XES, corresponding to 
any qE9. We use 

q(xlxES)=q*S (9) 
as a shorthand notation for (8). 

When D is a discrete set of system states, densities are 
replaced by discrete distributions and integrals by sums in 
the usual way. We use lowercase boldface roman letters 
for discrete probability distributions, which we consider to 
be vectors; for example, q = ql, - - . ,q”. It wiIl always be 
clear in context whether, for example, the symbol r refers 
to a system state or a discrete distribution and whether si 
refers to a probability density or a component of a dis- 
crete distribution. 

III. THE AXIOMS 

We follow the formal statement of each axiom with a 
justification. We assume, throughout, a system with possi- 
ble states D and probability density qt E 9. 
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Axiom I (Uniqueness): The posterior q =p 0  I is unique 
for any prior p E 0 and new information I=(qt E !l), 
where J ~9. 

that satisfy 

Justification: If we solve the same problem twice in 
exactly the same way, we expect the same answer to result 
both times. Actually, Axiom I is implicit in our notation. 

Axiom II (Invariance): Let I’ be a coordinate transfor- 
mation from x E D to YE D’ with @ ‘q)(y)= J-‘q(x), 
where J is the Jacobian J=a(y)/a(x). Let ITI be the set 
of densities rq corresponding to densities q E 9. Let 
(I’J)c(I’~) correspond to Cl ~9. Then, for any prior 
p E 9 and new information I = (qt E S), 

(0) 0  0-z) = r(p 0  I) (10) 
holds, where rl= ((I’$) E (I?l )). 

J dxq( x) = m , 
s, 

(13) 

for each subset Si, where the m i are known’values. Then 

(p”(I/\M))*S,=(p*S,)oh 
holds, where I = I, A I,A . . . A I,,. 

(14) 

Justification: We expect the same answer when we 
solve the same problem in two different coordinate sys- 
tems, in that the posteriors in the two systems should be 
related by the coordinate transformation. 

Justification: This axiom concerns situations in which 
the set of states D decomposes naturally into disjoint 
subsets Si, and new information Ii is obtained about the 
conditional probability densities qt*Si in each subset (see 
(8) and (9)). One way of accounting for this information is 
to obtain a conditional posterior qi=(p*Si) 01~ from each 
conditional prior p*S,. Another way is to obtain a post- 
erior q =p 0  I for the whole system, where I = I,// - * * A I,. 
The two results should be related by q*Si= qi or 

Suppose there are two systems, with sets D,, D, of states 
and probability densities of states qf E 9,, q;E Ci$. Then 
we require the following axiom. 

Axiom III (System Independence):  Let p, E (X7, and pz E 
q1 be prior densities. Let I, =(qf~ g,) and I,=(qj E !l,) 
be new information about the two systems, where 4, ~9, 
and !& c Qz. Then 

holds. 

(11) 

(p”z)*si=(p*si)~zi. (15) 
Moreover, suppose that we also learn the probability of 
being in each of the n subsets. That is, we learn M= (qt E 
%), where 31t is the set of densities q that satisfy (13) for 
each subset S;.. The known numbers m i are the probabili- 
ties that the system is in a state within Si. The m , satisfy 
Zimi= 1. Taking M  into account should not affect the 
conditional densities that result from taking I into 
account. We  therefore expect a more general version of 
(15) to hold, namely (14). 

IV. CONSEQUENCESOFTHEAXIOMS 
Justification: Instead of q{ and qj, we could describe 

the systems using the joint density qt E g12. If the two 
systems were independent, then the joint density would 
satisfy 

A. Summary 

q+blJJ = dbMw. (12) 

Now the new information about each system can also be 
expressed completely in terms of the joint density qt. For 
example, I, can be expressed as I, = (qt E g;), where s; C 
‘i7,* is the set of joint densities qE‘% l,2 such that q1 E$,, 
where 

Since we require the axioms to hold for both equality 
and inequality constraints (2) and (3), they must hold for 
equality constraints alone. We  first investigate the axioms’ 
consequences assuming only equality constraints. Later, 
we show that the resulting restricted form for H also 
satisfies the axioms in the case of inequality constraints. 

We  establish our main result in four steps. The first step 
shows that the subset independence axiom and a special 
case of the invariance axiom together restrict H to func- 
tionals that are equivalent to the form 

I, can be expressed similarly. Now, since the two priors 
together define a joint prior p =p,p2, it follows that there 
are two ways to take the new information I, and I, into 
account: we can obtain separate posteriors q1 =pl 01, and 
q2 =pz 0 I,, or we can obtain a joint posterior q =p 0  (I,r\ 
I,). Because p, and pz are independent, and because I, 
and I, give no information about any interaction between 
the two systems, we expect these two ways to be related 
by q= q,q2, whether or not (12) holds. 

F(w) = ~Ddrf(qb%dx)) (16) 

for some function f. We call this the “sum form.” In the 
axiomatic characterizations in [34], [55], and [56], the sum 
form was assumed rather than derived. Our next step 
shows that the general case of the invariance axiom re- 
stricts H to functionals that are equivalent to the form 

(17) 

Axiom IV (Subset Independence):  Let S,, - + * ,S,, be dis- for some function h. Our third step applies the system 
joint sets whose union is D, and let p ~9 be any known independence axiom and shows that if H is a  functional 
prior. For each ‘subset Si, let Ii=(qt*Si E gi) be new that satisfies all four axioms, then H is equivalent to 
information about the conditional density qt*Si, where cross-entropy (1). Since it could still be imagined that no 
Cli C si and Si is the set of densities on Si. Let M= (q+E functional satisfies the axioms, our final step is to show 
‘X) be new information giving the probability of being in that cross-entropy does. We  do this in the general case of 
each of the n subsets, where %  is the set of densities q equality and inequality constraints. 
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B. Deriving the Sum Form 

We derive the sum form in several steps. First, we show 
that when the assumptions of the subset independence 
axiom hold, the posterior values within any subspace are 
independent of the values in the other subspaces. Next, we 
move formally to the discrete case and show that invari- 
ance implies that H is equivalent to a symmetric function. 
We then apply the subset independence axiom and prove 
that H is equivalent to functions of the form F(q,p)= 
zif(+pJ, where p and q are discrete prior and posterior 
distributions, respectively, and we return to the continu- 
ous case yielding (16). 

We begin with the following lemma concerning subset 
independence. 

Lemma I: Let the assumptions of Axiom IV hold, and 
let q=p 0 (I/\M) be the posterior for the whole system 
(q E 9). Then q(xESJ is functionally independent of 
q(x@S,), of the priorp(x@Si), and of n. 

Proof: Let 

(1’3) 
be the conditional posterior density in the ith subspace 
(qi E Si). Since p*Si depends on p only in terms of p(x E 
si) (see (8) and (9)), so does qi. Furthermore, since qi is the 
solution (18) to a problem in which x E Si only, qi cannot 
depend on q(x ~5s~). Now, (14) states that q(x)= m iqi(x) 
for XES,, where we have used (8) and (13). Since the m, 
are fixed, it follows that q(xESi) is independent of q(x@ 
Si) and p(x @  S,), proving Lemma I. 

Our next step is to transform to the discrete case. 
Lemma ZZ: Let S,,S2, * - * ,S,, be disjoint sets whose un- 

ion is D. For a prior p and a posterior q =p 0 Z  let 

Pj = ls,dxp(x), and 
I 

e = Js,dxq(x% 
J 

Suppose that p(x E S) is constant for each subset 3, and 
let the new information Z be provided by constraints (3) 
and (4) in which the functions ak and ck are also constant 
in each subset. Then the posterior q =p 0 I is also constant 
in each subset, and H is equivalent to a symmetric func- 
tion of the n pairs of variables (s,pj) (We refer to this 
situation as the discrete case.) 

Proof: Since the a, and c, are constant in each sub- 
set, the constraints have the form 

x qJakj = 0 (19) 
j 

or 

where akj = ak(x E Sj), ckj = ck(x E Sj), and 

q,! = f-!-,dxq+W. 
I 

Now, let IJ be a measure-preserving transformation that 
scrambles the x within each subset Si. This leaves the 

prior and the constraints (19) and (20) unchanged. It 
follows from invariance (10) that r also leaves q un- 
changed, which will only be the case if q is constant in 
each Si. In the discrete case, H becomes a function 
H(q,p) of 2n variables q,;* * * ,q, and p,; :* ,p,,. To show 
that H is equivalent to a symmetric function let r be any 
permutation. By invariance, the minima of H and TH 
coincide, where 

Map) = H(q,r(,), * - - ,qn(n)a,(l), * *, - ,P,~,,). 
Therefore the minima of H and F coincide, where F is the 
mean of the ?rH for all permutations r, and H is equiv- 
alent to the symmetric function F. This completes the 
proof of Lemma II. 

We now prove that H is equivalent to functions with 
the discrete sum form. 

Theorem I: In the discrete case let H(q,p) satisfy 
uniqueness, invariance, and subset independence. Then H 
is equivalent to a function of the form 

F(q,P) = IX f(+Pj) (21) 
j 

for some functionf. 

Theorem I is proved in the Appendix. The proof rests 
primarily on the subset independence property (Lemma 
1). 

We return to the continuous case by taking the limit of 
a large number of small subspaces Si. The discrete sum 
form (21) then becomes (16). 

C. Consequence of General Invariance in the 
Continuous Case 

Although invariance was invoked for the special case of 
discrete permutations in deriving (21), the continuous sum 
form (16) does not satisfy the invariance axiom for arbi- 
trary continuous transformations and arbitrary functions 
f. The invariance axiom restricts the possible forms off as 
follows. 

Theorem II: Let the functional H(q,p) satisfy unique- 
ness, invariance, and subset independence. Then H is 
equivalent to a functional of the form 

for some function h. 

Proof From previous results we may assume H to 
have the form (16). Consider new information I consisting 
of a single equality constraint 

J dxqt(x)a(x) = 0. 
D 

(23) 

Then, by standard techniques from the calculus of varia- 
tions, it follows that the posterior q =p 0 Z satisfies 

h + aa(x) + g(q(x),p(x)) = 0, (24) 
where X and Q are Lagrangian multipliers corresponding 
to the constraints (2) and (23) and where the function g is 
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defined as and where 

db, c) = $f@,c). (25) 

Now let r be a coordinate transformation from x to y in 
the notation of Axiom II. Then the transformed prior is 
p’(y)= J-‘p(x) and the transformed constraint function is 
a’(y) = Ta = a(x). The  posterior q’ =p’ 0 (r-z) satisfies 

u(r)=h(r)+r-$h(r). (31) 

The two systems can also be described in terms of a 
joint probability density qt EQ, a joint prior p=p,p*, 
and new information I in the form of the three constraints 

(26) 
where A’ and (Y’ are Lagrangian multipliers. Invariance 
(10) requires that q’(y)= J-‘q(x) holds, so (26) becomes 

SJ D dXdxzq+(X~,xJ = 1, (32) D 
I 2  

Js dx,dx2qt(x,,xZ)ai(xi) = 0  (i= 1,2). (33) 
DI 4 

h’+a’a(x)+g(J-‘q(x),J-‘p(x))=O. 
Combining (24) and (27) yields 

g(J-'q(x),J-'p(x))=g(q(x),p(x)) 

(27) 

+(a-a’)a(x)+h-X. (28) 
Now let S,,. . . ,S, be disjoint subsets whose union is D 
and let the prior p be constant within each Sj. It follows 
from Lemma II that q is also constant within each S;., 
which in turn results in the right side of (28) being 
constant within each Sj. (The primed Lagrangian multi- 
pliers may depend on the transformation r, but they are 
constants.) On the left side, however, the Jacobian J(x) 
may take on arbitrary values since r is an arbitrary 
transformation. It follows that g can only depend on the 
ratio of its arguments, i.e., g(b, c) = g(b/c). Equation (25), 
therefore, has the general solution f(a, b) = ah(a/ b) + v(b), 
for some functions h and v. Substitution of this solution 
into (16) yields 

The posterior q =p 0 I satisfies 

A’+a’,a,(x,)+a~a,(x,)+u(r(x,,x,))=O, (34) 
where the multipliers A’, a;, and CX; correspond to (32) and 
(33), and r= q/p. 

Now, system independence (11) requires q = qlqz, from 
which follows r = r,r2. Combining (30) and (34) therefore 
yields 

4v2) - 43) - 43) = (a1 - &)a1 
+(a,-aa;)a,+X,+X,-X. (35) 

Consider the case when D, and D, are both the real line. 
Then, differentiating this equation with respect to x, and 
differentiating the result with respect to x2 yields 

u”(r,r2)r,r,+ u’(r,r,) =O. (36) 

J’(w) = /DWWM4/P(4) + /D~d~(xN. 

Since the second term is a function only of the fixed prior, 
it cannot affect the minimization of F and may be 
dropped. This completes the proof of Theorem II. 

D. Consequence of System Independence 

Our results so far have not depended on Axiom III. We  
now show that system independence restricts the function 
h in (22) to a single equivalent form. 

By suitable choices for the priors and the constraints, r3r2 
can be made to take on any arbitrary positive value s. It 
follows from (36) that the function u satisfies the differen- 
tial equation u’(s) + su”(s) = 0, which has the general solu- 
tion U(S) =A log(s)+ B, for arbitrary constants A and B. 
Combining this solution with (31) yields 

h(r) + r$ h(r) = A log(r) + B, 

which in turn has the general solution 

h(r)=Alog(r)+ C/r+ B-A. (37) 
Substitution of (37) into (22) yields 

Theorem III: Let the functional H(q,p) satisfy unique- 
ness, invariance, subset independence, and system inde- 
pendence. Then H is equivalent to cross-entropy (1). 

F(q,p)=Aj- dxq(x)log(q(x)/p(x))+(C+B-A), 
D 

(38) 

Proof W ith i = 1,2, consider two systems with states 
xi E Di, unknown densities q,! E qi, prior densities pi E gi, 
and new information 4 in the form of single equality 
constraints 

sincep integrates to one. Since the constants A, B, and C 
cannot affect the minimization of (38), provided A > 0, 
this completes the proof of Theorem III. 

E. Cross-Entropy Satisfies the Axioms 

s dxiq/(xi)ai(xi) =O. 
Di 

(29) 

From Theorem II, we may assume that H has the form 
(22). It follows that the posteriors qi =pi 0 4 satisfy 

& + a,a,(x,) + u(ri(xi)) =O, (30) 
where 4 and ai are Lagrangian multipliers corresponding 
to the constraints (2) and (29), where ri(xi) = qi(xi)/pi(xi), 

So far we have shown that if H(q,p) satisfies the 
axioms, then H is equivalent to cross-entropy (1). This still 
leaves open the possibility that no functional H satisfies 
the axioms for arbitrary constraints. By showing that 
cross-entropy satisfies the axioms for arbitrary constraints, 
we complete the proof of our main result. 

Theorem IV: Cross-entropy (1) satisfies uniqueness, in- 
variance, system independence, and subset independence. 
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Every other functional that satisfies the axioms is equiv- 
alent to cross-entropy. 

Proof: We need only show that cross-entropy satis- 
fies the axioms. 

Uniqueness: Let 4 be any closed convex set g G 0, 
and let densities q,r E 4 have the same cross entropy 
H(q,p) = H(r,p) for some prior p E 9. We define g(u) = 
u log(u), with g(0) = 0, so that H can be written as 

the densities q E ‘XJ12 with given marginal densities q1 and 
q2, the one with the least cross-entropy is qlq2. Since I, 
and I2 restrict only the marginal densities of q in q= 
(p1p2)o (Ii~1,)-see Axiom III and its justification-the 
density q with the least cross-entropy in the constraint set 
is of product form qlq2. But the cross-entropy of a density 
of this form satisfies 

H(q,q,,zm ) = H(q,,P,) + H(w’z) (40) 

H(w) = ~-dxp(x)g(q(x)lp(x)). 
and so assumes its minimum when the two terms on the 
right assume their individual minima-the first subject to 

‘” 

Now since g”(u)= l/u>O, g is strictly convex. It follows 
I,-and the second to 12. Thus we have q=(p,pJ 0 (I,r\Z& 

,, = qlq2 = (pl 0 Z1)(p2 0 I,), and we have proved that cross- 
mat entropy satisfies Axiom III. 

q(u) + (I- a)g(v) >g(au + (I- a>v), Subset Independence: We use the notation in 
for O<a < 1 and u#v. We set q(x)/p(x) for u and Axiom IV. We also define q=po(I/\M), qi=q*Si, and 
r(x)/p(x) for v, multiply both sides byp(x), and integrate, pi =p*Si. (Equation (14) then becomes qi =pi 0 Ii.) The 
obtaining cross-entropy of q with respect top may be written 

H(w) = H(r,p) 
= aH(q,p) + (I- a)H(r,p) 
>H(aq+(l-a)r,p). 

The inequality is strict unless q = r. (We write q = r when 
q(x)= r(x) for almost all x, since in this case q and r 
define the same probability distribution.) Thus, if q#r 
and H(q,p)= H(r,p) both hold, there is a density aq + 
(1 - cr)r that belongs to $l (since !l is convex) and has 
cross-entropy smaller than H(q,p). Therefore, there 
cannot be two distinct densities q, r E 9 having the mini- 
mum cross-entropy in g. For the existence of one such 
density see Csiszar [66, theorem 2.11. This proves that 
cross-entropy satisfies Axiom I. 

Invariance: Let I’ be a coordinate transformation 
from x to y in the notation of Axiom II. A change of 
variables in (1) shows that cross-entropy is transformation 

H(q,P)= 2 / d~m~q~(x)log 
i s. 

= x miH(qi,Pi) + 2 mJW( T)y (41) 
i i , 

where the si are the prior probabilities of being in each 
subset, 

si = dxp(x). / & 
The second sum on the right of (41) is a constant and has 
no effect on minimization. Minimizing the left side of (41) 
subject to (IAM) is equivalent to minimizing each term 
of ZimiH(qi,pi) individually subject to Ii. This proves that 
cross-entropy satisfies subset independence and completes 
the proof of Theorem IV. 

invariant : 

H(q,P) = fvk rd. 
V. THE DISCRETE CASE 

The minimum in I?$ therefore corresponds to the mini- A. Principle of M inimum Cross-Entropy for 
mum in $l, which proves that cross-entropy satisfies Discrete Systems 
Axiom II. 

System Independence: We use the notation in 
Axiom III. Consider densities ql,pl E%i and q2,p2Eq2. 
Let q E q12 satisfy q#q,q2, 

s dxlq(xl,x2) = q2, and I ~,d-Gx,) = 41; 
4 4 

i.e., q and q1q2 are different densities with the same 
marginal densities. A straightforward computation of the 
cross-entropy difference between q and qlq2 for the same 
prior plp2 yields 

H(w,p,) -H(q,q,,p,p,) = H(wz,q,). 

Theorem IV states that if one wishes to select a post- 
erior q =p 0 I in a manner that satisfies Axioms I-IV, the 
unique result can be obtained by minimizing the cross- 
entropy (1). Although the equivalent result for the discrete 
case can be obtained in the usual informal way by replac- 
ing integrals with sums and densities with distributions, it 
can also be obtained formally as follows. 

Suppose a system has a finite set of n states with 
probabilities qt. Let p be a prior estimate of qt and let 
new information I be provided in the form 

2 qJaki = 0 

Now, cross-entropy has the property that H(q,p) > 0 with or 
H(q,p)=O only if q =p (for example, see [31, p. 141). It 
follows that x qTcki > O? (43) 

i 

H(q,p,p,) >H(q,q,,p,p,) (39) for known numbers ski and cki. Then it is clear that there 
holds, since q#q,q, by assumption. This means that of all exist problems with continuous states and densities for 
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which the foregoing finite problem is the discrete case as 
defined in Lemma II. It follows from Lemma II and 
Theorem IV that the cross-entropy functional becomes a 
function of 2n variables and that the posterior q =p 0 I 
can be obtained by minimizing the function H(q,p)= 
Xiqilog(qi/pi), subject to the constraints (42) and (43). 

B. The  Maximum Entropy Principle 

Using transformation group arguments, Jaynes [25] has 
shown that a uniform prior pi = n -’ is appropriate when 
we know only that each of the n system states is possible 
(as distinct from “complete ignorance” when we do not 
even know this much). It follows that, given a finite state 
space and constraints of the form (42) and (43), the 
posterior is obtained by minimizing the function 

H(q) = 2 qilodqi) -log(n). 

This is equivalent to maximizing the entropy 
-Ziqilog(qi). Thus, entropy maximization is a special 
case of cross-entropy minimization. 

It is also possible to obtain the maximum entropy 
principle formally and directly. We  show how in the 
following although we omit some of the formal details. 
The first step is to rewrite the axioms so that they refer to 
the discrete case in which no prior is available. In this 
case, given new information I in the form of constraints 
(42) and (43) the unary operator 0 selects a posterior 
distribution q = (0 I) from all distributions that satisfy the 
constraints. The operator is realized by minimizing some 
function H(q). The axioms become (see Section III) the 
following. 

I. Uniqueness: The posterior q = ( 0 I) is unique. 
II. Permutation Invariance: 0  (rl) = r( 0  I) for any 

permutation r. 
III. System Independence:  ( 0  (I,/jI,)) = ( 0  IJ( 0  12). 
IV. Subset Independence:  ( 0  (Ir\M))*S,, = ( oIi). (44) 

Theorem I goes through in a straightforward way with the 
prior deleted. This shows that, if H(q) satisfies uniqueness, 
permutation invariance, and subset independence, it is 
equivalent to a function of the form 

H(q) = 2  f(qi)* 
i 

(45) 

Next we assume this form and apply system indepen- 
dence in a manner analogous to the proof of Theorem III. 
Consider a system with n states and an unknown distribu- 
tion q+, and another system with m  states and an un- 
known distribution ,t. New information is provided in 
terms of single constraints: 

i q,!ai = 2  rib, = 0. 
i= 1 k=l 

The posteriors q and r satisfy 

w(qirk) = u(e) + u(rk) + (a - a’)a, 
+(P--j3’)bk+hl+A2-A’, 

where u(x)=fl(x) and (Y, (Y’, /3, /3’, A,, A,, and A’ are 
Lagrangian multipliers. This is the discrete analog of (35). 
It leads to 

‘(qi’k) - ‘(qirJ = u(wk) - +wJ 

= G(rk, r,) (46) 
for some function G. Since the right side of (46) does not 
depend on qi, we pick an arbitrary value for qi on the left 
side. This shows that G satisfies 

G(~,Y)=s(x)--S(Y) (47) 

for some function s. (We note that G satisfies Sincov’s 
functional equation G(x,y) = G(x,z) + G(z,y) which has 
the general solution (47) [64, p. 2231.) Some manipulation 
of (46) and (47) yields 

u(xy)-s(x)-s(y)=u(wz)-s(w)-s(z). 

Since the two sides are independent of each other, they 
must be equal to some constant. Thus, u satisfies u(v)= 
g(x) + g(y), for some function g. Using standard tech- 
niques of functional equations [64, pp. 34, 3021, we obtain 
the general solution for u, namely u(x)= A log(x)+ B, 
where A and B are constants. Combining this with u(x)= 
f’(x) and integrating yields the solution for f in (45), 
f(x) = Ax log(x) + Bx - A, which in turn yields 

H(q) = A 2 qilog(qi) - nA + B. 
i 

(48) 

This function has a unique minimum provided that A is 
positive. 

Minimizing the function H in (48) is equivalent to 
maximizing the entropy - Z,q, log(qi). This proves that if 
one wishes to select a discrete posterior distribution q= 
( 0 1) in a manner that satisfies the axioms (44), the unique 
result can be obtained by maximizing entropy. 

VI. CONCLUDING REMARKS 

Our approach has been to axiomatize desired properties 
of inference methods rather than to axiomatize desired 
properties of information measures. Yet it might seem that 
the axioms in Section III are no more than a thinly 
disguised characterization of cross-entropy. In this view 
Axioms I and II might correspond to axioms requiring 
that H have unique minima and be transformation in- 
variant, and Axioms III and IV might correspond to 
axioms requiring that H be “additive” [34] and satisfy 
something like the “branching property” [65]. These corre- 
spondences are meaningful and not surprising-after all, 
inference methods should relate to information measures 
-but it is important to realize that there are significant 
differences as well. For example, if we knew that H itself 
must be transformation invariant, the deduction of (22) 
from (16) would be direct (Theorem II). But Axiom II 
implies only that the minima of H must be transformation 
invariant, so the proof of Theorem II reasons in terms of 
invariance at the minima. 
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As another example, consider the following axiom. 
Additivity: 

ff(q,q2md = H(q,s,) + H(q,s,) 

for all ql,pl E q), and q2,p2E 9,. (49) 

This can be used [34] in characterizing the directed diver- 
gences. In Section IV we showed that if H has the sum 
form (22) and satisfies system independence, then H is 
equivalent to cross-entropy (Theorem III). When we 
proved, as part of Theorem IV, that cross-entropy itself 
satisfies system independence, we used the fact that 
cross-entropy satisfies additivity (49) (see (41)). It might 
seem that any functional that satisfies additivity also 
satisfies system independence. But Johnson [34] proved 
that the information measures H(q,p) of the form (22) 
that satisfy additivity (49) are those of the form 

H(w) = A~Ddxq(x)log(q(l)/p(x)) 

+ B Ddxp(x)log(p(x)lq(x)), (50) J 

for some constants A, B > 0, not both zero. That is, (22) 
and additivity (49) of H yields the linear combination of 
both directed divergences, whereas (24) and system inde- 
pendence of 0 yields only one of the directed divergences, 
cross-entropy. The key to the difference is the property 
expressed by (39)-for all densities qE gl, with given 
marginal densities q1 and q2, H(q,p,p,) has its minimum 
at q = qlq2. This property is necessary if H is to satisfy 
system independence; it is satisfied by the first term in 
(50) but not by the second, even though the second term 
satisfies additivity. 

In summary, we have proved that, in a well-defined 
sense, Jaynes’s principle of maximum entropy and Kull- 
back’s principle of minimum cross-entropy (minimum di- 
rected divergence) provide correct general methods of 
inductive inference when given new information in the 
form of expected values. When Jaynes first advocated the 
maximum entropy principle more than 20 years ago, he 
did not ignore such questions as “why maximize entropy, 
why not some other function?’ We have established the 
sense in which the following conjecture [1, p. 6231 is 
correct: “deductions made from any other information 
measure, if carried far enough, will eventually lead to 
contradictions.” 
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APPENDIX 
PROOF OF THEOREM I 

After showing that aH/aqi has the form 

(Al) 

we show that (Al) results in H being functionally dependent on 
F(q,p) = L: J(qi,pi), where f satisfies g = af(b, c)/ab. We then 
show that the functional dependence is monotonic so that H and 
F are equivalent. 

In realizing the operator 0, the only relevant values of H(q,p) 
are at points q that satisfy the discrete form of (1): 

i: C&=1. w9 
j- 1 

We refer to the hyperplane of such points q as the normalization 
subspace. In selecting posteriors by minimizing H, we are further 
restricted to the positive region in which qi > 0 for i = 1,. * . , n. On 
the normalization subspace (A2), H(q,p) is a function of only 
n - 1 independent variables qi (the prior p is assumed fixed). For 
convenience, however, we consider H to be extended off the 
normalization subspace to a well-behaved function of n indepen- 
dent variables that is symmetric under identical permutations of 
q and p (see Lemma II). This enables us to express the gradient 
VH as 

VH= 2 z&, 

i=* aqi 

where {iI,* * + ,c?,,} is a standard orthonormal basis. The operator 
0 can be realized by minimizing the extended H in the positive 
region provided that (A2) is always imposed as a constraint. In 
the continuous case we have assumed that the functional H(q,p) 
is well-behaved. We take this to mean, in particular, that the 
function H(q,p) is continuously differentiable in the interior of 
the positive region of the normalization subspace and that the 
projection of V H into the normalization subspace is zero only at 
minima of H. 

Now let N be the set (1; .. ,n}, let McN be a set of m 
integers from N, and let M-N be the set that remains after 
deleting M. Let qM comprise the components qi with i E M and 
let qNeM comprise the rest. We refer to points q,+, as points in 
the M-subspace. We assume both n > 6 and m > 4. Suppose new 
information comprises a set of constraints (19) that satisfy a& = 0 
either for all j E M or for all j E N - M, including the constraint 

x qJ,r. 643) 
/EM 

Any constraint satisfying akj =0 for jE M can be written as a 
constraint 

2 akjqjt= j21Makj(4,t/r)=0 
jEM 

on the conditional distribution given j E M: (qiM/r). Similarly, 
constraints that satisfy akj=O for jE N - M can be written as 
constraints on the conditional distribution qNN- ,/( 1 - r). There- 
fore, the system decomposes into two subsets (M and N-M) 
with new information that satisfies the assumptions of Axiom IV 
(subset independence). It follows from Lemma I that, when 
H(q,p) is minimized over the constraint set, the resulting qM are 
independent of the qN- ,+,, of the pN- ,,,,, and of n. 

Now, the constraint (A3) requires that the solution q,,, be 
found on the m - 1 dimensional hyperplane defined by (A3). 
Therefore, finding this solution depends not on the projection of 
V H into the M-subspace, 

(VH)M= jzM $3 I 

but on its projection onto the (m - 1) dimensional hyperplane 
defined by (A3). This projection is given by B,=(VH),-(6 
(VH),)fi, where ii is a unit vector normal to the hyperplane. BM 
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has components (A6). It follows that 

(A41 

for iEM. Now, since H is symmetric (Lemma II), 

$f =h(qi,~~-i,Pi,PN-i)~hi 
i 

holds for some function h, where qNei is any permutation of q 
with a deleted and pN-i is the same permutation of p  with pi 
deleted. Hence, (A4) becomes 

BMi=B(qi,q,-i,Pi,PN-i), 
for some function B. 

To find the solution for qM, one moves on the constraint 
hyperplane opposite the direction of maximum change in 
H-i.e., opposite the direction of B,-until no further move- 
ment is possible within the constraint set (19). Since the solution 
cannot depend on qN--M or pN-,,,, neither can the direction of 
B,. This direction is also independent of n, since the subspace 
solution qM is independent of II (Lemma I). If lJ, is a unit 
vector in the direction of B,, with components U,, it follows 
that 

for some function U, where qMei is any permutation of qM with 
qi deleted, etc. The function U is well-defined everywhere on the 
constraint hyperplane except at a point at which H is minimized 
subject only to (A3). Such a point is characterized equivalently 
by BM= 0 and by hi = hi for all ij E M. By uniqueness, there is at 
most one such point. For if there were more, H would reach its 
minimum value at more than one point or would have local 
minima in addition to an absolute minimum. In either case, one 
could define convex constraint sets in which the minimum of H 
would occur at more than one point, thereby violating unique- 
ness. 

The point at which (A5) is ill-defined is also characterized by 
the equality of the ratios (qi/pi)=(qi/pi) for all i,jE M. To see 
this, we apply the subset independence axiom. Minimizing H 
subject only to (43) means that (14) applies without the addi- 
tional information I. Then, given 

b= E Pj, 
jEM 

(14) becomes (~/r)=(p~/b) so that e/pi is a  constant indepen- 
dent of j for j E M. In the case of R = m, the constraint hyper- 
plane becomes the entire positive region of the normalization 
subspace; (A3) becomes equivalent to (A2) and r = b  = 1 holds. 
This shows that there is only one point at which all of the hi are 
equal, namely the point q=p. Similarly, by taking m =2 and 
M= { i,j}, one can show that the condition hi = hi is equivalent to 
the condition ( qi/pi) =  (q/pi). 

From (A5) we obtain 

BMi - BMj UMi - uMj 

B Mk - BMj = U& - UMj 

for ij,kE M. But 

646) 

(A7) 

follows from (A4). Since the right-hand side of (A7) cannot 
depend on the definition of M, neither can the right-hand side of 

hi - hi 
w = w(qi,$, qk,Pi,Pj,Pk) F wi,, 

J 

holds for some function W. By this construction W  is well- 
defined when qi + e + qk < 1 and hk #hj; however, 

hi - hi wg” 
w=w,,=wVk 

holds, and further manipulation yields 

W) 

Since .(A9) is independent of q,, q,,, pr, and p,, we may take 
arbitrary values of these variables and use (AS) to extend the 
definition of W. By the discussion following (A8), the numerator 
and denominator on the left of (A9) are defined as long as 
(q,/p,)#(q,/p,) holds and then the fraction is well-defined 
whenever (qk/pk) # ($/pi) and 0 <qv < 1 - qu  - q, hold, where 
p = ij, k. But we can make 1 - qu  - q, arbitrarily close to 1 so 
that we may extend the domain of wi,, to include all arguments 
such that qi, c&, and qk are between 0 and 1 and (&/pk)#(~/pj) 
holds. Moreover, (AS) continues to hold on this extended 
domain. 

Now we may write g(qi,pi)=gi for W, with some particular 
fixed values of qr,q,, and obtain 

dqi,Pi) -d$~Pj) hi - hj _  
hk - hj g(qk#k) -dqiTPj) 

WO) 

for some function g. It follows that hi= aH/aq, has the form 
(Al) for some functions z, s, and g. This implies that s is given 
by 

hi - hi 
s=-. 

gi - gi (Al 1) 

For a particular point q, the right-hand side may be ill-defined 
for certain values of i and j. Since s is independent of i and j, 
however, s is well-defined unless gi=G for all ij. But from the 
construction of g, the condition gi =gj is equivalent to hi= hj 
and therefore to (qi/pi)= (e/pi). It follows that s is well-de- 
fined everywhere in the positive region of the normalization 
subspace except perhaps at the single point where q=p holds. 
The function z is likewise well-defined except perhaps at this 
point. 

Furthermore, s and g are continuous except perhaps at q=p. 
Since H is continuously differentiable, the derivatives hi are 
continuous and finite everywhere in the positive region of the 
normalization subspace (except possibly on the boundary, at 
points that satisfy qi = 0 for some i). It follows that each of the 
functions (V H),,,, B,, U, W, s, and g is continuous except 
perhaps at certain “obvious” points where it is ill-defined be- 
cause of a vanishing denominator in the construction. 

Let t parameterize some curve q(t) in the positive region of the 
normalization subspace. It follows from (Al) that 

$H(qtt)9P)=sE 4igi+zE (ii 
i i 

holds, where Q= dq,/dt. But (42) implies Zidi=O, and 

-$ H(q(O,p) =  s(q(O,p) $  F(q(t),p), 6412) 

where 
F(q9P)E 5  f(qi,Pi) (A13) 

i=l 
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for some function f related to g by g(q,,pi)=af(qi,pi)/aqi. 
Suppose the curve q(t) lies in a level surface of H. Then 
dH/dt = 0 and (A12) shows that F is also constant on any such 
curve, unless perhaps s is zero. However, (All) shows that, in 
the interior of the normalization subspace, s is not zero unless 
h, = hi for all ij, which is true only at the point q =p. It follows 
that F is constant on connected components of level surfaces of 
H and that F and H are functionally dependent-locally, F can 
be written as a function of H, with dF/dH= l/s(q,p). Next we 
show that the functional dependence is monotonic. If it were 
not, then dF/dH would change sign at a point q and, therefore, 
in some neighborhood of q along a level surface of H, but we 
have seen that s is continuous and nonzero in the interior of the 
normalization subspace except perhaps at one point (q=p); it 
follows that s is of constant sign. Hence, the functional depen- 
dence of F on H is monotonic. The function F in (A13) is 
therefore equivalent to H, as stated in Theorem I. 
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Lower Bounds for Constant W e ight Codes 
R. L. GRAHAM AND N. J. A. SLOANE, FELLOW, IEEE 

Ahma--Let A(n,28, w) denote the maximum number  of CodeworQl in whose value at 4 = (ao, * + + , a,,- 1) E IF”, iS 
anybimrycodeof lengthn,amtantweightw,andHammingdfstame2S. 
Sevemd Iowes buds for A(n,26, w) are. given. For w and  8  fixed, T(u)= x i (modn) 
A(n,26,w)Rn”-8+‘/w! and  A(n,4,w)--n”-l/w! as n-too. In most a,= 1 
casesthesearebettesthanthe“Gfbertbound.”Revfsedtablesof n-1 
A(n,26,w) IIP given in the range n < 24 and 6 < 5. = izo iq (modn). (1) 

I. LOWER BOUNDS FOR A(n, 4, w) For 0 < i < n - 1  let Cj be the constant weight code T  - l(i). 
We  claim that the Hamming distance between any two 
distinct codewords of Ci, say a and b, is at least four. For 
suppose it is two. Since a and b have weight w this means 
that a and b agree everywhere except for two positions, 

Theorem 1: 

A(n,4,w)> $( St). 

Proof: Let IF: denote the set of ( ;) binary vectors of 
one (say the rth) where 4 is one and b is zero and another 

length n and weight w, and let Z,, =E/nZ denote the 
(say the sth) where (I is zero and b is one. But T(a)= T(b) 

residue classes modulo n. Consider the map 
= i 

, 
so from (1) 

T(a)=x+r=i (modn), 
T(b)=x+s=i (modn) 

Manuscript received February 20, 1979; revised August 22, 1979. for some x E Z,,. This implies r rs(modn), which is impos- 
The authors are with Bell Laboratories, Inc., Murray Hill, NJ 07974. sible. Thus Ci has a Hamming distance of at least four 
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