An efficient algorithm for
constructing nearly optimal
prefix codes

by

Kurt Mehlhorn

Fachbereich 10 -
Angewandte Mathematik

und Informatik

Universitdt des Saarlandes
6600 Saarbriicken

West Germany

September 1978

A 78/13

Abstract: A new algorithm for constructing nearly optimal prefix
codes in the case of unequal letter costs and unequal probabilities
is presented. A bound on the maximal deviation from the optimum

is derived and numerical examples are given. The algorithm has
running time O0(t-n) where t is the number of letters and n is

the number of probabilities.

I. Introduction

We study the construction of prefix codes. Given is a set
n

PpsPos---sPy of probabilities, P; > 0 and = P; = i
i=1

and a set Aps-ensdy of letters; letter a; has cost o € R,

c; > 0. A prefix code T over the alphabet I = {al,az,...,at}

is a set Ul""’Un of words in £*¥ such that no Ui is a prefix

of any Uj for i £ j. Let

be the i-th code word. Its cost C(Ui) is defined as the sum of the
letter costs, i.e.

At present, there is no efficient algorithm for constructing an
optimal (= minimum average cost) code given Pps---sPy and
Cyse--sCy. Karp formulated the problem as an integer programming

problem and hence his algorithm may have exponential time com-
plexity. Various approximation algorithms are described in the
literature (Krause [1], Csiszar [2], Altenkamp and Mehlhorn [3] , Cot [4]. They

construct codes T such that
. .
H(pl,...,pn) < & Copt < ¢-C(T) = H(pl,...,pn) +
+ f(cl,cz,...,ct) + Y

where H(py,....p) = -Ip;

bility distribution, ¢ is defined such that y 2
T2l

(root of characteristic equation of letter costs), C

log P; is the entro%y of the proba-
=-CCq = 1

opt is the

cost of an optimal code, f(cl,...,ct) is some function of the
letter costs and y is a small constant. In most cases (Krause [1],
Csiszar [2], Altenkamp and Mehlhorn [3]) f(cl,.. "Ct) = lnax{ci [1<i<t}

while for Cot [4] f(cl,...,ct) is a morecomplex function.

Here we describe another approximation algorithm and prove a
similar bound for the cost of the code constructed by it (section
IT). In section III we indicate that our algorithm has Tinear
running time 0(t.n) and report some experimental results. They
suggest that the new algorithm constructs better codes than the
previous algorithms.

[I. The Algorithm and its Analysis

Consider the binary case first. There are two letters of cost
= and Cy respectively. In the first node of the code tree we
split the set of given probabilities into two parts of proba-
bility p and 1-p respectively. (Fig. 1)

Figure 1 : Splitting a set into two parts.
The local information gain per unit cost is then

_ H(p,1l-
Gle) = Cl égcz(?%p)

where H(p,gq) = -p Tog p - q log g. This is equivalent to

-p log p - (1-p) Tog (1l-p)

G(p) =
=iC:C -CC2

(-p-log 2 *-(1-p) Tog 2 2.

O =

for all ¢ ¥ 0

It is easy (elementary calculus) to see that G(p) is maximal
-ccy -CcCy
for p = 2 , l-p = 2 where ¢ is chosen such that

-ccy -cc -ccyq
2 + 2 = 1. Hence G(p) < ¢ for all p and G(2) = c.

The argument above suggests the following approximation algorithm:

try to split the given set of probabilities into two parts of pro-
bability p and 1l-p respectively so as to make p-2_cCl as small as

possible. Such a split maximizes the local information gain per
unit cost and should (hopefully) produce a good prefix code. For
the sake of efficiency our algorithm only considers splits of

the fDrm {pls---,p:l}) {p.i_'_li"'Spn}'

Next we illustrate the approach by an example. Given are pro-
babilities (pl,pz,...,p6) = (.35-.1,.05,.255.2,.1) and the code
alphabet a)sa, with costs (Cl’CZ) = (1,2). We choose c such that

-CC =CC -CC
3 Lo 2.1 Then 2 ! = 0.618.

We draw the probabilities Pis---sPg a5 @ partition of the unit
interval and spiit the unit interval into pieces of length

-ccy -cc2
2 and 2 respectively. (Fig. 2)
. p p
= - pl | Pe lp3l k4 | 5 1 6 |
,=CC1 Z'CCZ

Fig. Z: Splitting the unit interval.

The split goes through the right half of pg. So we assign
letter a; to py,p,.p3 and Py and letter a, to pg and pg (Fig.

|

Pispzapj$p4 p5’p6

Fig. 3: The code tree after the first split.

Next we apply the same strategy to the set Pis-voabPyg s 1.e.

we consider the interval P1sPpsP3sPy and split it in the ratio

-ccl -cc:
i % b

8 (F]g. [4.).

Caution: At this point our approach differs from the one taken
by Krause, Csizar and Altenkamp & Mehlhorn. After having split
the unit interval into two parts in the first step, they split
the interval of length 27°°l in the ratio 27°¢l to 27°%2 in the
second step. Thus their approach can be viewed as a digital ex-
pansion process. We continue this remark after the precise de-
finition of our new algorithm below.

L P11 Pp P3Py
-cc "
2 1'(P1+---+p4) 2 ccz.(p1+...+p4)

Fig. 4 : sSplitting the interval py,....p,

We proceed with our example. In Figure 4 the split goes
through the right half of P3- So we assign letter a, to
P1:PpsP3 and letter a, to Py (Fig. 5)

pl ,p2=P3 Py
Fig. 5: The code tree after the second split

Proceeding in this fashion the following code will be con-
structed (Fig. 6).

P P3 '
ucted by the new algorithm described

Fig. 6: The code constr
in this paper.

This code has cost

0.3.3 + 0.1.5 + 0.05+6 + 0.25.3
+ 0.2-3 +C0.1-4 = 3.45

So much for the intuitive description of the algorithm. For
the precise definition by a pseudo-ALGOL program we need
some notation

t - - * 3
Let ¢ € R be such that = 2°S%J = 1, Then 27° is “raditionally
j=1
called the root of the characteristic equation of the letter
costs,
Let Pk = PytPote.atp s 0 <k<n and
< k < n.

Sk T PptPyt..tp gt pk/2, 1

A call CODE (l,n,e) constructs a prefix code for the probability
distribution Pps--sPy- Here € denotes the empty word over the

alphabet {al,...,at}.

procedure CODE(%,r,U);

comment: £ and r are integers, 1 < £ < r < n, and U is a word
over {al,...,at}. We will construct code words for PgaPgrgse--sPpe

N . \
The word U is a common prefix of code words bg, U2+1""’Ur'

begin
if &= r
then we take U as the code word U2
else begin L « P, 43 R < Pr;
form, 1 <m< t do
m-1 -CcC.
begin L <« L + (R-L)- 2 L
j=1
-cc,
Rm “ Lm + (R-L)-2 $

end; Iy « {is Ly <54 < Ry

Comment: I , 1 <m < t, is a (not necessarily non-trivial)
partition of the set {2,...,r}. Since we certainly do not want

to assign the same letter to all probabilities, Pgoe--sPps WE need
to make sure that the partition is non-trivial. The easiest way

to ensure non-trivialty is to force the use of letters ag and ays
i.e. to make I1 and It non-empty;

if Iy =
then begin Tet m be minimal with I_ # g;
I, = { %l Im + Im =1 &}3
end;
1=

t
then begin let m be maximal with I_ ¢ @;

I, «{rks I« I -1{r};

m

end ;

comment whenever we refer to partition I,»1<m<t, outside
the definition of CODE, then the partition is meant, as it exists
at this point of the program;

form, 1 <m < t do

g ;
if I, ¥ @ then CODE (min I s max Lgis Uam)

1]
=
(=

end.

Remark: Procedure CODE is a generalization of Shannon's binary
splitting algorithm [5]1for constructing nearly optimal codes over

a binary alphabet. It has been generalized in a different direction
in the past by Krause, Csizar, Altenkamp & Mehlhorn, who view the
binary splitting algorithm as a fractional expansion process

Consider the binary fraction Xy Xpe.oXo with X; € {0,1}. We
can define the real number represented by that binary fraction
recursively as

-+

Num(xm) = if x_ = 0 then 0 else 1/2

Num(xixi+1...x

4

if x. = 0 then 0 + 1/2 Num(xi+1...x

1/2 + 1/2 Num(

m
—
wn
(1]

xi+2...xm)

So, binary fraction expansion corresponds to repeated splitting
of the interval in the relation 1/2 : 1/2. Suppose now that we
split instead in the relation 27 S¢1 : (1-2"CC1l). Then we should
define Num as follows,

Strangenum(xm) = if Ry = 0 then 0 else 2“1
Strangenum(xix1+l...xm) =
; N -cc
if x; = 0 then 0 + 2 1 Strangenum(x, i...%.)
else 27 °°1 4 (1-2_cc1)-Strangenum

(xi+1...xm)

We are now ready to take up the remark (Tabelled caution)
and to outline the fractional expansion approach of our
example. Consider the fractional expansions of reals
S12Sps--+s5¢ in our "strange number system". The first
digit is 0 for 5125935355, and 1 for Sg and Sg- Figure 7

in addition shows the second digits in the expansion of
5155955325, -
So S

il
pl p2 l p3 Pa 1 p5 pﬁ
: i L 1 i 1 _.1
]
2-CC1_2~C(:1 2-CC1_2-CC2
— /

~—

Z‘CC]_

Figure 7 : The first two steps of the fractional
expansion method

Note that 0 is the second digit in the expansions of Sq and
So and 1 is the second digit in the expansions of S3 and Sg-

Proceeding in this fashion until a prefix code is obtained
we will construct the code shown in Figure 8 of cost 3.75

Py Py Py Py

Figure 8: The code constructed by the fractional expansion

method,

So much for the fractional expansion approach. The approach
taken in this paper follows Shannon's ideas more closely.
After having split the original set of probabilities into
sets {pl,pz,p3,p4} and {ps,pﬁ} in Fig. 1 we treat each

subproblem in the same way as the original problem. This
approach was studied before by Bayer [6] in the binary equal
letter cost case, t = 2, Cqp = Cp = 1. It generally yields
much better codes (cf. the experimental results at the end
of the paper).

In the remainder of this section we will prove the following

theorem,
Theorem: Given probabilities Pys---Pp and letters dys.eanay
£ g
of cost CponeesCy and a real ¢ such that ¥ 2 ‘m 1
m=1

procedure CODE constructs a code tree T of average cost C(T)
with

G.L{T) = H(pl,...,pn) + 1 - Py = P+ CChay

where c¢_. = max{c 3 1 <m < t}.
Proof: The proof proceeds in two steps. We first derive a
managable expression for the difference c.C(T) - H(pl,...,pn)
and then derive a bound on that difference.

Procedure CODE constructs a code tree T for probabilities

Pps---sPp- Let v be any node of the complete infinite tree
over letters Aqs. ey and let U be the word corresponding
to node v, i.e. U is spelled along the path from the root

to node v. Define

w(v) := Z{pi; U is a prefix of code word Ui for pm}

and

m(v) 1= w(vm)

where L corresponds to Uam. Then
w(v) = wl(v) + wz(v) +...4 wt(v)

If v is an element of code tree T then let & and r be the
other two parameters in the call CODE(%,r,U). Apparently,

w(v) = Pp * Ppyp *eoet Ppo

Let N- be the set of interior nodes of code tree T.

T

Lemma 1:

1) The cost C(T) of code tree T is equal to

0 M o+

C{T) = £

G5 Wa(w)
veNy J

1

2) The entropy H(pl,...,pn) is equal to

H() = £ w(v) H(—ﬁwlm .)
3 v = e 3 = W V = 3 ¢ = a3
P1 Pn VEN; ey w(v)

Proof: The proofs are simple inductions of the depth of tree T.
Note that 2) is just repeated application of the grouping axiom
and 1) is essentially reordering of summation. In

pi-Cost(Ui)

we sum over the leaves of the code tree. If for every interior
node v and letter aj we consider those code words Ui which go

through v and use letter aj in node v then we obtain the summation
formula given in the lemma.

Lemma 1 allows us to write

(1) c-C(T) = H(pyse-rsp,) =
t wl(v) wt(v)
= X T occg wm(v) = w(v)H(.)
VEN; m=1 w(v) w(v)
t
wo (V) wo (V)
= £ w(v) r _m Clm 4 1 L
Ve el “wry (198 271 4 108 gy)
We now arrived at our expression for c.C(T) - H(pl,...,pn).

In order to derive an upper bound on that difference we will
try to bound
w (V) cc w (V)

(2) E(v,m) := 0" (log 2 " + log
w(v) w(v)

)

Lemma 2 gives us the necessary information about wm(v)/w(v).

Lemma 2: Consider any call Code (f%,r,U), let node v correspond
to word U and let & < r. Let sets Ll,...,Im be defined as in pro-
cedure CODE. Then for 1 <m < ¢

a) if 1

I
=
ct
=
9]
=3
=
—
<
—
i
o

m m

log
p
g
-+
—
1l
—~
[g2]
]
o
=5
(1]
=
=
3
<
S
n
=)
]

¢) if !Im| > 2 and e = min Im’ T = max Im’ then for 2 < m < t

W (V) “CCh PetPy ~cc

£ 2 + & s m
w(v) 2-w(v)
wl(v) -ccy Pe -cc)
< 2 + < 2-2
w(v) 2w(v)
We(v) -cCy D -cc
il - + —LE < 22 k
w(v) 2.w(v) —

Proof: a) and b) are obvious. Consider c) now. Suppose first
that 2 <m<t . Figure ¢ shows tae meaning of e and f.

e-1 e ST

r‘*’“‘*‘Y“—‘“““ ,———luf—\

Figure 9: A typical element of the partition.

Then wm(v) = PatPgeyp teoot Pe_tPs and
-cc

m, £ ol
pe/2+pe+l +...4 pf_l+pf/2 € 2 w(v) by definition of w(v),

wm(v) and I_. Hence

-CC =CC

W (V) = 2 Mw(v) < (pe*pg)/2 <2 Mew(v)
If m =1 then we even have
-ccy
PetPasy Froet PeoqtPe/2 <2 *w(v)
and hence
-ccy -ccy
wl(v)—Z w(v) < pg/2 <2 ‘w(v)

An analogous statement holds for m = t.

He are now ready to derive an upper bound on E(v,m)
defined in equation (2) above.

Case a: I =9 . Then w (v) = 0 and hence E(v,m) = 0.
Case b: Im = {e}. Then wm(v) = pe and wm(v}/w(v) < 1. Hence
wo(v) ge
E(v,m) < - iog 2 ® = {ee = /w(v
e i Pad7WiY)

Case c: {I_ } > 2. Let e = min Ips £ o= max I .
-CcC =CcC

Let y:= 2 M and x:= wm(v)/w(v) - 2 L
Pe*Ps "

Then x < S 5 2 by Lemma 2. e may rewrite E(v,m) as
w(v

E(vom) = (x+y) [log 1/y + Tog(x+y)]

= (x+y) log(l + x/y)

Lemma 3: Let 0 < x <y and 0 < y. Then
(y+x) « log (1l+x/y) < 2x
Proof: Consider
f(x) = 2x - (y+x) log (l+x/y)

Then

2-Tog(l+x/y) - (X431 ¥

f |}
(%) In 2-(1+x/y)

(2-1/1n 2) - Tlog(l4x/y)

Thus f' 1s monotonically decreasing and hence

min{f(x); 0 < x <yl = min{f(0), f(y)} 0

1]

From Lemma 3 we conclude

E(vam) < 2x = (pg + Pg)/w(V)

for m =1 we can even conclude E(v,m) < pf/w(v) and
for m = t we conclude E(v,m) < pe/w(v).

In either case we have now derived an upper bound on E(v,m).

It remains to consider the problem how often a certain
probability p; can be used in the bounds of the different

kind. First note that each probability is wused exactly

once in a bound corresponding to case b) of Lemma 3. Next
suppose that P is used in a bound of kind c); say i = min I_.

Then this will Tead to a recursive call CODE(i,max Lo 1l

If Im = {i} then this is a terminal call of CODE and i will
at most be used in a bound of kind b). If [I_| > 2 then in

the body of CODE (i,max I,) a partion of I will be defined.

Call this partion J l <k < t. We will certainly have i € Jy.

k’ o

Now note, that Lemma 2 states that for Jl we don't have to use
min Jl in order to bound E(v,m). Since i will always be in the fTirst
set of the partition for all further recursive calls of CODE,
we conclude that i must only be used once in a bound of kind c).

- 16 -

In summary, we use each probability F at most once in a
bound of kind b) and at most once in a bound of kind c).
Furthermore the argument above shows that Py and P, are
never used in a bound of kind c).

We will now substitute the bounds on E(v,m) into equation (1),
our expression for the difference c-C(T) - H(pl,‘..,pn).

The bounds of kind b) contribute at most

n
c'Cmax'ifl p; = cc ., Where c .. = max{c ; 1 <m< t} and
n-1
the bounds of kind c) contribute at most X P; = 1 - P1 = Pp-
1=2

Hence

c-C(T) = H(pl,...,pn) 2 CChay t 1 - Py = Py

Note that among others, Krause has shown that
c.C(T) > H(pl,...,pn) for every prefix code T and
hence procedure CODE constructs very good codes indeed.

ITI. Implementation and Experimental Data

Altenkamp and Mehlhorn describe an implementation of their
algorithm which has running time O(t-n). The same methods

can be used to implement procedure CODE such that its running
time is 0(t-n). We refer the reader to Altenkamp & Mehlhorn
for details.

In Glttler et al.[7] the algorithms described in Altenkamp &
Mehlhorn (which is very similar to the one described by
Krause and Csiszar) and the algorithm described here

were compared 1in the binary equal letter cost case, t = 2
Cy = €y = 1. 200 examples were run; for each of them the optimal
code was constructed. Fig. 10 shows the average and maximal

values of cl/copt-loo and Cz/Copt-IOO where Copt is the cost

of the optimal code, Cl and C2 are the costs of the code con-

structed by the algorithm described here and the algorithm
described by Altenkamp and Mehlhorn respectively.

Cl(procedure CODE above) | C,(Altenkamp & Mehlhorn)

average value of

C/Copt'IOO 104.5 119.7

maximal value of
C/L 100 109.0 154.7

opt”

Fig. 10 : Experimental comparison of two algorithms

Cot describes yet another procedure for constructing nearly
optimal prefix codes. He proves that the average cost C of
his code satisfies

H(pl,...,pn)/c L E=2C x» H(pl,...,pn)/c + 8 + B i

where

i -(log li)c.
r 2 J = 1, and
=]

J

O
Il
M et

s C; 1oglt(l1/A1_l) and

Crby = m1n{ci}

for 1 < i < t. He does not describe a detailled implementation
of his algorithm nor does he estimate the running time of his
algorithm. In our example Cq = Cp = 1, and hence Al = ., Az = Ay
c =1, and § = 1. The average value of the entropy H is about
5.5 for the examples in Glttler et al. and hence the average

deviation from C is in this example at least 18% for the

opt
code constructed by Cot.

IV. Conclusion

A new algorithm for constructing nearly optimal prefix codes in
the case of unequal probabilities and unequal letter costs has
been described. A theoretical estimate of the cost of the con-
structed code has been given. Numerical examples suggest that
the algorithm is superior to previously suggested approximation
algorithms. The algorithm is very efficient in its time and
space requirements.

Bibliography

[1]

[2]

[3]

(4]

[5]

[6]

[7]

Krause, R.M. : "Channels which transmit Tetters of unequal duration",
Inf. and Control 5, pp. 13-24, 1962

Csiszar : "Simple proofs of some theorems on noiseless channels",
Inf. and Control 14, pp. 285-298, 1969

Altenkamp & Mehlhorn : "Codes : Unequal Probabilities, Unequal Letter
Costs", to appear JACM

Cot : "Characterization and Design of Optimal Prefix Codes",
Ph.D. Thesis, Stanford University, June 1977

Shannon, C.E. : "A mathematical theory of communication",
Bell Systems Techn. J., 27, pp. 379-423, 623-656, 1948

Bayer : "Improved Bounds on the Cost of Optimal and Balanced Binary
Search Trees, MIT, Project MAC, Technical Report

Guttler, Mehlhorn, Schneider, Wernet : "Binary Search trees : Average
and worst case behaviour", (GI-Jahrestagung 1976), Informatik-
Fachberichte 5, Springer-Verlag, 301-313.

	A_1978_12 0000_1heitscover
	A_1978_12 0019
	A_1978_12 0020
	A_1978_12 0021
	A_1978_12 0022
	A_1978_12 0023
	A_1978_12 0024
	A_1978_12 0025
	A_1978_12 0026
	A_1978_12 0027
	A_1978_12 0028
	A_1978_12 0029
	A_1978_12 0030
	A_1978_12 0031
	A_1978_12 0032
	A_1978_12 0033
	A_1978_12 0034
	A_1978_12 0035
	A_1978_12 0036
	A_1978_12 0037
	A_1978_12 0038
	A_1978_12 0039

