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A bstrucr- The problem of implementing multidimensional quantizers is 
discussed. A general equation is derived that can be used to evaluate the 
performance of multidimensional compandors. It is demonstrated that the 
optimal compandor must be conformal almost everywhere. An example is 
given to show that asymptotically optimal performance could be obtained 
through nonconformal companding schemes. Random quantizers are dis- 
cussed and two techniques are evaluated for reducing memory and compu- 
tation time in the implementation of such devices. 
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I. INTRODUCTION 

T HE IMPLEMENTATION of high-dimensional block 
quantizers has in the past received relatively little 

attention. In this paper we put forth two techniques, com- 
panding and random quantization, to solve this problem. 

W. R. Bennett [l] was the first to model a nonuniform 
quantizer as a zero-memory nonlinearity followed by a 
uniform quantizer, in turn followed by the inverse of the 
first nonlinearity. This sequence of operations is generally 
referred to as companding. The word expresses the idea 
that the data is first compressed, then quantized, and then 
expanded. The first nonlinearity is therefore generally re- 
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ferred to as the “compressor” and its inverse as the “ex- 
pander”. 

Compandors are of interest in areas other than quantiza- 
tion theory. In some analog systems it can be advantageous 
to use compandors because of signal dynamic range con- 
siderations. Analog music signals are sometimes passed 
through a nonlinearity that reduces the range of the large 
signal excursions while amplifying the small signal por- 
tions. Before playback the signal is passed through the 
inverse nonlinearity which tends to reduce the noise in the 
low signal levels. Respectable gains in the signal-to-noise 
ratio can be accomplished with such schemes. 

The third section of this paper is an investigation of 
companding in several dimensions. In several dimensions 
the compressor characteristic is a mapping function f: 
IWk + X f=,(O, l), where X denotes the Cartesian cross 
product and X f=,(O, 1) is a k-dimensional hypercube. In 
the companding approach to optimal quantization, the 
quantizer output levels are distributed in the hypercube. 
We usually choose from these output levels the nearest 
neighbor to f(x), where x is the input data vector. The 
quantized output is thenf -’ of this particular output level. 

The theory will also hold for analog signal processing in 
several dimensions. It does not matter whether the noise is 
quantization noise or any other kind of additive noise as 
long as the noise components in each channel are uncorre- 
lated with one another. For example, let us denote the 
error vector caused by quantization in the hypercube by 
(r,.r*,. . . ,rk)r. Then the condition that is needed is E{riq} 
= a,*$, where aij is the Kronecker delta function. In a 
practical sense, this assumption is not very restrictive. It 
may be shown, at least asymptotically (as the number of 
output levels in the hypercube approaches infinity), that 
the error vector in an optimal or random quantizer con- 
verges to an hyperspherically symmetric probability den- 
sity which satisfies our above condition. 

The fourth section of this paper will deal with various 
techniques for implementing high-dimensional random 
quantizers. A random quantizer is one where the output 
levels are samples from some k-dimensional probability 
distribution X(x). If a companding approach is desired, 
then X(x) would be defined on X ;k= ,(O, 1). It is known that 
random quantizers (with the correct h(x)) approach the 
optimum quantizer performance as k approaches infinity. 
The implementation schemes discussed in this section are 
essentially search algorithms for quantizer output levels 
which enable us to find a “good” output level for a 
particular data vector. 

II. PREVIOUS WORK 

Many authors have considered the problem of designing 
an optimal quantizer subject to some difference distortion 
measure. Max [2] gives necessary but not sufficient condi- 
tions for the optimal one-dimensional quantizer, and 
Fleisher [3] provides a sufficient condition that requires 
certain convexity properties of the density function of the 
input random variable. 

Panter and Dite [4] derive an expression for the expected 
mean square error of a minimum mean square error one- 
dimensional quantizer, assuming the number of output 
levels to be very large. Algazi [5] generalizes Panter and 
Dite’s equation to a t th power distortion measure. Wood 
[6] uses some equations derived by Roe [7] to rederive 
Panter and Dite’s result and give formulas for obtaining 
the asymptotic quantizer’s output levels. Zador [8] gener- 
alizes the work of Panter and Dite to several dimensions 
and to a more general difference distortion measure. 
Zador’s equation ,for the distortion error is 

C( k,t)N -r’k 11 P 11 k,(k+t) =$E{llx-Q(x,ll:}, (1) 

where 

X input random vector 
Q(x) quantized random vector 
Et.1 statistical expectation operator 
N number of output levels and assumed to be large 
k dimension of x 
C( k, t) constant depending only upon k and t 
p(x) probability density of x 
II p II a [/p(x)” d,, * * *d,J”a. 

Zador also shows that lim,,,C(k,2)= 1/27re. C(1,2) is 
known to be l/12. Gersho [9] gives an alternate derivation 
of the above equation and derives new bounds for C( k, t), 
which is known for only a few values of k and t. Yamada, 
et al. [lo], extend Zador’s work to more general cost 
functions of the error. 

III. COMPANDOR ERROR DERIVATION 

Our data will be assumed to be k-dimensional samples 
from a probability density function p(x), x E R k. Let Dp 
be the support of p(x). Let f: Dp + X f= ,(O, 1) be regular 
and onto. 

We force! to be onto; if it were not there would be code 
vectors in the hypercube that would never be used, and 
hence the quantizer would be suboptimal. We use this 
condition at only one point in the derivation as a con- 
straint on the optimal compandor. All equations derived 
up to that point are valid without this restriction. We will 
sometimes represent the mapping by 

f= (f,(4~fZ(~>~- * ‘dk(X))T. 

Letr=(r,,r,;.. ,rk)T be the error vector in the hypercube. 
As stated before, under some fairly general conditions 
E{r,q} = (E{r2}i$j)/k where 6, is the Kronecker delta. 
Assuming very small distortion, a good approximation to 
the final error vector in the output is (f -I)‘( y)r. When 
k = 1 this is equivalent to f( x + Ax) rf’(x)Ax +f( x). Let 
y be the variable in the hypercube. If y =f(x), then 

P,y( Y > = 
P&‘(Y)) 

If’(f-‘(Y))l 

where 1.1 indicates determinant. Therefore the mean square 
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error (mse) of the final output may be written 

mse = s x” (o ,;*~f-‘)‘T(f-‘(Y)) 
I=, ’ 

Let x=f-‘( y). Then dx= I(f-‘)‘( y)ldy and ](f-,)‘( y)] 
= (1 S’( f -‘( y))])-’ by the inverse mapping theorem [l 11. 
Making these changes of variables, we obtain 

mse=/Drr[f’(x)]-‘T[f’(x)]-lrpX(x)dx, 
P 

again by the inverse mapping theorem. Write 
[f’(x)] -‘r[ f’( x)] -’ = Z:-‘(x), which is a symmetric ma- 
trix for every x. Therefore our problem is to optimize 

/ 
rTZ-‘(x)rpX(x)dx. 

4 

Using a matrix identity, we can restate the above integral 
as 

lD tr{Z-‘(x)rrT}pX(x)dx. 
P 

Let us take the expectation over the r variable which is 
independent of any other quantity in the integral. (We can 
make a random coding argument to insure that the r 
variable be independent, although it is tedious to do so.) 

I; 
4 r,r, .** r,rn 

E{rrT} =E r,r, r; r2 rn 

E{r*) =-+. 

r,r, ... ..- rf 

Therefore, 

rnse=vlD tr{Z-‘(x)}p,(x)dx. (2) 
P 

This expression is of interest in its own right. E{r*}/k is 
the mean square error per sample suffered by the hyper- 
cube quantization. The total error is therefore a product of 
two independent terms. Denote the eigenvalues of L‘(x) by 
x;(x) (i= 1;. .,k). Then 

Since our map f is onto, we have 

JD lf’~x)ldx=~i~l~i(x)dX= 1. 
P 

Let us minimize the mse subject to the above constraint. 
First, it is easy to show that X,(x) = X(x) for every i. So we 
must minimize 

I 
P(x) dx 

%W2 

subject to the constraint 

J Iwh 
X(x)kdx= 1. 

Writing fi( x) = Am, we must minimize 

J P(x) 
/qX)*/k dxT where Jo ,d x dx=l. 

Gersho [9] shows that the optimal p(x) is proportional to 
P(X) ‘/(‘+2/k) = pkick+*)( x), which implies that A(x) = 
p(X)“(k+2)/(ll p 11 k,(k+2)) ‘/(k+2) Using these eigenvalues, 
we can set the mse = E{r*}k-‘II p II k,ck+2j. If an optimal 
k-dimensional uniform quantizer is implemented in the 
hypercube, then this equation gives the same error as 
Zador’s optimum quantizer. The condition for the optimal 
compressor is that all the eigenvalues of the symmetric 
matrix Z(x) = [ f’( x)][ f ‘( x)]’ be the same. This condition 
implies that there exists an orthonormal matrix r+(x) such 
that $T(x)Z(x)+(x) = A*(x)l; or Z(x) = X*(x)1 = 
[ f’(x)][ f’(x)lT, which implies that ([ f’( x)1)/X(x) is an 
orthonormal matrix. Since h(x) is known in principle we 
could solve for f’(x) for every value of x. Therefore 
the condition for an optimal compandor is that 
[f’(X)l/CP(~) ‘/(k+2) be an orthogonal matrix for almost 
every value of x where c = l/(11 p II k,ck+2J/(k+2). 

When k = 2 this condition says that f( x) must be confor- 
ma1 almost everywhere except for a set of measure zero. 
Gersho points out (for the two-dimensional case) that 
conformal maps do not exist for circularly symmetric prob- 
ability densities. An illustration of this fact is the work by 
Heppes and Szuz [ 121 which shows it is not possible to 
tessellate a circular region with an arbitrary “surface distri- 
bution function” using regular hexagons. There must al- 
ways be a “slit” where the tessellation fails. This “slit”, 
however, is a set of measure zero. Only local conformality 
almost everywhere is needed, not global conformality. 

We now provide an example illustrating (2). Suppose 
that the input probability density p(x) can be written as 
II,“,, p(xi). Let C = l/j_“,p(x)*dx and let the compressor 
function f = ( fl(Xl),f2(X2); “,fk(xk))T where h(Xi) = 
Cj?~,p(x)*dx. With little loss of generality, we assume f is 
regular; f is also obviously onto. Hence, 

[f’b>l = 

[f’(X)] 

Cp(x,)" 0 .* * 

0 CPb*>” 

0 

0 . . . 0 

r 

L 

1 

~PP(Xl>” 
0 

0 
1 

cP(x*>* 

0 . . . 

0 

0 

Cp(xk>a 

9 . . 

’ Cp(xk>” 
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The eigenvalues of Z-‘(x) are l/(C*p(~~)*~), i = 1, 
so the error may be written 

. . . ,k only one possibility, the line segment. In iR* the optimal 
polytope is the hexagon. In R3 Gersho conjectures that it is 
the truncated octahedron. The optimal polytope is not 
known for dimensions greater than three, and hence it 
seems very difficult to actually design a high-dimensional 
optimum quantizer. Linde, et al. [13]’ present an algorithm 
to design such quantizers that is guaranteed to converge to 
a local optimum but not always a global optimum. An 
alternative method for obtaining an asymptotically optimal 
formulation would be to assign the quantizer’s output 
levels to be random samples from some point density 
function X(x). We would then find the nearest neighbor to 
our data vector from these values and use that neighbor as 
our quantized vector. Zador’s upper bound to C( k, t) can 
be derived by considering the error for such a quantizer. 
Zador and Gersho both point out that as the dimension of 
the random quantizer becomes very large, its performance 
approaches that of the optimum quantizer (X(X) must be 
proportional to pk/ck+*)(x)). There is a drawback, how- 
ever, to the straightforward implementation of such a 
quantizer. For a fixed data rate (say b bits per sample) the 
number of output levels in the quantizer is an exponential 
function of k (2hk in fact). A nearest neighbor search for 
the closest output level to a particular data vector could 
require inordinate amounts of computer time. 

Air*} m 

J 
P(X) ‘-*Odx 

= EL:) ,T p(x)adx]2[,m 
-00 -cc 

p(x)‘-*“dx] 

Using Holders inequality we may show that (Y = l/3 mini- 
mizes the error: 

mse = E{r*} II p II l,3. 

But using Zador’s coefficient for the one-dimension case 
(see (1)) we have 

II P 11 l/3 
mse, --dim = - 

12N2 * 
Therefore, this compressor characteristic gives us the same 
error as the optimal one-dimensional quantizer if in the 
hypercube we quantize with one-dimensional uniform 
quantizers. We can quantize in the hypercube using opti- 
mal schemes for a coefficient of 

11 P 11 l/3 
mse=p 

N22re ’ 
asK+co. 

Therefore the best we may produce with this compressor 
characteristic is a gain of (2re)/12 r 1.42 in signal to 
quantizing noise ratio, at the expense of implementing 
optimal uniform quantizers in the hypercube. 

As a second example, again let p(x) = II,“, I p(x,). Sup- 
pose we choose the eigenvalues of Z(x) to be 

1 J-& 

1 

which obviously leads to a nonconformal map. Using [2], 
we find the mean square error for such a compressor 
characteristic to be 

which is the optimal coefficient for the (k - 1)-dimensional 
space. This relation implies the possibility of obtaining 
nonconformal mapping functions that will asymptotically 
give optimal results. 

IV. RANDOMQUANTIZATION 

A multidimensional quantizer is essentially a partition of 
space. If a data sample falls within a certain set in the 
partition, it is assigned to a particular output level. It is 
known that the optimal partition of the hypercube consists 
of polytopes (multidimensional polygons). In R’ there is 

In this section we will discuss some optimal and subopti- 
ma1 techniques to find a quantized value. In a search 
scheme for an optimal nearest neighbor, we can visualize 
an hypersphere slowly expanding about the data point 
until the surface of the sphere comes in contact with a 
quantizer output level. This output level is then the nearest 
neighbor. To implement such a scheme we must calculate 
the Euclidean distance between our data vector and every 
output level. A Euclidean distance calculation is cumber- 
some in that it requires multiplications (K per sample). 
Thus we need to do NK = 2hkK multiplications. 

An alternate search scheme is to expand a hypercube 
about the data point until it meets an output level. To find 
this “largest” hypercube requires only additions. Let us 
calculate the mean square error of such a scheme. 

The probability of an output level being in a hypercube 
of side length r is A(x)rk. Then making use of order 
statistics, the probability density of the smallest hypercube 
side out of N samples is KN[l -rkX(x)]N-‘rk-‘X(x). 
Suppose we have searched and found the largest hyper- 
cube; there must therefore be an output level somewhere 
on the surface of that hypercube. If N is large, p(x) varies 
very little in this largest hypercube, and the output level 
may be considered to be uniformly distributed on this 
largest hypercube of side r. Since there are 2k sides, the 
mean square error may then be written (given r) as 

mseI,=g [?..l,“‘jii)’ 

J 

k-l 
integrals 

+ nf + n; + . . . +n;-, dn, . . .dn, = 1 (k + 2)r* 

12 . 
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Taking the expectation over r, we find that the mean 
square error is 

X(x) is optim 

1 -X(x)rklNP’kr ‘-‘X(x)drp(x)dx 

=$+I-( 1 +;)/-$dx. 

ized when it is proportional to p( x)k/k+2, and 
the error becomes 

If k is very large then the error becomes 

mse per sample = 
II p II Wk+*) 

N2’k12 ’ 

(l/12 is the one-dimensional coefficient.) By doing no 
multiplication, we accept a degradation of (2ne)/12 in 
signal to quantizing noise ratio over that of the optimal 
search (see the first example in the previous section). 

The hypercube search still requires searching through N 
code vectors to find the largest hypercube. We now de- 
scribe a technique that will allow us to shorten the number 
of codewords to be searched. Since optimal companding 
gives optimal performance, we will restrict our discussion 
to data densities contained in the hypercube. We cut our k 
dimensional hypercube into several smaller hypercubes. If 
we slice each edge of the hypercube into 2’1 equal intervals 
using k - 1 dimensional perpendicular hyperplanes, we will 
have partitioned the large hypercube into 2kbl small hyper- 
cubes or “cubelettes”. In one cubelette we randomly throw 
N/2kbl uniformly distributed k-dimensional points which 
will be the quantizer output levels. We then replicate this 
cubelette through k space 2kb 1 times until we have filled up 
our original large cube. If we assume that there is a low 
probability that a data vector will be closer to the edge of a 
cubelette than to an output level, then we can show that 
this quantization scheme will have the same error as if we 
used uniformly distributed output levels through the whole 
hypercube. 

Using one-dimensional uniform quantizers that are ex- 
tremely easy to implement, we may quickly decide which 
one of the cubelettes contains the data vector. We then do 
a sequential search on N/2kbl = 2k(b-bl) output levels 
where kb is the number of bits per k-dimensional sample. 

How large may b, be set? Obviously if b, = b we have 
one output level per cubelette, so that for a given data 
vector there is a good chance the edge of the cubelette will 
be closer then the output level. One way to get an idea of 
the number of output levels actually needed would be to 
calculate the probability of hitting an edge before a data 

point. To make things simpler, suppose that 

and that p(x) is symmetric. The probability that the data 
point component xi is closer to zero or one than to a 
corresponding output level component yi is 11 - 2xi I. If 
p(x) is symmetric, then E 11 - 2xi] = l/2. The probability 
that a data vector is closer to a particular code vector than 
to an edge is 1/2k. The probability that out of N output 
levels the data vector is closer to the edge than to any of 
them is [l - l/2k]“. Of course, we want this probability to 
be very small. If N = C2k, then for large k the probability 
of hitting an edge before a code vector is e -‘. N therefore 
needs to be on the order of 2k for all of our assumptions to 
hold and hence b, may be set at b - 1 or slightly smaller. 

v. %JMMARY 

A general expression for the performance of a multidi- 
mensional compander was derived and it was proved that 
the optimal compressor characteristic must be conformal 
almost everywhere. An example was given that indicates 
that asymptotically optimal performance may be gained 
even with nonconformal maps. Random quantizers were 
discussed which are known to be asymptotically optimal 
and two techniques to reduce computer time in their imple- 
mentation were evaluated. 
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