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Asymmetries in Relativistic 
Information Flow 

KEITH JARETT, MEMBER, IEEE, AND THOMAS M. COVER, FELLOW, IEEE 

A&ract-In the so-called “twin paradox” of relativity theory, one 
spaceship leaves another at velocity o = /3c and returns to find that the 
other ship has aged more by a factor y = (1 - /?2)-‘/2. The asymmetty is 
first isolated in order to resolve the paradox. Then the principle of 
relativity is used to derive the relative aging factor y and the relativistic 
Doppler shift. Using the Doppler factor, asymmetries in information 
transmission between moving spaceships are investigated. An additive white 
Gaussian noise channel with Shannon capacity C = wlog( I + P/NW) is 
considered. After accounting for the effect of the relativistic Doppler shift 
on signal power and bandwidth, it is found that for a given transmission 
rate and bandwidth, the traveler needs y times the energy of the stationary 
spaceship to transmit I/y times as much information. The asymmetry in 
efficiency is thus y2. A simple proof is given that the round trip asymmetry 
in efficiency for constant-rate transmission is always the square of the 
relative aging factor for all trajectories regardless of accelerations and the 
presence of gravitational fields. 

I. INTRODUCTION 

T HE TWIN paradox provides a suitable foundation for 
a discussion of relativistic information flow. We pre- 

sent a resolution of the twin paradox in Section II, intro- 
duce the necessary concepts of relativity, and derive the 
pertinent relativistic Doppler shift factors. We shall con- 
sider communication over an additive white Gaussian noise 
channel with receiver-noise spectral density N, transmitter 
power P, and transmitter bandwidth I$‘. Capacity formulas 
and results for constant-Doppler problems are presented in 
Sections III and IV. 

In Section V we consider time-dependent problems such 
as the twin problem in which the Doppler shift (Y is 
time-varying. We show that the instantaneous transmission 
capacity is C(t) = wlog( 1 + a(t)P(t)/NW), where cu(t) is 
the Doppler shift appropriate for signals transmitted at 
time t. Thus e(t) incorporates knowledge of the current 
trajectory of the transmitter and the future trajectory of the 
receiver. Also in Section V, we prove that for a round trip 
where terminals A and B start and finish together, 
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where TA and Ts are the respective travel times of A and B. 
These are the basic equations from which we develop the 

fundamental rate equations in Section VI. It can be shown 
that if A and B transmit at the same constant rate and 
bandwidth and if y0 is the relative aging factor TA /TB, then 
B will need y0 times as much energy as A to transmit l/y, 
times as many bits during the round trip. Regardless of 
acceleration or gravitational fields, the trajectory depen- 
dence of the asymmetry in efficiency reduces to the square 
of the aging factor. 

Next we demand that P(t) be constant, and we show 
that traveler B needs more energy per bit sent. Alterna- 
tively, if we place a constraint on the total transmitted 
energy and calculate the number of bits that can be sent 
during the round trip, a round trip energy constraint of the 
form J,‘P( t)dt = E yields a simple water-filling solution 
for the optimal form of P(t). 

In Section IX we apply the previously derived general 
results for time-dependent Doppler factors to the linear 
round trip or twin problem. This example illustrates the 
asymmetries that result from the formulations of the com- 
munication problem in Sections VI, VII, and VIII. All 
asymmetries favor the stationary transmitter. 

II. THE TWIN PARADOX 

In the so-called twin paradox, a traveling spaceship 
leaves another at a velocity 2) = PC, turns around after 
traveling some distance and returns to the starting point. 
Comparing clocks at the end of the journey reveals that the 
nontraveling spaceship has aged by a factor y = (1 - 
p-w more than the traveler. It has been argued that 
there should be no age difference, because either spaceship 
could be considered the traveler. However, there is a dif- 
ference between the two ships-the traveler has under- 
gone an initial acceleration and a final deceleration that 
could easily be detected by experimental apparatus. 
Nonetheless, the aging difference does not take place dur- 
ing these accelerations; rather, the accelerations serve to 
place the spaceships in different reference frames for dif- 
ferent times. The Appendix provides an analogy to clarify 
this point. It is the different time averages of the same 
inbound and outbound relativistic Doppler shifts that re- 
sult in the asymmetric aging factor y. 

We use symmetry arguments to derive the relative aging 
factor. (See Oliver [l], Darwin [2], and Bondi [3] for 
alternative derivations.) Consider the following numerical 
example. 
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Fig. 2. Space- time diagram for velocity PC and distance x. 

Fig. 1. Space- time diagram of B’s trip with A at rest. B sees A recede 
for T’ years. A sees B recede for eight years. B receives A’s transmis- 
sions sent during the first two of A’s years. A receives B’s transmissions for spaceships traveling away from each other at velocity 
sent during B’s journey of T’ years. Reception rates T’/8 and 2/T 2) = PC. Similarly, the Doppler shift (Y+ on the incoming leg 
must be equal. is 

Traveler A stays at home. Traveler B travels at velocity a+ = 0 + NY, (3) 
o = PC (/3 = 3/5) to a star three light years away. Thus A 
knows that B reaches the star after five of A’s years. Since where 
light from the star requires three years to return to A, 
however, A does not see B turn around until eight of A’s y=l//q. (4) 
years have elapsed. Traveler B actually returns to A after 
ten of A’s years. Finally, only light emanating from A in 
the first two of A’s years will reach B in his journey toward 
the star. This scenario is depicted in the space-time dia- 
gram in Fig. 1. 

III. THE ADDITIVE WHITE GAUSSIAN NOISE 
(AWGN) CHANNEL WITH DOPPLER SHIFT 

On B’s outbound journey, we see that B receives two 
years worth of pulses in T’ of B’s years. The time T’ of B’s 
outbound leg is still to be determined. Thus B receives 
pulses at rate R’= 2/T’. The situation for A is similar. 
Since A sees B outbound for eight years, A receives T 
pulses in eight years for a rate of R = T’/8 pulses per year. 

The AWGN channel with Doppler shift is illustrated in 
Fig. 3. The transmitter sends a signal process X with 
average power P and bandwidth W. Information is trans- 
mitted at rate R. These three quantities are all measured in 
the transmitter’s frame. The receiver noise process 2 is 
white Gaussian receiver noise with power spectral density 
N measured in the receiver’s frame. 

Invoking the principle of relativity (for the uniform 
velocity segment of the journey), the rates R and R’ must 
be equal. Otherwise, a preferred reference frame would be 
revealed. But R = R’ implies T’/8 = 2/T’, or T’ = 4 years. 
Thus B ages four years on the outbound leg. 

Similar calculations show that B ages four years on the 
inbound leg. While A ages ten years, B therefore ages eight 
years, and the age ratio is 10/8 = (1 - (3,~‘5)~)-‘/~, as 
predicted by the Special Theory. The corresponding values 
are calculated in Fig. 2 for arbitrary velocity 0 = PC and 
arbitrary distance x. 

Suppose that the receiver sees the transmitter moving. 
Then the received signal is Doppler shifted by a factor (Y. 
(The receiver noise is not affected.) The exact value of the 
Doppler factor (Y as a function of velocity is unimportant 
here. For simplicity we make the narrow-beam assumption 
that the entire signal from the transmitter is intercepted by 
the receiver. The path loss is assumed to be independent of 
the distance the signal travels. Without loss of generality, 
we assume that the path loss is zero. 

Here R’ = ((x/p) - x)/T’, and R = T’/((x/@) + x). 
Finally, R = R’ implies T’ = x((l/p’) - 1)“‘. Thus the 
ratio of travel times is 

TA/T, = 2T/2T’ = (2x/p)/2x( fi --* - 1)“2 = y, (1) 

and the desired result is obtained. 
Also, since the Doppler frequency ratio v’/v is the ratio 

R of received clock rate to transmitted clock rate, the 
relativistic Doppler shift is a consequence of this calcula- 
tion. Thus the outgoing Doppler shift a._ is given by 

a- =v’/v=R=T’/((x/p)+x) 

=x(0-2 - l)“‘/((x/p)+x) 

=J(l-P>/o+P) 

= (1 - P>Y> (2) 

We need to know the characteristics of the Doppler 
shifted received signal in order to establish a constraint on 
the transmitted signal power, rate, and bandwidth. First, 
the reception rate R’ is a frequency. (Throughout this 
paper we use primes to denote quantities pertaining to 
reception.) Since the Doppler factor (Y is the ratio of 
received frequency to transmitted frequency, we im- 
mediately see that R’ = aR. Second, the component fre- 
quencies of the signal are all shifted by the factor (Y. 
Consequently the received signal bandwidth is w’ = aW. 
Third, the received signal power is P’ = a2P according to 
relativistic electromagnetic theory [4]. The following simple 
heuristic argument illustrates this equality. 

Suppose that the transmitted signal is monochromatic. It 
then consists of a stream of photons of frequency v being 
emitted at rate h. The transmitted signal power P equals 
the energy per photon hv times the photon emission rate h. 
The received signal consists of a monochromatic stream of 
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Transmitted Power P Received Signal Power P’ = ZP 

Transmitted Bandwidth W Received Signal Bandwidth W' =aW 

Transmitted Rate R Received Signal Rate R' =aR 

Fig. 3. The additive white Gaussian noise channel with Doppler shift. 
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Fig. 4. Geometry of the circular trajectory problem. 

photons of frequency v’ arriving at rate A’. Assuming that 
the Doppler factor is (Y = v’/v = Xl/X, we see that P’ = 
A’hv’ = a2Xhv = a2P. 

This relationship is valid for each monochromatic com- 
ponent of any signal. Summing the components yields 
P’ = a2P for an arbitrary signal process. 

The received signal process Y is thus the sum of a white 
Gaussian receiver noise process with power spectral density 
N and a signal process with power P’ = a2P, bandwidth 
w’ = aW, and information rate R’ = aR. Applying Shan- 
non’s capacity result [5] for the AWGN channel, we can 
conclude that the maximum reception rate at which the 
receiver can reliably decode messages is 

C’ = W’log( 1 + P’/NW’) 

= aWlog( 1 + a2P,‘NaW) 

= aWlog(1 + aP/NW) bits/s. (5) 

The corresponding transmission rate (which is the recep- 
tion rate scaled by the Doppler shift factor) is 

CT C/a = Wlog(1 + aP/NW). 

To achieve this rate, the transmitter chooses a signaling 
interval [0, T]. He then chooses 2TR signals at random from 
a white Gaussian random process with bandwidth W and 
power (1 -c)P with e>O. Then, for R<C and (T-+ cc, 
f -+ 0), it can be shown that with very high probability this 
sequence of code books achieves an arbitrarily small prob- 
ability of decoding error. Moreover, for any code book and 
for any rate R > C, the probability of receiver error tends 
to one. 

Strictly speaking, all that we can say for short journeys 
and time-dependent (Y is that we expect the probability of 
error to be very small if the instantaneous rate R is less 
than C and very large if R exceeds C. It should be noted 
that although the transmitter sends the signal over a time 

interval of length T, the receiver sees the signal over an 
interval of length T/a. 

In summary, for reliable communication we require 
transmission at a rate satisfying 

R < C = C’/a = (W’/a)log( 1 + P’/NW’) 

= Wlog(l + aP/NW). (6) 

Equivalently, if we wish to transmit information reliably at 
rate R and bandwidth W, the required transmitted signal 
power is 

P>a-‘NW(exp,(R/W)- 1) k PO/a, (7) 

where P,, = NW( exp,( R/ W) - 1) is the minimum trans- 
mitted power for reliable communication when there is no 
Doppler shift. 

IV. THECIRCULARTRAJECTORYPROBLEM 

In the preceding section we derived the transmission 
capacity for the AWGN channel with a Doppler shift (Y. In 
the next section we extend this result to allow for a 
time-dependent Doppler factor a(t) like that found in the 
twin problem. We can first use the results of Section III, 
however, to solve steady-state communication problems in 
which the Doppler shift factor is constant. The most inter- 
esting constant Doppler shift example is the circular trajec- 
tory problem in which B circles A at a constant radius rB 
and at a constant speed wrB = PC (Fig. 4). The centripetal 
force needed for B to maintain the circular trajectory can 
be provided by thrust or by a central mass M. Since there 
is no preferred direction, the Doppler factors must be 
constant. Using this fact, we can derive the relationship 
between the doppler shift factors and the relative aging 
factor. 

Let (Ye be the Doppler factor for transmission from A to 
B, and let (Ye be the factor for signals sent from B to A. Let 
TA be the orbital period as measured by A, and let TB be 
the elapsed time per orbit as measured by B. These times 
can be established by reference to a fixed direction such as 
that of a distant star. Finally, let y0 = T,/T, be the relative 
aging factor. If there is no central mass, then y,, = y = (1 - 
B2)-‘12, the aging factor in special relativity. 

We can derive the transmission Doppler factors in terms 
of the aging factor y0 as follows. Suppose A sends pulses to 
B at rate l/a, for one orbital period TA. These pulses will 
be received by B at rate (Y~/(Y~ = 1 for one orbital period 
TB. Since the number of pulses sent equals the number 
received, we have (l/aA)TA = (l)T,, or 

the aging factor. 

aA = TA/TB ‘Yo, (8) 

Similarly, suppose B sends pulses to A at rate l/a, for 
one orbital period TB. These-will be received by A at rate 
(Y~/(Y~ = 1 for one orbital period TA. Pulse conservation 
yields (l/aB)TB = TA, or 

fig = TB/TA = l/Y,, (9) 

the reciprocal of the aging factor. 
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With these results and the capacity result (6) we can 
write A’s transmission capacity as 

CA = Wlog(1 + y,P,/NW), (10) 

and B’s transmission capacity as 

cB = wlog(l + (l/Yo)PB/NW), (11) 

where A and B transmit signals with powers PA and PB, 
respectively, and with bandwidth W. For equal transmis- 
sion powers, the received signal-to-noise ratio at B is yi 
times the signal-to-noise ratio at A. 

If A and B both wish to transmit at the same rate 
CA = C, = C and with th e same bandwidth W, B must use 
yi times as much power as A. For each revolution, B will 
use y. times as much energy as A to send l/y, times as 
much information. The asymmetry in efficiency is thus 

F= (P,T,/P,T,)(CT,/CT,) = PB/PA =Y:. 
A A 

(121 

relationship 

T, = / 
TA1 dt. 

0 

We can now introduce a way to view the problem that 
makes the relationship between Doppler shift and aging 
apparent. Let A transmit pulses to B at a time-varying rate 
r(t) = l/a(t). Then the number of pulses sent by A will be 
given by 

/T’r(t)dt=/T’(l/Ly(t))dk 
0 0 

But r(t) has been adjusted so that the received pulse rate 
by B is r’( 7) = a(t)r(t) = a( t)/a( t) = 1, observed in B’s 
time units. Thus B receives pulses with clocklike regularity 
at a constant rate one. Therefore we know B’s age at the 
end of the journey simply by counting the pulses received 
by B. Finally, if A and B begin and end their journey 
together, the number of pulses received by B must equal 
the number of pulses sent by A. Thus 

If instead of transmitting at the same rate, A and B both 
transmit at the same power P = PA = PB, the ratio of 

TB =JoT”l’(,)d7=jo”l(t)dt=J,l’dr/a(r). (14) 

transmission rates equals the ratio of energies per bit: Similarly, if the anticipated Doppler factor is fig(T) in 

i$=(%f)(2$j 

B’s time frame for B sending to A, 

J 
TBd7/aB( 7) = TA. (15) 

0 

C 1odl-t ~of’/Nw) 
=<= log(l+ (l/yo)P/NW) ’ 

(13) We now investigate channel capacity by using the antic- 
tpated Doppler shift factors a,(t) and (~~(7). If A sends 

Note that the asymmetry in efficiency (EB/NB)/ 
power P(t) in a bandwidth W at A’s time t, the received 

( EA/NA) lies strictly between one and yi for all N, W, and 
signal will have instantaneous power a2(t)P(t) and band- 

P, and approaches yi as P + 0. This supports the conclu- 
width (~l(t)W. Thus the instantaneous receiver capacity is 

sion that the transmitter that ages less is less efficient. C’(r)=(~(t)Wlog(l+cy(t)P(t)/NW)bits/s, 

where r denotes B’s reception time of signals sent by A at 
V. THE FUNDAMENTAL EQUATIONS FOR time r. Corrected for the Doppler factor, this corresponds 

RELATIVISTIC CAPACITY to a transmission rate 

In Section III we found the channel capacity expression c(t) = C’(T)/&) 

as a function of (Y for uniform motion. We next consider a = Wlog(1 +a(t)P(t)/NW) (bits/s) (16) 
transmitter with time-dependent transmitter power P(t) 
and transmitter rate C(t). Integration of C(t) over the measured in the transmitter’s frame. This equation is the 

transmission time yields the total number of bits com- starting point for most of the results in this paper. 

municated from the transmitter to the receiver. To proceed We collect results. Transmitter A sends at power PA(t) 
we introduce an anticipated Doppler shift a(t). during 0 < t < TA. His anticipated Doppler shift factor is 

We begin by specifying the space-time trajectories for A aA( Let NA be the number of bits sent from A to B, and 

and for B. From the knowledge of these trajectories, we let EA be the total energy expended. Then we obtain the 

can calculate an anticipated Doppler shift factor a(t) as fundamental communication formulas: 

follows. We know that clock pulses sent at transmitter time. 
t will be received at some point in space-time by the / 

oTd 1 dt = T, / 
TRldT= TB; 

0 
receiver. Let a(t) be the observed Doppler shift at the 
receiver of this signal sent at time t. This definition of a(t) “d+,(r) = TB; lT’d7jaB(r) = TA; 
is essential to the consideration of problems incorporating 

J 0 0 

time-varying Doppler factors. 
J 

T4 PA( t)dt = EA / 
‘“P,( t)dT = E,; 

We first derive the aging relationships from a(t) for later 0 0 

comparisons with the information flow relationships. We 
suppose that the entire journey for transmitter A takes time s 

T’Wlog(l +a,(t)P,(t)/NW)dt=N,; 
0 

T,. At the end of the journey when A and B are together, 
let B’s clock read time TB. Clearly, we have the trivial s 

T%‘log(l +aB(+‘B(~)/NW)d~=NB. (17) 
0 
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The reader should be aware that aA and (~~(7) are 
derived from the trajectories and thus are not independent 
functions. If significant gravitational masses are present, 
then general relativity is needed to derive (Y~( t) and (uB( 7). 
Otherwise, special relativity is sufficient. In any case (17) is 
valid. We are especially interested in relations among T,, 
TB, EA, EB, NA, NB that are trajectory-independent, i.e., 
independent of (Y~( t) and aB( 7). 

We are now prepared to investigate the following com- 
munication problems: 

1) a constant communication rate 

C(t) = Wlog(1 + a(t)P(t)/NW) = Co; 

2) a constant transmission power 

p(d =po, for all t; 

3) an energy constraint 

10 
P t dt=E. 

VI. CONSTANT-RATE TRANSMISSION YIELDS 
ASYMMETRY y 2 

A particularly striking trajectory-independent asymme- 
try in information flow occurs when we demand that the 
transmitter send at the constant rate 

C, = Wlog(1 +aA(t)PA(t)/NW), forO<t<T,. 

(18) 

We can motivate this problem by supposing that the trans- 
mitter is sending a real time record of his life processes. 
Inspection of (18) shows that the transmitter must vary his 
power PA(t) so that PA(t)aA(t) = PA, where PA satisfies 
CA = Wlog( 1 + PA/NW). PA is the power required to 
communicate at rate CA between stationary terminals. 
Equations (17) now become 

TA = J TAdt, 
0 

T, = / TAd+XA( t>, 

EA =IRI)c(t)I = PAjOCdt,aA(r) = PATB, 

NA = 
J 

‘A C,dt = C,T,. 
0 

(19) 

Proceeding with the same calculations when B is trans- 
mitting at constant rate C,, we find 

and 

E, = PB J TRd+xB( 7) = PBTA, 
0 

NB =JTnCBdT= C,T,, (20) 
0 

where PB satisfies C, = Wlog(1 + PB/NW). 
Notice that B’s energy E, is proportional to A’s time TA 

and not to T,. We now define the overall aging factor y. to 
be the ratio of ages 

YO = TA/TB (21) 

at the end of the arbitrary journeys of A and B (subject 
only to the condition that A and B begin and end their 
journeys together). Then A has expended energy per bit 
transmitted 

pATB-pA 1 

EA/NA =c,r,-c,v,’ 

while B has expended energy per bit transmitted 

‘ST, _ ‘B 
EB/NB =c,r,-c,%’ 

Thus the ratio of energies per bit transmitted for B and A 

ls (EB/N~)/(E~/NA) =Y,“(PB/CB>/(PA/CA)~ (22) 

which reduces to yi if A and B transmit at the same rate. 
In fact, the entire trajectory dependence is contained in the 
factor yi. Setting y. = 1 in (22) gives the correct result for 
communication betwen stationary terminals. 

We conclude that the traveler who ages less (by the 
factor l/y,, with y. > 1) requires yi times as much energy 
per bit sent. The younger traveler has more difficulty 
communicating. 

VII. ROUND TRIP AVERAGE CAPACITY WITH 
CONSTANT TRANSMITTER POWER 

As seen in the preceding section, a constant transmission 
rate yields an inefficiency factor equal to the square of the 
age ratio. The younger traveler is less efficient. We now ask 
whether this general conclusion is robust, i.e., whether it is 
true for all reasonable communication constraints. 

We are interested in particular in the most physical 
natural constraint that both transmitters send at constant 
power. With constant power transmission, it now becomes 
necessary to vary the instantaneous communication rate. 

To establish the asymmetry in average capacities for 
constant power, we use special relativity to relate the 
anticipated Doppler shifts to the radial velocity compo- 
nent. We then use Jensen’s inequality to bound the dif- 
ference between the average capacities. We conclude that 
the traveler is less efficient. 

Assume constant transmitter powers PA(t) = PB( r) = P 
for A and B, and let NA and NB denote the number of bits 
sent. The ratio of transmitted energies is 

Eb’/EA = (pTf3)/(pTA) = ‘/yO* (23) 

During the round trip, A sends at an average rate 

c, =NA,‘TA =+-iTAWlog(l +a&)P/NW)dt. 

(24) 
Similarly, B sends a number of bits per unit time 

C, = N~/T~ = f 
J 

TRWlog(l +aB(~)P/NW)d~ 
B 0 

(25) 
1 II- 

T / TAWlog(l +a,(+(t))P/NW)(l/a,(t))dt. 
B 0 

(26) 
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The last equality uses a change of variables identical to 
that derived in Section V by a pulse-counting argument. 
Here 7’(t) is B’s reception time in his frame of signals (or 
pulses) transmitted by A at time t. 

If terminal A remains fixed while terminal B moves 
along an arbitrary trajectory in the absence of significant 
gravitational masses, we can use special relativity to show 
that the Doppler shift factors are 

aa = Y(m)0 -kw<t>>) (27) 

for signals transmitted by A, and 

UBb> = [Ycm +Pr(d,]-l (28) 

for signals transmitted by B where /3(r)c denotes B’s 
velocity as measured in A’s inertial frame at B’s time 7, 

Y(T) = (1 - P2m- Ii2 denotes the instantaneous aging 
factor, and p,(r) denotes the radial component (in A’s 
frame) of p(r). Using (27) and (28) we have 

~AW/~B(W) = Y2(W)(l - P,2ced)) 

=-(I - b,“(W))/( 1 -b’(e))). 

Thus 

a,(t) 2 ~B(mL (29) 

with equality if and only if B’s motion at time r’(t) is 
purely radial in A’s inertial frame. 

Applying this result to (26), we have 

N,/T, +“Wlog(l +aA(t)P/NW)(l,‘aA(t))dt. 
B 0 

(30) 
This yields the bound 

NA/q - NB/TB 

1 
a-- 

T J( 
’ 1 -yo/aA(t))Wlog(l +a,(t)P/NW)dt 

A 0 

=$--‘(I - yo#‘log(l + (P/NW)/‘&& (31) 

where y = l/(~~( t). The integrand can be shown to be a 
convex function of y. Thus, by Jensen’s inequality, 

NA/TA - NB/TB a(1 -voV)Wlog(l +(f’/NW)/.P), 

where J = l/TAjo’~dt/aA(t) = TB/TA = l/y,. Conse- 
quently, 1 - yoj = 0, and 

NA/TA a NB/TB. (32) 

Thus we can bound the asymmetry in efficiency: 

EB/NB pTB/NB > 1 

-= PTA/N,’ EA /NA 

(33) 

We conclude that if A remains stationary, traveler B needs 
more energy per bit sent than A. 

VIII. TRANSMISSION UNDER A ROUND TRIP 
ENERGY CONSTRAINT 

In Section VII we analyzed constant power transmission. 
Another reasonable physical constraint on the transmission 

(I+B)yNW=NW/a. 

Fig. 5. Water-filling solution for the transmitted energy constraint. 

power P(t) is the roundtrip energy constraint 

s 
TP(t)dt=E. 

0 
(34) 

We can use straightforward variational techniques to maxi- 
mize the average transmission capacity 

C:=+ITWlog(l +a(t)P(t)/(NW))dt. (35) 
0 

The result is 

P(t) = max [O,h - NW/a(t)], (36) 

where A is chosen to satisfy constraint (34). The form of 
P(t) can be determined by a “water-filling” technique as 
shown in Fig. 5. (Compare Shannon’s use of the same 
technique in the frequency domain [5].) First a graph of 
NW/a(t) from t = 0 to t = T is constructed. Then we can 
imagine pouring water over this graph and filling it with a 
total of E units of water to some level A. 

If the available energy ( EA f PATA for A’s transmission) 
is sufficiently large, the water filling solution will give 
X > maxNW,/cy,( t). Thus we have PA(t) > 0 for all t and 
can then reduce (36) to 

P,(t)=&NW/a,(t). (37) 

Since jpNW/aA(t)dt = NWT,, we obtain EA = jP,(t)dt 
= AT, - NWT,. Solving for X and substituting in (37), we 
obtain 

PA(t)=PA+NW(TB/TA- l/a,(t)). (38) 

We see immediately that (38) gives the correct average 
power PA, since the quantity in parentheses integrates to 
zero. The condition that PA(t) > 0 reduces to 

l/a,(t) < TB/TA +P,/NW, for all t. (39) 

Equation (27) is valid if and only if condition (39) is 
satisfied. Otherwise the form of A is more complicated, and 
PA(t) = 0 for some interval of time. 

We conjecture that when terminal A is fixed, traveler B 
needs more energy per bit sent under the round trip energy 
constraint. The pointwise result 

@Act) G 1/aB(7’(t)) (40) 

and the water-filling or “effective noise” interpretation of 
Fig. 5 may be useful tools in proving the asymmetry. It can 
be seen by inspection that the circular trajectory problem 
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of Section IV and the twin problem of Section II as 
discussed in Section IX have the desired asymmetry under 
the roundtrip energy constraint. 

IX. EXAMPLESFORTHETWINPROBLEM 

In the twin problem of Section II, traveler B needs more 
energy per bit sent (although not always by the factor y2) 
under any one of the transmitter constraints: 1) constant 
rate; 2) constant power; and 3) total energy. We will 
specialize the results of the previous sections to the twin 
problem in order to obtain explicit expressions for these 
asymmetries. 

A. Time Dependence of the Doppler Shift Factors 

To analyze the problem of communication between A 
and B, we must first compute the Doppler shift factors for 
transmitted signals. Setting 

CL =(l -P)y=((l- 

and 

a+ =(l +@y=((1+ 

and referring to (2) (3) and 
transmission Doppler factor is 

PM1 + P))“‘, 

PM1 -P>)“‘, 

(41) 

(42) 

Fig. 2, we see that A’s 
The ratio of required energies is 

transmission capacities become 

c,(t) = $h& wlog(l + (YA(t)PA/(Nw)) 
=aA(t>(PA/N)loge, 

and 

CB(7)=(YB(7)(PB/N)10ge. 

If A transmits at this time-varying rate for time TA while B 
leaves and returns at velocity 2) = PC, the total number of 
bits transmitted by A is 

NA =~T’CA(t)dt=(PA/N)loge~T’aA(t)dt 

= [a- (1 - fi)TA/2 + a+ (1 +b)~/2](PA/N)l%e 

=[(I -b)2Y/2 + (1 + P)2Y/2](PA~/iv)l%e 
= (1 + ,f3’)y( PATA/N)loge. (45) 

We can derive an analogous result for B 

NB =(P,/N)loge/“a,(7)dT 

z(PB/x)log~~~/zy)(u- +a+) 
= (P,T,/N)loge. (46) 

aA(t> = 

a- > fOI’o<t<(l -,8)TA/2, 

at 2 for(l-/3)TA/2<t<TA. (43) 

Since B spends equal time on each leg of the trip, B’s 
transmission Doppler shift factor is 

aB(7) = 

a- 5 forO<T< TB/2, 

a+ 2 for TB/2<r<T,. (44 

B. Constant Rate Transmission 

If A and B both wish to transmit reliably to each other 
at the constant transmission rate R,, we know from Sec- 
tion VI that an asymmetry in efficiency of y2 will result. In 
the twin example in Section II, it was shown that the 
outgoing Doppler shift is l/2 and the incoming Doppler 
shift is 2. The expended energies are EA = 8Po, and E, = 
lop,, with a resulting energy ratio EB/EA = 5/4 = y. The 
number of bits transmitted are NA = lOR,, and NB = 8R,. 
Thus the inefficiency ratio is ( EB/NB)/( EA/NA) = 
(10Po/(8Ro)),‘(8Po/(10R,)) = 25/16 = y2. 

C. Constant Power Transmission 

We recall from Section VII that the desired asymmetry 
for constant power transmission has been proved for gen- 
eral round trips. Here we restrict attention to the twin 
problem of Section II to obtain an explicit answer. Interest- 
ingly, the asymmetry is now bounded by a factor of two 
for all velocities. 

To simplify the analysis and the result, we also make the 
infinite bandwidth assumption. Under this condition, the 

EB/EA = pBTB/(pATA) = (l/d(pB/pAh (47) 

Equations (45)-(47) yield the ratio of energies per bit 
transmitted 

(EB/NB)/(EA/NA)=(l +P2)=~2(l -P”>. (48) 

Note that the asymmetry (1 + p2), unlike y2, is bounded 
by two for all - 1 G j3 < 1. We can see that for communi- 
cation in the linear round trip problem, constant-power 
transmission does not yield results as simple as those for 
constant-rate transmission. Nevertheless, the relative ef- 
ficiency of the traveler is strictly less than one in both 
cases. 

D. Transmission Under an Energy Constraint 

In Section VIII the asymmetry result under an energy 
constraint was not proved for arbitrary round trips. We 
now show that for the linear round trip, the traveler is less 
efficient under an energy constraint. 

Let A and B vary their transmission power under the 
energy constraints 

EA =iTAPA(t)dt = POT,, 

E, = 
/ T”PB(t)dt=PoTB. 
0 

Section VIII gives a water-filling solution for the optimal 
form of P(t). The water-filling solutions for PA(t) and 
PB( t ) are shown in Fig. 6. 

If PO/NW> p( 1 + /?)y/2, both transmission problems 
have nontrivial solutions. Both A and B transmit with 
positive power for the entire trip duration. From (43) and 
(44) we have log&,= j?log(i + /3)y and logaB= 0. Using 
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0 TA 

Fig. 6. Water-filling solutions for transmission power in the twin 
problem. 

these results in (35) and (39), we find that A’s average 
transmission capacity is 

c7, = Wlog(l/y + P&VW) + kI+log(l + P)y. (49) 

Similarly, B’s average transmission capacity is 
- 
c, = Wlog(y + P&VW). (50) 

Although the ratio of the average rates has no simple form, 
it is simple to show that the traveler once again needs more 
energy per bit sent, i.e., 

EB /NB -= CA/CB > 1. 
EA PA 

X. SUMMARYANDCONCLUSIONS 

The main conclusion of this work is that if terminals A 
and B transmit at the same constant rate and bandwidth, 
the asymmetry in efficiency is equal to the square of the 
relative aging factor ye. The traveler who ages less needs 
more energy by the factor y0 and more energy per bit sent 
by the factor yt. This result is independent of acceleration 
and gravitational fields. 

Instead of demanding constant transmission rates and 
comparing the required energies for A and B, we can 
demand fixed transmission powers and compare the 
achievable average rates. When one terminal is fixed, the 
traveler again is less efficient. 

The analysis here supports the conjecture that under any 
symmetric transmission constraint, the younger traveler 
needs more energy per bit sent. 

APPENDIX 
AN ANALOGY TO THE “TWIN PARADOX” 

The following simple analogy replaces the space- time coordi- 
nates and relativistic velocities of the twin problem by two- 
dimensional space and ordinary velocities. It illustrates how 
turning can destroy symmetry, so that one cannot interchange the 
observations of A and B in the twin problem. 

We consider two travelers, D and E, in two-dimensional space. 
They start together moving in different directions represented by 
unit vectors J and C, such that the direction cosine is 2.; = 4/5 
(see Fig. 7). 

Fig. 7. D and E set off in different directions. 

Fig. 8. D jumps ahead as E turns back toward D 

Each traveler moves at the constant speed of 1 km/h. At the 
end of five hours, D observes that E is 1 km behind him, since D 
measures progress along the d direction. Similarly, E observes 
that D is 1 km behind after 5 hours. 

Now suppose that E turns back toward D’s path as shown in 
Fig. 8. 

First we consider D’s point of view. Traveler E continues to 
fall behind D at 0.2 km/h. The result is that E arrives at the 
intersection point with D’s path after a total of 10 hours, 2 hours 
after D arrives. 

The situation from E’s point of view is not as simple. As E 
turns, changing his distance measurement reference direction 
from P to C’, traveler D appears to jump from the position 1 km 
behind E to a position 2.6 km ahead of E. This apparent jump is 
solely the result of E’s coordinate change. After E’s turn, traveler 
D again appears to fall back at 0.2 km/h. After a total of 8 hours, 
D reaches the intersection point, 2 hours (and 2 km) ahead of E. 

The twin problem of Section II contains a discontinuity of 
apparent coordinates similar to the one illustrated above due to a 
coordinate change when traveler B turns. Failure to consider such 
discontinuous jumps when dealing with noninertial coordinates 
can easily lead to an apparent paradox. 
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