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An Achievable Rate Region for the 
Multiple-Access Channel 

with Feedback 
THOMAS M. COVER, FELLOW, IEEE, AND CYRIL S. K. LEUNG, MEMBER, IEEE 

Abstract - An achievable rate region R , G I( X, ; Y 1 X,, U), R 2 G 
1(X2; YIX,, U), RI + R2 G 4x1, X2; Y), where P(U, xl, XZ, Y) = 
p(u)p(x,~u)p(x~~u)p(ylxl,x~), is established for the multiple-access 
channel with feedback. Time sharing of these achievable rates yields the 
rate region of this paper. This region generally exceeds the achievable rate 
region without feedback and exceeds the rate point found by Gaarder and 
Wolf for the binary erasure multiple-access channel with feedback. The 
presence of feedback allows the independent transmitters to understand 
each other’s intended transmissions before the receiver has sufficient 
information to achieve the desired decoding. This allows the transmitters to 
cooperate in the transmission of information that resolves the residual 
uncertainty of the receiver. At the same time, independent information 
from the transmitters is superimposed on the cooperative correction infor- 
mation. The proof involves list codes and block Markov encoding. 

I. INTRODUCTION 

G AARDER AND WOLF [l] have demonstrated that 
it is possible to increase the capacity region of a 

discrete memoryless multiple-access channel (Fig. 1) 
through the use of feedback. 

The basic idea behind the scheme in [l] and the exten- 
sion in [2] can be described in two stages. During stage 1 
the two transmitters send information reliably to each 
other at the maximum possible rate. Stage 1 ends when 
each transmitter has complete knowledge of the other’s 
message. The rate of transmission in stage 1 will be too 
high for reliable transmission to the receiver. However, the 
stage 1 transmissions will enable the receiver to narrow 
down the set of possible transmitted messages to a consid- 
erably smaller set of “typical” messages. With probability 
arbitrarily close to one, the set of “typical” messages will 
contain the actual transmitted message. The receiver and 
the two transmitters then arrange the messages in the 
“typical” set in lexicographic order. This sets up stage 2 
during which the two transmitters cooperate to send the 

Manuscript received April 13, 1977; revised August 1, 1980. This work 
was supported in part by the National Science Foundation under Grant 
ECS-7823334, in part by Stanford Research Institute ARPA under 
Contract DAHC-15-C-0187, and in part by the Natural Sciences and 
Engineering Research Council of Canada under Grant A1052. This paper 
was presented at the IEEE International Symposium on Information 
Theory, Cornell University, Ithaca, NY, September 1977. (A revision of 
this paper was allowed to lapse and the paper was resubmitted to this 
TRANSACTIONS in October 1979.) 

T. M. Cover is with the Departments of Electrical Engineering and 
Statistics, Stanford University, Stanford, CA 94305. 

C. S. K. Leung is with the Department of Electrical Engineering, 
University of British Columbia, Vancouver, BC, Canada. 

Fig. 1. Multiple-access channel with feedback. 

index of the actual transmitted message. It is shown in [2] 
that such a scheme generally enlarges the capacity region. 

In this paper we superimpose stage 1 and stage 2 as is 
done with degraded broadcast channels [3]. Before describ- 
ing how this scheme works, we compare its performance 
with that of [I]. The noiseless binary erasure multiple-access 
channel shown in Fig. 2 will be used as an example. For 
this channel, Gaarder and Wolf show that a rate pair 
(R,, R2) = (0.760.76) is achievable where Rj, i = 1,2, re- 
fers to the transmission rate from the ith sender to the 
receiver in bits per transmission. Throughout this paper, 
information and entropy will be measured in bits. Their 
method is as follows. For the first m transmissions, send m 
independent bits from each transmitter. By the structure of 
the channel it can be seen that approximately ti/2 trans- 
missions will be perceived perfectly by the receiver Y, and 
the remaining m/2 will be ambiguous. We use the next n 
transmissions to transmit the correct X, values for the 
ambiguous transmissions at the cooperative channel capac- 
ity of log,3 bits/transmission. Thus 12 = (m/2)/log,3. 
Hence the total average rate sum is given by R, = R,, 
R, + R, = (m + m)/(m + m/2log,3)) = 2/(1 + l/log9) 
I= 1.52037. 

We shall show that for this same channel, the new 
scheme can achieve R, = R, =0.79113.. a. An upper 
bound is R, = R, = (1/2)log3 = 0.79248 1.1, which is 
achieved by total cooperation. The achievable points and 
upper bound are shown in Fig. 3. It can be seen that the 
performance of the new scheme is very close to the upper- 
bound. This improvement over the two-stage scheme is 
perhaps surprising since the noiseless binary erasure multi- 
ple-access channel seems well suited to the scheme in [ 11. 

In the next section we review the capacity region of 
memoryless multiple-access channels, introduce the chan- 
nel with feedback, and state our main result. Section III 
contains a digression on typical sequences. We recall some 
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Fig. 2. (a) Noiseless binary erasure multiple-access channel. (b) Channel 
input output relationship. 

0 1 1.585 Rl 

Fig. 3. Achievable points and upperbound for the noiseless binary 
erasure multiple-access channel. 

basic results that will be needed to establish an achievable 
rate region in Section IV. Section V discusses the cardinal- 
ity bound on an auxiliary random variable U used in 
defining the rate region. Finally the additive white Gaus- 
sian noise (AWGN) multiple access channel is treated in 
Section VI. 

II. PRELIMINARIES AND MAIN RESULT 

In a multiple-access channel, several transmitters com- 
municate with a single receiver. The channel is char- 
acterized by its input terminals with alphabets 
%,,%2,-. * ,xM, its output terminal with alphabet ‘3, and 
a set of conditional probability measures on the output 
signal Y given the input signals X,, X,, . . . , X, (see Fig. 4). 
We shall deal with only two senders. 

Definitions: A (two-user) memoryless multiple-access 
channelis denoted by {%,,%,),9, p(ylx,, x2)}, where xx, 
and %* are the input alphabets, ?4 is the output alphabet, 
and p(. 1 x,, x2) is a collection of probability mass functions 
on ‘3 indexed by the input symbols x, E % , , x2 E %, . The 
channel is said to be discrete if %,,%*, 9 are finite sets. 

The channel is memoryless if 

where xlj, x2j and y, denote the inputs and outputs of the 
channel at time j. 

The feedback does not enter into the definition until a 
code is defined. An ((Ml, M2), n) code for the multiple- 
access channel with feedback is given by the following: 

i) a collection of encoding functions x,: { 1,2,. . . , MS} 
XTYhGXf, s = 1,2, where the k th coordinate of 
x, E %: is given by the function 

Xsk(Ws,(Yl,Y2,...,Yk-l)), 

k= 1,2;..,n, ws= 1,2;-.,M S’ 
ii) a decoding function g: ql” + { 1,2,. . * , Ml} X 

{lJ,-. -2 M2}. Weshallwriteg(yl,~~~,y,)=(~l,~2). 

Fig. 4. Multiple-access channel. 

That is, each sender s sends a sequence of symbols depend- 
ing on his desired message ws and the past symbols 
YIP Y2,’ * ‘>Yk-1 fed back from the receiver. 

We shall use the average probability of error criterion 
defined as the probability of error under the assumption 
that the messages are random variables W, and W, drawn 
according to a uniform distribution over { 1,2,. . *, Ml} X 
{ 1,2,* * -9 M2}. Thus we define the error probability for the 
code to be 

1 =- 
M,J42 

“iMz P{g(Y)#( w1,w2)~w*=w,,w2=w2}. 

w,=l,w~=l 

0) 
We are interested in the rates at which asymptotically 

error free transmission can take place. Hence we shall say 
that the rate pair (R,, R2) is achievable for the memoryless 
multiple-access channel with feedback if there exists a 
sequence of ((Ml, M2), n) codes with 

R&ogM,, 
n 

R, &ogM,, 
n 

such that P, + 0 as n + co. The capacity region is the 
closure of the set of all achievable rates. 

Ahlswede [5], and Liao [6], (see also Slepian and Wolf 
[4]) have determined the capacity region R* of a two-input 
single output discrete memoryless channel with no feed- 
back: R* is the closure of the convex hull of the union over 
all input distributions Px,, x,(e, .) with independent Xl, X2 
of the sets of rate pairs R = (R,, R,) satisfying 

R,<&%Y(X,), (24 

R,<~(X,;YIX,), G’b) 

R,+R,<I(X,,X,;Y). (24 

The following theorem is the primary result of this 
paper. 

Theorem 1: Let U be a discrete random variable which 
takes on values in the set %= {1,2;*.,m}, where m= 
min{ll~)i,II~IIGX211,11~lI} and II%ill denotes the alphabet 
size of user i. Consider the set 9 of all joint distributions of 
the form 

P .,,,,~~~~1~~2~Y>=~,~~~~,,,u~~ll~~ 

‘~x,,u~~2l~~~,,x,x,~Yl~l~~2~~ (3) 

where P y, x, x,< y 1 x1, x2) is fixed by the channel. For each 
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P E $?, denote by C%(P) the set of all rate pairs (R,, R2) 
satisfying 

~,-+X,;Y(X,J), (44 

~,<W,;YJX,,U), (4b) 

~,+~,-qx,,x,;y), (44 

where the mutual informations are computed for P. Then 
the achievable rate region a* is given by the closure of the 
convex hull of U%(P), where the union is over all P E 9. 

Using Theorem 1, we observe’ that for the noiseless 
binary erasure multiple-access channel of Fig. 2, the rate 
pair (R,, R2) = (0.79113,0.79113) can be achieved by let- 
ting Pr{U=O} = Pr{U= l} = l/2, and letting X, and X, 
be conditionally independent given U = u with Pr { Xi # u) 
= 0.237663, i = 1,2. 

III. JOINTLY TYPICAL SEQUENCES 

In this section we recall some basic results concerning 
typical sequences which will be used to establish Theorem 
1. See Wolfowitz [ 1 l] for the first systematic exploitation of 
typical sequences in formal capacity proofs. 

Let {Xc’), Xc*), - . . , Xck)} denote a finite collection of 
discrete random variables with some fixed joint distribu- 
tion p( .x(t), $); 9 . ,x(~)). Let S denote an ordered subset 
of these random variables and consider n independent 
copies of S. Thus, 

Pr(S=s) =ifit Pr{Si=si}. (5) 

For example, if S = (X(j), Xck)), then 

Pr{S=s} =Pr{(X(j),X(k))=(~(j),n(k))} (6) 

n 

=i~*p(xlj),X(k)). 

Definition: The set A, of jointly <-typical n-sequences 
(xw, x(2) . . . , ,x(~)) is defined by 

A,( X(l), XC” . . . , $6) > 

= 
I 

(x ,a** (I), x(2) ,X(k)) E (W”)” x (%“))” 

x * - - x (SC(“))+ $ogp(s) -H(S)l<e, 

v s c {XC’), x(2),- * *,Xck)} 
I 

) (7) 

where s denotes the ordered set of sequences in x(l), . . . , x(k) 
corresponding to S. Let A,(S) denote the restriction of A, 
to the coordinates corresponding to S. Thus, for example, 

‘These calculations were contributed by E. C. van der Meulen. 

for S = {X(l), Xc3)}, 

A,( Xc’), Xc3)) 

= l (x (0, x(3)): - $ogp(x (I), x(3)) - H( x(l), XC”) < E) 

I-$logp(x”‘)-H(X(‘))l<~, 

~-~logp(x(3))-H(x~~))~cr). 

We now recall three basic lemmas. For a proof of these 
lemmas, see Forney [9] and Cover [lo]. 

Lemma I: For any E > 0, there exists an integer n,, such 
that for all n > n,, A,(S) satisfies, for all S C 
{XC’), . . . , x(k)): 

i) Pr{A,(S)} 2 l-6, 

ii) sEA,(S)*+ogp(s)-@)I+, 

iii) (1 - +n(H(S)--o < I( A,( S)ll < 2n(ff@)+~). (9) 
Lemma 2: Let the discrete random variables X,Y have 

joint distribution p(x, y). Let X’ and Y’ be independent 
with the marginals 

P(x)=~P(x,Y)? 
Y 

P(Y)=IzPkY)* 
x 

Let (X,Y)-fln,?=,P<xi, Yi) and (X’, Y’)-II~=~p<x~>p(yi) 
where Xi and yi, 1 G i G n are independent and identically 
distributed as X and Y, respectively. Then 

Pr{(X’,Y’) EA,(X,Y)} ~2-“[~(~;~)-‘]. (10) 

Lemma 3: Let the discrete random variables X, Y, Z 
have joint distribution p(x, y, z). Let X’, Y’ be condition- 
ally independent given Z, with the marginals 

P(Xl4 = ~Pc? Y, Z>/PW, 

P(YIz)=~P(x,Y,z)/P(z). 01) 
x 

Let 

(x,y,z)-i~,P(xi,Yi,zi) 

and 

(X’~r’~z)~j~~P(~ilzi)P(Yilzi)P(zi)~ 

Then 

Pr{(X’,Y’,Z) EA,(X,Y,Z)} G2-n[1(x;YIZ)-7f1. 

02) 
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IV. PROOF OF AN ACHIEVABLE RATE REGION FOR 
THE TWO-SENDER MULTIPLE-ACCESS CHANNEL 

WITH FEEDBACK 

In this section, we describe a coding scheme for the 
multiple-access channel with feedback and show that it 
achieves the rate region defined in Theorem 1. This scheme 
is related to that in [I], but incorporates two additional 
features, namely the idea of superposition of information 
and a block Markov stationary coding structure. The 
scheme uses a large number B of blocks, each of length it. 
In block b, 1 <b < B, the transmitters send enough infor- 
mation to the receiver to enable him to resolve any uncer- 
tainty left over from block b - 1. Superimposed on this 
information is some new independent information which 
each transmitter wishes to convey to the receiver. The rate 
of this new information is small enough so that each 
transmitter can reliably determine the other’s message 
through the feedback links. Although the transmission rate 
of the new information will be too high for reliable trans- 
mission to the receiver, the receiver will be able to restrict 
the set of possible transmitted messages to a considerably 
smaller list of “typical” messages that with high probability 
will contain the correct message W. All the receiver needs 
in order to learn W is the index of Win some prearranged 
ordering of the typical set. 

At the end of block b, the receiver learns block b - 1 
reliably and has some uncertainty (to be resolved in block 
b + 1) about the new superimposed information. Also at 
the end of block b, each transmitter has complete knowl- 
edge of the other’s message, thus enabling the transmitters 
to cooperate in resolving the receiver’s residual uncertainty 
about block b in block b + 1. This scheme results in a 
“steady-state” noncooperative infusion of new information 
and a cooperative resolution of the residual uncertainty. 

We now use a random coding technique to prove Theo- 
rem 1. 

Random Coding: First fix a choice of PJu), 
Px,ju(x,~u), Px21u(x2~u). Generate a sequence of 2nRo in- 
dependent identically distributed random vectors u = 
(u,, U2,’ . . ,un) according to Pu(uI,u2;. +,u,) = 
ll:=, Pu( ui). Index these vectors as u(j), j E [ l,2nRo]. For 
each u(j), we generate 2”R~ conditionally independent 
n-sequences x{(k), k E [l,2nR1] and 2nRz conditionally in- 
dependent n-sequences xi(Z), I E [l,2”R2]. The components 
of x$ a), s = I, 2, are generated independently according to 
PX~,Jxi\ ui( j)). Thus for example, the n-sequence x{(k) 
has probability 

where u;(j) is the ith component of u(j). 
It is intended that the “cloud center” u(j) will be 

correctly received by Y during the block in which it is sent. 
The “satellite” indices k and I will be decoded correctly by 
senders 2 and I, but only partially understood by the 
receiver. 

In the first block no cooperative information is sent: the 
transmitters and receiver use a predetermined index j’ and 
encode k E [1,2”R~] and I E [l,2”R2] into x{(k) and x{‘(Z), 
respectively. In the last block the transmitters send no new 
information and the decoder receives enough information 
to resolve the residual uncertainty about the penultimate 
block. We note that if the number of blocks B used in the 
scheme is large, the effective transmission rates over B 
blocks will be only negligibly affected by the rates in 
blocks 1 and B. 

Encoding: Suppose that j* is the index which is to be 
sent to the receiver (in block b) in order to resolve his 
residual uncertainty about the new messages (sent by the 
two transmitters) in block b - 1. We will shortly derive an 
upperbound on the range of the index j*. Also, let us 
denote the two new indices (or messages) to be sent in 
block b by (k*,Z*) where k* ~[1,2”~1] and I* l [1,2”~2]. 
Then in block b, the first encoder sends x{*(k*) and the 
second encoder sends x{*(Z*). Let the n-sequence obtained 
by the receiver be y. 

Decoding: The decoding procedures at the end of block 
b at the receiver and the two transmitters are as follows. 

1) The receiver declares j^=j was sent if and only if 
there is a unique j such that (u(j), y) are jointly typical. 
From Lemmas 1 and 2, we know that j* can be decoded by 
receiver Y with arbitrarily small probability of error Pe, < 
c/5B if j* takes on less than 2n(1(QY)--c) values and n is 
sufficiently large. 

2) Transmitter 1 estimates the message of the second 
transmitter by declaring != 1 if and only if there is a 
unique Z such that (x{*(k*), xi*(Z), y) are jointly typical. 
Using Lemmas 1 and 3, it can be shown (for details see 
[lo]) that i= Z* with arbitrarily small probability of error 
Pe, I < c/5B if 

&<I(&; YlX,,u), (14) 

and n is sufficiently large. 
3) Similarly, the second transmitter can guess k* with 

arbitrarily small probability of error P=,,, < c/5B if 

R,<&W7X,,U). (15) 

Cardinality of S,,: At the end of block b, the two trans- 
mitters know each other’s message (with small probability 
of error). We now consider the set Sy of codewords which 
at the end of block b are jointly typical with y. From 
Lemma 1, we know that (x{*(k*), xi*(Z*)) will be jointly 
typical withy with high probability, say P, > 1 - 6/5B. Let 

‘klb)= 
I, (x{*(k),xi*(Z), y) are typical, 

0, otherwise. 
06) 

Then the cardinality of Sy is the random variable 

IlsyII = 2 *k,,(.d 

k,l 
(17) 
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and or equivalently 

EIIS,lI =E\k,*,,*(J’)+ x E\k,,,( Y) R,+R,<I(X,,X,;YJU)+l(U;Y)-(c+E,) (32) 
k#k*,l=l* 

+ 2 E\k,,,b) + x E\k,,,( .d (18) 

=I(Xl,X2;Y)-(~+E1). (33) 

k=k*,l#I* k#k*,I#l* By choosing n sufficiently large and z, cl sufficiently small, 

We now bound the random variable II S, Il. we can make R, + R, as close to I( Xl, X2; Y) as desired in 

Lemma 4: For any 6 > 0, R, > 0, R, > 0, there exists an (33). 

n, such that for n 2 n,, 
Bounding the Probability of Error: For the above scheme, 

we will declare an error in block b if one or more of the 
P{ II s, II > 2 ~(RI+Rz--I(X,,XZ;YI~)+~)} <c. following events happen. 

Proof: Using Lemmas 2 and 3, it follows that E, Decoding step 1 fails (i.e., j* incorrectly decoded). 

E$#‘) ~~-“~~(X’~XZ;Y~~)-~I, k#k*, Z#Z*, 
E, Decoding step 2 fails (i.e., transmitter 1 incorrectly 

estimates the message of transmitter 2). 
(19) E3 Decoding step 3 fails (i.e., message of first trans- 

E\kk,[(Y) ~~-“[‘(X~;Y~XI,~)--C~, k-k*, Z#Z*, mitter incorrectly decoded at second transmitter). 

(20) 
E4 (x{*( k*), x/2*( Z*)) not jointly typical with y. 
E, 11 S, 11 > 2”cA +‘I). 

E\kk,[( y) < pmwv2JJ-~l, k#k*, Z=Z*. Using the union bound, we can upperbound the proba- 
(21) bility of error & (averaged over the choice of codebooks 

Therefore, 
and possible input messages) in block b by 

~(ls,([ < ] + (7% - ])(2%- ])2-n[l(x,,xz;Ylrr)-cl Fe bGPr{EI}+Pr{E2} + . ..+Pr{E.} 

+ (2 nR, - 1)2-“[‘(X,;YIx,,r/)-~l 
(22) 

=pe,+pe2,+pq2+ 0 -pJ+p, (34) 

(E/B. 
+ (2 nRz - I)- n[q&;ylX,,u)-cl 

I 

This proves that there exists at least one code with an 
If average probability of error in block b of less than r/B. 

R,<&W7X,,U)-c (23) The union bound then states that the average probability 

&<&%Y(X,,U) -~9 (24 
of error in B blocks is less than E. Q.E.D. 

then n can be chosen so that the last two terms in (22) are V. THE CARDINALITY OF U 
less than E. Thus, 

EIISyll-++~)+2 n[R,+R*-I(X,,X,;YlU)-rJ 
A rate region is considered to be presented in satisfac- 

(25) tory form only when it is computable from its characteriza- 

= (I$ e) + 2n(A--r) (26) 
tion. Thus Shannon’s original theorem 

<22”A, for n sufficiently large, and A > z , 
c= supI(X;Y) 

P(X) 
(35) 

where 

A=R,+R,-I(X,,X,;YjU). 

(27) is satisfactory, while the equally correct 

(28) 
c=sup SUP (l/n)l(X,;..,X,;Y,;..,Y,) (36) 

n P(Xl,~~.4”) 

U sing Markov’s inequality we obtain is not, simply because the first involves a maximization of 

Pbg Pr{llS,II >2”E12nA} G2-““, foranyc,>O 
a convex function over a compact set and the second does 
not. The first expression leads naturally to an algorithm of 

(29) 
finite length such that for any n a computation of finite 

G </5B, for sufficiently large n . (30) 
length will yield an approximation C,, , 1 C, - C 1 d 1 /n. The 
second expression has no such natural interpretation. 

This completes the proof of Lemma 4. Equation (35) is said to be a “single letter” characterization 
of capacity. 

Thus with high probability I- Pb, the index required (in Yet another computability consideration enters the rate 
block b + 1) in order to resolve the receiver’s residual region characterization in Theorem 1 of this paper. It 
uncertainty about block b takes on no more than 2n(A+r1) annears that 
values. However, recall that in the first step of the decoding I A 
procedure, we require that the index have fewer than 4+X,; YIX,,U), 

n(I(U, Y) - c) bits. Thus we need R2~~0’2;Y(X,,U), (37) 

A+c,=Rl+R2-I(X,,X2;YIU)+~,<I(U;Y)-~, R,+R,~~(X,,X,;Y), 

(31) is a single letter characterization. However this characteri- 
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zation becomes useful for computation only when the 
cardinality of the auxiliary random variable U is bounded. 
This bound limits the computation to that of a well be- 
haved function over a compact set. Salehi [15] has investi- 
gated the region in (37) and has proved that IlUll < 
tin { II X, II . II X2 II, II Y II} is sufficient to generate the entire 
region. 

VI. THE AWGN MULTIPLE-ACCESSCHANNEL 

We first recall the capacity region of the AWGN multi- 
ple-access channel. An achievable rate region using the 
feedback scheme proposed in Section I will then be given. 

The AWGN multiple-access channel is the most com- 
monly studied continuous alphabet channel % , = Gx, = 9 
= %. The output signal Y is the sum X, + X, + Z, where 
X, and X, are the input signals and Z is a zero-mean 
Gaussian (noise) random variable independent of X, and 
X, with variance EZ2 = N. There are average power con- 
straints P, and P2 on the inputs which require that the 
encoded messages xi and x2 (which have n components xif, 
t = 1,2;. .,n) satisfy 

(38) 

The capacity region e for the AWGN multiple-access 
channel has been determined by Wyner [7] and Cover [8] 
based on the work of [5, 61: e= set of all rate pairs 
R = (R,, R2) satisfying 

R,+og l++ , 
( 1 w4 

WHITE GAUSSIAN NOISE 
WITH VARIANCE N 

I I 

Wl L I 
DECODER W,,W*l 

% 

Fig. 5. AWGN multiple-access channel with feedback. 

the two sequences of power aiPi and oI,P, are added to 
form the channel input. 

We note that the receiver’s residual uncertainty is re- 
solved at a rate corresponding to coherent transmission 
from the two encoders, i.e., at an effective power 

The receiver first decodes the information needed for re- 
solving its residual uncertainty and then subtracts off the 
corresponding signal before estimating the new informa- 
tion. Using standard superposition arguments, it is possible 
to show that any rate pair (R,, R2) satisfying 

(404 R,+og( l++), 

R2+og( 1 +q), 

P*+P2+2~z3q5 
N , (4Oc) 

ww 

for 0 < (Y~ & 1, is achievable.2 
It is fairly easy to see that a necessary condition on (Y, 

and a2 to achieve a point on the boundary of the rate 
region given by (40) is 

(39c) (1 I “;ypI)jl ; “2+ (l+pI+p2+$%~2pIp2 )* 

The model for the AWGN multiple-access channel with 
feedback is shown in Fig. 5. (41) 

We now proceed to determine an achievable rate region 
using the feedback scheme of Section I. The basic idea in 
block b, 1 < b < B, is for transmitter 1 to devote a fraction 
(Y, of its power P, to the transmission of new information 
and the remaining fraction ‘Yr = (1 - (pi) to the resolution 
of the receiver’s residual uncertainty about the messages in 
block b - 1. Similarly, transmitter 2 uses a2 of its power P2 
to send new information and Or2 to help resolve the re- 
ceiver’s residual uncertainty. The code book for each block 
is chosen as follows. We first generate a sequence of n 
independent identically distributed (i.i.d.) normal random 
variables with zero mean and unit variance. Then we 
independently generate 2nRo such sequences. At the first 
transmitter we scale the components of each of these 
sequences by m. At the second transmitter these same 
sequences are scaled by m. Furthermore, we indepen- 
dently generate 2”Rg n-sequences each of which consists of 
n i.i.d. Gaussian random variables with mean zero and 
variance aiPi for use at transmitter i. At each transmitter i, 

Using (40) and (41), an achievable rate region for the 
AWGN multiple-access channel with feedback with P, /N 
= P2 /N = 10 has been computed. The results are shown in 
Fig. 6. We might note that if P, /N = P2 /N = (Y, then the 
pair 

(~7, R;)= (+0g(2ili+a- i),~i0g(2~iTi- 1)) 

is achievable. 
(42) 
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