
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. 4, JULY 1981 409 

Asynchronous Multiple-Access 
Channel Capacity 

THOMAS M. COVER, FELLOW, IEEE, ROBERT J. McELIECE, MEMBER, IEEE, AND 

EDWARD C. POSNER, SENIOR MEMBER, IEEE 

Abstract- The capacity region for the discrete memoryless multiple- 
access channel without time synchronization at the transmitters and re- 
ceivers is shown to be the same as the known capacity region for the 
ordinary multiple-access channel. The proof utilizes time sharing of two 
optimal codes for the ordinary multiple-access channel and uses maximum 
likeliiood decoding over shifts of the hypothesized transmitter words. 

INTRODUCTION 

A TWO-USER discrete memoryless multiple-access 
channel {%, X xx,, 3, p(y]x,, x2)} has two senders 

x, and x2, and a receiver y. When two users are attempting 
to use the same channel, there are two kinds of cooperation 
that make physical sense. The first is a strategic coopera- 
tion-both the senders and the receiver agree on the code 
books that will be used. This is the usual assumption for 
the Shannon channel. 

The second possible cooperation occurs when the inde- 
pendent messages are actually sent. If both senders are 
aware of each other’s messages II’, and W, at the beginning 
of the transmission, then they can send at respective rates 
R , and R 2 by using the channel cooperatively as an ordinary 
l-sender Shannon channel with capacity 

R,+ R,I C= ,(m,a:,,1(X,, X,; Y). (1) 

However, it is more common that W, is known only to x, 
and W, only to x2, thus allowing only convex combina- 
tions of rates (R,, R2) satisfying 

R,s I(% YlXz), 

R,c I(&; Y(4), (2) 

R, + &I I(& X,; Y), 

for p(x,, x2) = p(x,)p(x2). This independent-user region 
is the multiple-access channel capacity found by Ahlswede 
[l] and Liao [2]. We shall only be concerned with the 
independent user capacity of (2). 
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Returning now to the strategic cooperation used to de- 
rive (1) and (2), we see that implicit use is made of time 
synchronization. Even simple time sharing, in which each 
sender is quiet while the other sends, requires a common 
time base. What happens to the capacity region in (2) when 
there is a time uncertainty for the users and the receiver? 
Clearly new code books may have to be constructed. 
Moreover, the interference of codewords from the users’ 
respective code books cannot now be cooperatively allowed 
for. For example, the strategic cooperation by time sharing 
may be ruined by unavoidable overlapping of the transmis- 
sion periods. Finally, even the receiver must revise his 
decoding strategy in order to look for the joint transmis- 
sions with arbitrary time shifts. 

This paper would not be necessary if the union of 
the regions given in (2) were convex, but Bierbaum and 
Wallmeier [3] have found an example demonstrating that 
the union is not convex. We shall show that the capacity 
region is unaffected by lack of synchronization. 

I. DEFINITIONS AND REVIEW OF MULTIPLE-ACCESS 

CAPACITY 

An ((M,, M2), n, P,,) code for the (discrete memoryless) 
multiple-access channel {%, X !?&, 9, p(y]x,, x2)} is a 
pairofmapsx,: {1,2;**,M,} --$%7,x,: {1,2;**,M,} -+ 
%i, and a map g: %‘- {1,2;*.,M,} X {1,2;**,M,}. 
The probability of error P,, of this code is defined under the 
assumption that the indices I and J are drawn indepen- 
dently according to a uniform distribution. Thus 

P, = P{g(Y”) + (I, J)} 

=~~,P{g(Y.)#(i,j)ll=i,J:j}, (3) 

where 

A pair of rates (R,, R2) is said to be achievable if there 
exists a sequence of ((2nR~, 2nR2), n, P,) codes with P,, + 0. 
The capacity region C* is the closure of the set of all 
achievable rates (R,, R2). 

Theorem 1 establishes the capacity region C*. An alter- 
native proof to those in [ 11, [2] will be given as a model for 
the subsequent proof that C* remains unchanged when 
there is no time reference, i.e., no synchronization. 
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For the multiple-access channel without synchronization, 
the error criterion is more stringent- the decoding must be 
correct for all shifts of xi(i) and x,(j), where the shifts are 
imbedded in arbitrary sequences from %, and xx,, respec- 
tively. This is the appropriate error criterion. Imbedding 
the codewords in arbitrary sequences of input symbols 
yields the most difficult recognition task for the receiver. 
The arbitrary part of the transmission can be chosen to 
mimic some other codeword. 

We shall first define a code for a channel in which both 
shifts are known not to exceed d. Then a rate region 
independent of d will be defined. 

An ((M,, M,), n, d, P,) code for a multiple-access chan- 
nel with maximum relative delay d is a pair of maps 

x,: {1,2;**,M,} -+ txy, 

x2: {1,2;*94,} + fx;, (5) 

and a map 

g:%fl+d+{1,2,***,M1} x {1,2;**,M,}. 

The probability of error of this code is 

1 
pn= M,M* 

2 max P{g(Y”+d) #(i, j)ld,, d,, I = i, J =j}, 
i,j 1 Id, ‘d 

Isd,Sd 
z,,P,,a,,I, 

(6) 

where 
n+d 

p(y"+dli, jy 4,4)= ~~,P(YkJXI,k-d,(i),n*,k-d2(j)), 

and the first d, symbols and last d - d, symbols of x,(i) 
are arbitrary sequences f, E YLdl, I, E %f--dl (with a 
parallel condition for d, and x2(j)). 

We shall explain this definition. Here %, and 9Lx, are the 
channel input alphabets for the two users. The integers M, 
and it4* are equal to 2nRl and 2nR2, where R, and R 2 are 
the rates of the two users. The mappings x1 and x2 are the 
encoding mappings which produce codewords of length n 
from the index message. The probability p( y Ix,, x2) is the 
transition probability for the channel, which specifies the 
probability of output y when x1 and x2 are the inputs of 
the two users. 

The set ‘% is the output alphabet. We assume that there is 
one receiver trying to reconstruct the two inputs. 

The relative delay d is the maximum amount by which 
the two messages are assumed to be out of synchronization 
relative to a known or prearranged time. For many appli- 
cations, we can assume such a d exists. The map g is the 
decoding operation which can commence when n + d sym- 
bols have been received. 

The error probability P,, is an average word error proba- 
bility. It is defined under the assumption that all Ml& 
pairs (i, j) of inputs are equally likely. For each pair, the 
term to be averaged is the maximum over d of the probabil- 
ity of incorrect decoding of i or j or both, given that the 

delay of the ith user relative to the prearranged start of the 
codeword block is di. Here d, and d, are constrained to be 
at most the maximum relative delay d. The maximum is 
also taken over all possible “head” and “tail” sequences 
from prior or subsequent codewords. These intrude into 
the n + d symbols observed by the receiver to pad out the 
length from n, the code block length, to n + d, the block 
length plus the maximum relative delay. 

A pair of rates (R,, R2) will be said to be achievable if 
there exists a sequence d, + 00 and a sequence of 
((2 nR~,2nRz), n, d,, P,,) codes with P,, + 0 as n + 00. This 
means that we can guarantee arbitrarly low word error 
probabilities at these rates, no matter how large the relative 
delay bound may be, as long as we know a bound for the 
relative delay. A stronger sense of achievability indepen- 
dent of knowledge of a relative delay bound will be demon- 
strated in Section III. Finally the capacity region C is as 
usual the closure of the set of achievable rates. 

Example (The Binary Erasure Multiple-Access Channel): 
Let %, = !Kz = (0, l}, 9 = {0,1,2}. Consider the de- 
terministic channel y = x1 + x2. For obvious reasons, y = 1 
is called an erasure. The capacity region (see Theorem 1) is 
given by R,S 1, R,I 1, R, + R,S 1.5. See Gaarder and 
Wolf [4]. 

A new proof of the direct part of the following theorem 
will be given and used as the model for the proof in the 
next section. This is the known result for the synchronized 
multiple-access channel. 

Theorem 1 (Ahlswede, Liao): The capacity region of the 
multiple-access channel is given by the set. of all rates in 
the convex closure of the set of rates (R,, R,) satisfying 

R,<I(-G YlXz), 

R,< I(%; Ylx,), (7) 

R, + R,< 1(X,, X,; Y), 

for somep(x,, x2, Y) = ~(x,)~(x,)~(~lx,, x2). 

Proof: Fix p(x,), p(xz). Let p(x,, x2) = p(x1)p(x2). 
Choose a random code of 2nR~ words x, E %y independent 
identically distributed (i.i.d.) - II;= ,p(xIi), and indepen- 
dently choose 2nRz words x2 E %g i.i.d. - II;= Ip(x,i). 

Let S denote a subset of {X,, X,, Y} and let s be the 
associated set of n-sequences in {x,, x2, y}. Define the set 
A: of c-typical (x1, x2, y) triples by 

A:= (x,, ~2, Y 
l 

)E%yXEX,“Xv: 

,I-ilogp(s)--H(S)l<r, forallSc {X,,X,,Y}). 

(8) 

See [5] for more detail on joint typicality. We note that 
(Xu, XZi, q) are i.i.d. wp(x,)p(x,)p(yIx,, x2). Thus by 
the law of large numbers, -(l/n) log p( 0) + H( .) with 
probability one, for each of the eight constraints in (8). 
Hence there exists an n, such that, for n 2 no, P(A:) 2 1 
- e. Also, it can be seen from (8) that the cardinality of the 
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set A: is bounded by 
(IA” 11 5 2n(ff(X1> xz>y)+c) c (9) 

For decoding, given y, simply choose the pair (i, j) such 
that 

(xl(i), x2(j), Y> EA:, (10) 

if such an (i, j) E { 1,2; * *,2nR1} X { 1,2; . 0,2~~2} exists 
and is unique-otherwise declare an error. 

By the symmetry of the random code construction, the 
probability of error (averaged over the random code) is 
independent of the index (i, j) sent. Thus without loss of 
generality assume that (i, j) = (1,1) is sent. Consider the 
events 

Eij= {(X,(i), X,(j), Y> EA:}. 

Then by the union, bound 

(11) 

P,=P E,‘,U u 
( ( 

Eij 
11 

s ‘tEFl) + I: ‘tEil) 
(i, i)+(l, 1) i#l 

+ IX f’(E,j) + IX P(Eij), (12) 

j#l i#l,j#l 

where EC denotes the complement of the event E. Assume 
henceforth that n 2 n,. Thus P(E,‘,) I c. 

Next, for i # 1 

P(E,,) = IX P(XITXZ, Y> 
(XI, x2, Y)EA 

= ;P(x,)P(x,, Y) 

5 IIAW n(H(X,)--r)2--n(WX2, Y)-c) 

< 2-"(I(xl; Xz,Y)-3E) 

= 2-nmi;~lXz)-3~) 
03) 

where the first equality is by definition of Eil, the second 
from the independence of X, from (X,, Y) which follows 
from i # 1, the third from the definition of A = A:, the 
fourth from (9), and the last from the independence of Xl 
and X, and the identity Z(X,; Y I X,) = 1(X,; Y, X,) - 
1(X,; x,1. 

Similarly for j # 1, 

P( Elj) 5 2- 4qX,; YIX2)-3r) 
3 (14) 

and for i # 1,j # 1, 

P( Eij) 5 2- n(qxl,Xz; Y)--3<) 
(15) 

Hence, returning to (12) we have 

p 
n 

5 c + yR12--nWX,; YIX2)-3~) 

+yRz2--n(QXz; YIX,)k3~) 

+2n(R,+R2)2-n(r(X,,Xz;Y)-3c). 
(16) 

Thus for E > 0 sufficiently small, the conditions of the 
theorem cause each term to tend to zero as n + co. 

Time sharing (allowable because of time synchroni- 
zation) achieves any (R,, R2) in the convex hull, and the 
direct part of the theorem is proved. 

The converse is well-known and will not be repeated. 

II. CAPACITY WITHOUT SYNCHRONIZATION 

We shall show that the same sequence of random codes 
causing P,, + 0 in the previous section will also cause 
P, + 0 if the words are not synchronized. The construction 
is a form of time sharing that works in the absence of 
synchronization. We thus obtain the same capacity region 
as if we had time synchronization between the two users. 

Let d, and d, be fixed nonnegative integers unknown to 
the receiver. Sender k, k = 1,2, sends an arbitrary se- 
quence of d, symbols from alphabet 5Kk follows by code- 
word x,(i,) of block length n, followed by more arbitrary 
symbols from !Kk. 

We shall first assume that the receiver knows a bound d 
on the delays, i.e., d,, d, 5 d. Hence the receiver inspects 
y E %n+d for the presence of x,(i,), xz(i,) imbedded with 
arbitrary shifts in arbitrary transmitter sequences. Later we 
shall remove the receiver’s knowledge of d. 

In general, for a multiple-access channel without syn- 
chronization, it is necessary to form the convex combina- 
tion of rate points (R,, R2) and (R;, R;) to achieve the 
point (Rf, Ri) = a( R,, R2) + ti(R;, R;), 0 < a < 1, G = 
1 - (Y. This time sharing is necessitated by the possible 
lack of convexity of the union of the set of (R,, R,) 
satisfying (2). Let p,(x,, x2) = p,(x1)pl(x2) induce a re- 
gion given in (2) that has (R,, R,) as an extreme 
point, and let p2(x,, x2) =p2(x1)p2(x2) induce a region 
that has (R;, R;) as an extreme point. Using the random 
coding procedure of Section I, generate a random 
((2 anR1, zanR2 ), an) code according to p, and a random 
((2 

c%RQ&R'Z ), Zn) code according to p2. The sent and 
received sequences will then appear as in Fig. 1 for some 
d,, 4. 

The crucial point is that xl(i) and x2(j) will have 
substantial overlap, and the region of overlap can be 
prespecified. This overlap will be sufficient to detect typi- 
cality and reject atypicality. In fact inspection of Fig. 2 
shows the overlap regions to be of lengths at least an - d 
and 2% - d, independent of d,, d, for 0 I d,, d, I d. 

The decoding is as follows. We must look for codewords 
under all possible shifts, up to the maximum delay d. Let 
the maximal delay d be fixed and known. Let rk denote a 
cyclic shift k units to the right of a given (n + d)-tuple. 
Let Waned = W denote the window function that inspects 
only the values of the vector in the first window specified 
in Fig. 2. Note that no dummy symbols could be in the 
window. Define the set of pl(x,, x2, y)-typical sequences 
A’, only over the (an - d) coordinates specified in the first 
window in Fig. 2. Thus, for example, there are at 
most 2(“ln-d)(H~(X~* xz, ‘)+‘) jointly typical triples in the 
first window, and each triple in A’, has probability 
I 2--(an--d)(H~(Xl, X~,Y)-E). The second window will be 
treated by similar techniques. 

Again, without loss of generality assume that (1,1) was 
sent and that the delays were d,, d,, where 1 I d,, d, I d. 
To place an upper bound on the probability of error Pi in 
the first code for 1 I k,, k, I d, i E { 1,2; . *,2nR~}, j E 
{1,2;.* ,2nRz}, define Ek,,kz,i, j to be the event that 
(W(~~lx,(i)), W(T~~X,(~)), W(Y)) E A,.Thatis, theevent 
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-dl =d-d, 

r, : t 4 ( a,(i) , 3 i 
1 n+d 

-d2 
-d-d2 

52 x2 
52: t t 

1 n+d 

y: 1 
Y 

I - 
1 n+d 

Fig. 1. Shifted codewords. 

L,,K2 overlap A;,$ overlap 

I ‘\ f , 
y: I 

I I 
I 

1 n+d 
an-d W-d 

1st Window 2nd Window 

Fig. 2. Overlap regions. 

E k,,k,,i, j occurs if the k, shift of transmitter ones’s ith 
codeword X,(i) and the k, shift of transmitter two’s jth 
codeword X,(j) are seen to be jointly typical with Yin the 
first window. 

Since we have assumed (1,l) was sent with delay (d,, d,), 
an error will occur if U k,, +Ek,, k,, 1,, does not occur (i.e., 
(1,1) is not a candidate) or if for some 1 5 k,, k, I d and 
some (i, j) # (1, l), Ek,,k2,i, j does occur (an incorrect 
candidate). Observe that 

i u %k*,Ll ‘= f-) EC cE” k,,k,,l,I - d,,d,,l,l’ (17) 
k,, k2 k,,k, 

Thus 

(i, j)W, 1) 

The first term can be made less than or equal to e for n 
sufficiently large by the asymptotic equipartition property. 
Expanding and bounding the second term we have 

P,Q+ 2 P{Ekl,k2,i,j} + ,zk ‘(*) 
lsk,, k,Sd I? 2 

i= I,j# 1 i#l,j=l 

+ z w* 09) 
4, k, 

i#l,j#l 

Treating the last summation first, we note the following. 
i) There are d2(2(un-d)R~ - 1)(2(an-d)Rz - 1) I 

d * 2(an-d)(R~ +Rz) terms in the sum. 
ii) Each term is upper bounded by 

< (1~’ (I2-(~-OWIW-~) - < 
.2-(un-d)(H,(X,)-~)2-(an-d)(HIo-c) 

< 2-(an--d)U,W,, X,; Y)--4<) - 9 

where we have used 

bv 

(21) 

(22) 

Thus the last sum in (19) tends to zero if 

:( log&-t (an - d)(R*+ R*) 

- (an - d)(Z,(X,, X2; Y) - 46)) -=z 0, (23) 

or equivalently, 

R, + R, < Z,(X,, X2; Y) - 3 -46. (24 

Similarly treating the first two terms, we see that these 
terms approach zero if 

R,<Z,(X,;YIX,)-F-4r, 

R,< Z,(X,; YlX,) -F -4~. (25) 

A similar calculation is made for the second window, at 
rates R’ = (R;, R;), where the probability of error is P,“, 
and the typical set AZ is defined under p2(. , . , a). 

Finally P,, I Pd + P,‘, and for every d and e > 0, n can 
be chosen so that P,, I z. The rate pair R” for such a code 
is 

RO= (WIR + SR’)/(~ + d) 

= (n/n + d)(aR + CR’) 

+ aR + CR’, asn+ 00, (26) 

since d is fixed. Thus we have a proof that any rate point 
R” in C* can be achieved with probability of error P,, -+ 0. 

The generalization of this problem to the case of a 
continuous waveform channel without synchronization 
would allow us to answer the more realistic question where 
the oscillators which generate symbol timing at each trans- 
mitter have a random phase relationship. While we have 
not considered this generalization here, it is expected that 
straightforward extensions of the techniques of this paper 
to the continuous case will work. We expect no loss of 
capacity when the two transmitters do not have a common 
clock, even in the continuous case. 

III. ELIMINATION OF KNOWLEDGE OF DELAY d 

For known maximal synchronization delay d and desired 
probability of error z, there exist block codes e,, e2 of 
block lengths n(d, E) achieving any rate (R,, R2) in the 
capacity region and achieving average probability of error 
e. However, if the true delay is greater than d, the probabil- 
ity of error may be high. 

We overcome this problem by concatenating codes of 
increasing block lengths n,, n *, . . . . The i th block code is 
designed to have rate (R,, R2) and probability of error ei 
for all delays I di. 

For a given (R,, R,) in the capacity region, choose 
di 1‘ co, and let n, -+ 00 in such a manner that 

Ei + 0, 

d,/n, --) 0, 
(27) 

(28) 
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and 

ni/ inj --$ 1. 
(’ I 1 

(29) 

Moreover, in the i th block with block length ni, retransmit 
all of the bits from the previously sent blocks. 

For any d, there exists an i, such that di 2 d for i I i,. 
Now (n,)(R,, R,) bits are received in (n, + n2 + . . . +n, 
+ di) transmissions for an overall rate vector of 

(30) 
as i -+ cc, by conditions (28) and (29). Thus no bits are lost 
and the achievable rates are not affected. 

Finally, if we add the condition 

i=l 

to (27), (28), and (29), it follows from the Bore1 Cantelli 
lemma that with probability one, only a finite number of 
block decoding errors will be made. At that time all 
previous errors will have been corrected and no future [11 
errors will be made. The choice of block lengths n, can be 
made in two interesting ways. PI 

a) ni/(Z’,nj + di) + 1, with resulting overprints on the f3] 
bits already received. The result is that any given bit will 
eventually be correct with probability one after a finite 
number of changes (overprints). The problem is that the [41 
decoding delays increase very fast, resulting in lim R, = C 
but lim R, = 0. [51 

b) n,* co,ni+,/(ni+di)+ l.NowGR,=limR,= 
C. However, bits are no longer eventually correct with [6] 

probability one. On the other hand, the expected propor- 
tion of bit errors in the first n transmissions tends to zero [71 

asn+ cc. 

This increasing block length construction may not be 
completely satisfactory, however. For no time. T do we 
know that any bits will be correctly decoded at time T. The 
decoding delay has been allowed to grow to infinity. Most 
people would not accept such a communication system. 
There is thus a minor gap between the results of [6] and [7] 
and these results which can only be closed by further 
research. 

We do, however, have a very precise result when the 
delay can be bounded in advance. This may be a reason- 
able assumption for actual channels. 

CONCLUSION 

We have proved that lack of synchronization does not 
reduce the capacity region for multiple-access channels. 
This is achieved by codes with block lengths long com- 
pared to the delay. There is reason to believe that codes 
with block lengths shorter than the delay cannot in general 
achieve capacity. 
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