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Upper Bounds to the Asymptotic Performance 
of Block Quantizers 

JAMES A. BUCKLEW, MEMBER, IEEE 

A6strad-Upper bounds to the asymptotic performance of block quan- 
tizers with difference distortion measures are derived. In many cases, these 
upper bounds approach known lower bounds as the block length of the 
quantizer approaches infinity. A condition for the optimal point density 
function of the output levels is derived. It is shown to particularize to a 
known result of Gersho. The behavior of the bounds for large block lengths 
is investigated. 

I. INTRODUCTION 

ADOR [l] and Gersho [2] consider the problem of 
m inimizing the average distortion for block or vector 

quantizers. They derive an expression for the optimal 
asymptotic performance of a vector quantizer when the 
distortion measure is the rth power of the Euclidean 
distance. This expression includes a parameter which de- 
pends only on r and k (the dimension of the vector to be 
quantized), but which has an unknown form in all but a 
few special cases. Zador, making use of random coding 
arguments, derives upper bounds to this parameter. In the 
same manuscript he derives a sphere packing lower bound. 
An interesting fact about these results is that the upper 
bound asymptotically approaches the lower bound as 
k-t co. 

In a more recent paper, Yamada et al. [3] calculate lower 
bounds to the asymptotic (high rate) performance of block 
quantizers with more general difference distortion mea- 
sures. They then proceed to show how these lower bounds 
are, in fact, tighter in many cases than the Shannon lower 
bound to the rate distortion function. 

In this paper our objectives are twofold. F irst, we de- 
velop upper bounds for the same distortion measures that 
are treated in [3]. In many cases we can show that, as the 
block length k approaches infinity, these upper bounds 
approach the lower bounds. Second, we investigate the 
lim iting case of k + cc and discuss a possible application 
to the implementation of block quantizers. We devote the 
final section to a few observations and remarks. 

II. UPPERBOUND DERIVATION 

We employ the same notation and definitions found in 
[3]. We reproduce the relevant notation below for conve- 
nience. G iven G C ‘% ‘, define V(G) = Jo dx. Let V, = 
V({u E 6%‘: Ilull I l}), where II * II is an arbitrary semi- 
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norm on a’. Obviously, V, is the volume of a sphere of 
radius 1. The volume of a sphere of radius a is given by 
V,ak. The distortion resulting from reproducing a vector x 
as y is defined as a difference distortion measure by 
L(x - y), where 

a) L(0) = 0, 
b) L(u) 5 L(X) if andonlyif Ilull I llxll, 

and 

1 II- 
J L(x) dx 

tlfk Ilxll5oV,-‘/~ 

is assumed to be convex U in V. 
Consider the asymptotic distortion produced by a ran- 

dom quantizer. A random quantizer is a quantizer wherein 
the N output levels are chosen to be samples from some 
k-dimensional probability density function X(X). The k- 
dimensional data vectors x are assumed to be samples from 
another k-dimensional probability density p( x). Both p(x) 
and h(x) are assumed to be sufficiently smooth so that 
they may be considered to be constant over small bounded 
sets in 3 ’. For large enough N we will assume that p(x) 
has support only on a compact set K. 

Consider a data point x E Sk to be quantized. We wish 
to pick the output level y that m inimizes the distortion 
measure L(x - y). From property b) this means choosing 
the value y that m inimizes the seminorm II x - y Il. Suppose 
that y exists on a sphere of radius r. Since p( x) is smooth, 
if N is very large we may suppose that y is uniformly 
distributed on the sphere. We wish to calculate the ex- 
pected value of the distortion if the closest y is distributed 
uniformly on a sphere of radius r. Since j,,x,,5rL(x) dx is a 
convex U function of r, the expected distortion must be 
bound above by the lim it as e JO of 

J 
I 

Ilxllsr+< L(x) dx - ~x,,5rw dx 
IX r, c Vk[(r+c)k-rk] ’  

but (r + c)~ - rk = ckrk-’ for e < r. Also 

Mk((r + E)vi’k) = tr + ~)-kv~‘~xl,~r+~L(x) dx. 
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Hence is necessarily true that h(t) = tP for some - co 5 p I co. 

I -kfk((r+f)V,“k)vk(r+~)k~~k(rv;rl/k)vkrk Suppose further that X(x) I p > 0. Let c > 0 be an arbi- 
cz trary constant. Consider the following quantity: 

r, c V,xkrk-’ n 

= r Mk((r + t>vk!‘k) - Mk(rvi’k) 

k c 
/ 

1 M,( CU”k) 

0 h!fk( C/d’k) 
n(1 - U)“-‘du 

+M,((r + 6)VLik). 

Take the limit as z --$ 0 + to obtain 

lim 4, L 
C-O+ 

J 

“Mk(CV”k/h”k) 
= 

0 h$( C/d’k) 

where Mi+ (e) indicates the right derivative of Mk( *) and We wish to show that for all E > 0, one may find an 
always exists for convex functions [4]. A > 1 large enough such that 

We need to calculate the probability density function of 
r, the distance of the closest output level to x. The proba- I’(p/k + 1) >iA(.) > r(p/k + 1) -6 (1) 
bility that one output level will fall in a sphere of radius r 
about the point x is approximately (for large N) rkV,A(x). 
Therefore, the probability density function of r is (using 

for all large enough n, and 

order statistics) [5] j%kN[l - rkV,&x)]N-lkrk-l’h(x) 
+ V, p( x) dx. Hence an upper bound to the average distor- 

lim sup 
n-+* / “(e) c e. (4 

A 

tion produced by a random quantizer must be 
For V E (0, A) we have 

/j-hN[l - rkvkX(x)] N-lkrks’Vk/,X(x)p(x) dxdr. 
bfk( cvl’k/nl’k) I Mk( cA1’k/nl’k) 

This must be an upper bound to the distortion rate Mk( c/nllk) hik( c/nl’k) 
function (for large rates) because the output levels were 
chosen randomly. Since Mk(v) is convex U we know that which is uniformly bounded for all n 1 1. Since (1 - 
Mk( u) I Mk( uO) + M’+ (Q)(Z) - v,,). Therefore, (V/n))“-’ I(1 - V/n)“/(l - (A/n)) i e-“/(1 - (A/n)) 

is uniformly bounded for all n > A, we may apply the 
I, = Mk(rVilk) + FM;+ 

SM,(rVi/*(1 +i)). 

( rVilk) dominated convergence theorem to obtain 

Hence the distortion is bound above by 
~.. . 

JJMk( rVkl/i’( 1 + j-))N[l - rkVkh(x)lN-’ 

= 

J 
A lim bfk(cvl’k/nl’k) 

0 n-+m Mk( c/nllk) 

.krk-‘VkA(x)p(x) dxdr. 

Make a change of variable u = rkVkA( x), du = 
krk-‘V,A(x) dr, u/A(x) = rkVk, and note that u 5 1 al- 
lows us to rewrite our upper bound as 

*N[l - z#-’ dup(x) dx = 0,. 

Now note that N[l - ulN-’ is the density function of the 
smallest of N samples taken from a uniform density on the 
interval (0,l). Hence E(u) = l/( N + 1) var {u} I l/( N 
+ 1)2. The lower bound derived in [3] is DL = 
jakMk((Nh(x))-l/k)p(x)dx. The closeness of D, to DL 
depends entirely on the properties of Mk( e). 

Let us assume that Mk( a) is p-varying near zero for some 
p 2 0; that is, for all t > 0, lim,,,,( M( tx)/M( x)) = tP. 
This is not a very restrictive assumption. If for all t, 
lim, L 0( A4( tx)/M( x)) = h(t) for some function h, then it 

= AVP/ke-vdy < wVp/ke-udu = I’ 

For A sufficiently large this limit is larger than I’( p/k + 1) 
- E. This proves (1). 

For all 1 < t 5 2 and all x < 6 we have Mk( tx)/Mk(x) 
< tp+‘. Thus if A < V < n(26/~)~ we find 

M,( CV’/k/nl/k) 

Mk( C/n’lk) 

( &I,( CV1/k/nl/k) 

Mk( CV1/k/2n1/k) 

&I,( CV1/k/2n1/k) Mk( CV1/k/2m-1n1/k) 

M,( CV1/k/4n’/k) ’ . ’ Mk(CV1/k/2”n1/k) 

where 

y-1 5 v’/k 5 2” 5 (2 P+l)m < (2P+1)((l/k)logV + 1) 

= 2P+ ‘v(P+ 1)/k. 
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Assume without loss of generality that 26/c < 1. Then 

p = J&(2s’=)kc) + (28,c)kc) 

5 p+’ 
/ 

O” V(P+ ‘ Ibe -o(n-‘P & 

A 

+ n 
/ 

M,(c) e -“(n-1P dv 

n(28/c)k Mk( c/nl/k) ’ 

The first term is smaller than e/2 by choice of A (if n 2 2). 
It is known that p-varying functions satisfy Mk(x) = 
xP(‘+~(‘)) as x JO. Thus 

Mk(qn’/k) = ( $)p’l+o(“-“k)), 

so that the last integral is not larger than 

e -o/2 du 

<(constant)n 2p/ke-(2S/c)kn,‘2 
, n 12, 

for all n large enough; clearly, this bound goes to zero as 
n --) co. This proves (2). We now have that 

N(1 - z$-’ 

If A(x) > B > 0 the above limit is uniform in x. Let E > 0. 
WethenhavejN, 3: N>N, + 

1 

r :+i ( 1 

Taking the expectation in x, dividing through and taking 
the limit as N + cc we find 

Du lim 2 = 1. 

Hence we may use the denominator of the above expres- 
sion as an upper bound for the expected distortion in the 
high rate regions. We denote this upper bound as 0: or 

0; &I’(; +l)/iVk( F (&)“*)p(x) dx. 

Making use of this last equation, let us find the A(x) that 
minimizes DA. We desire to minimize 

l”k( q-+)Ptx)dx, 

using a variational approach. Let h(x) = h,(x) + ef(x), 
where A,(x) is the optimum point density and ef(x) is an 
arbitrary variation. Obviously, /f(x) dx = 0. The following 
condition must be satisfied 

(X,(x) +ccf(X))‘/k 

Assuming we can pull the derivative through the integral 
implies 

f(4PW 
Xo~X~l+l,k dx = ‘* 

The only solution that will work for arbitrary f(x) is if the 
following is a constant (p(x) - a.e.): 

Mk( x,($/k) h,px::!‘,k . 

As an example, for the distortion measure given by L(x - 
y) = 11x - yIl!Jr 1 1), we have from [3] that 

M,( 0) = E v,-r/k. 

The condition implies then that X,(x) is proportional to 
P(X) k/(k+r), a fact derived in [ 11, [2] using Holder’s inequal- 
ity. One should note that for large k X,(x). = p(x). We will 
have more to say about this in the next section. 

III. LARGEDIMENSIONALBEHAVIOR 

We will need an additional assumption of the sequence 
of functions Mk(‘). We assume that M,(u)/k converges 
pointwise to some other function M(v). Single letter dis- 
tortion measures satisfy this constraint. We note that for 
distortion measures of the form L(x - y) = Ilx - yll:, 
only when r = u do we have a single letter distortion 
measure. The l/k factor is added so that we may consider 
the distortion per dimension (the relevant quantity for 
distortion-rate theory comparisons). Since the Mk(v) are 
convex, this implies M(U) must be convex. It can also be 
shown that Mk( v)/k converges uniformly to M(U) on 
compact sets [4]. If we may neglect p( x) outside a compact 
set K then the Lipschitz condition for convex functions 
implies that (l/k)( 0; - DL) --) 0. Suppose p(x) is a re- 
striction of a stationary ergodic measure. Now p(x) in- 
duces a measure p on CRk: p(A) = lAp(x) dx for every 
Bore1 measurable set A in CRk. If the measure induced by 
A(x) is absolutely continuous with respect to TV then subject 
to some mild regularity conditions [6], we have 
-k-‘lnX(x) 5lim,,,k-‘Jp(x)ln X(x)dx. Since eX is 

continuous, exp (-k-l In X(x)) lftexp (lim,,,k-‘/p(x) 
In X(x) dx) [7, p. 311. Finally, since Mk(u)/k -+ M(v) 
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uniformly on compact sets, it is continuous, and hence 
analogous to [7, p. 311 we have 

;M* 
i 

e -(l/k)ln A(x) p 
26 +M 

) ( 

e -limk_.,(l/k)jp(x)lnx(x) 

2b I 

where b A the rate in bits per sample used to quantize the 
data (N = 2bk). We have that 

=A4 
e --limk-m(l/k)lp(x)lnh(x) dx 

‘2b 

if and only if the random variables 

j+k 
( 

e -(l/k)ln h(x) 

2b 1 

are uniformly integrable. 
A sufficient condition [7] for uniform integrability is that 

for some E + 0 

supk~Mk{ ( ~-~l;~‘““‘ii”’ < 00. 

Gersho [2] shows that this condition is met for L(X) = 
II x II ;(I1 * II 2 is the I, or Euclidean distance norm) if 
]Ip(x)lll/(l + rO) < cc (rO > r 1 1). Suppose we do have 
uniform convergence of these random variables. Then the 
distortion for very large k may be approximated by 

D = M f e -limk(l/k)jp(x)lnh(x)dx . 
( 1 

M(a) is nondecreasing, which implies that in order to 
minimize the large dimensional asymptotic distortion, it is 
sufficient to minimize the argument of the M(a) function. 
However, since 

-+Jp(x)lnh(x)dx? -$/P(x)lnp(x)dr; 

this implies that h(x),, = p(x) for large k. Therefore, the 
smallest distortion attainable in the high rate regions is 
D opt = weHx/2b), where H, is the entropy of the sta- 
tionary ergodic data source. 

This result could have some applications to the design of 
large dimensional quantizers. Chen [8] and Linde et al. [9] 
consider the problem of choosing the output levels for 
multidimensional quantizers. In both papers, algorithms 
are presented to calculate the best choice of output levels 
assuming the input density is known. Linde et al. [9] also 
present a different algorithm which instead uses a set of 
training samples to calculate a “good” quantizer. 

The above theory suggests, however, that at least in the 
large k case one does not really need to know the density 
function of the source. To design a quantizer for some 
stationary ergodic source one simply takes N k-dimensional 
samples from the source output and quantizes the suc- 
ceeding k-dimensional data vectors by choosing from N 
samples the sample that minimizes the seminorm of the 

difference vector. This quantizer will be close to optimal 
(assuming large k) for any distortion measure satisfying 
our postulates. 

IV. DISCUSSION 

We should note that a key assumption in this derivation 
and in the derivations in [3] is that p( x) may be assumed to 
be consttint over small bounded sets. For the J%(X) = II x II 5 
distortion measure Zador [l] shows that it is sufficient that 
p(x) be Riemann integrable. For arbitrary seminorms it is 
not clear exactly what the conditions on p(x) must be. 

We mention in the introduction that Zador derives an 
upper bound to the performance of block quantizers under 
the distortion L(X) = II x II ;. We should note that our D, is 
looser than Zador’s upper bound for this distortion be- 
cause we have made use of the convexity properties of 
Mk(“)- 

The rate throughout this paper has been assumed to be 
k -’ log N. Some authors prefer to use the entropy of the 
quantizers output as the rate. From [2], [3], however, the 
quantizer output entropy is given by 

For large k the best output level point density is X,(X) E 
p(x). Therefore, for the large dimensional optimal quan- 
tizer He = (l/k)log N. 

Finally, we should note that at least for the cases where 
(I/k)( 0: - DL) + 0 and p(x) represents an ergodic 
source, we are calculating the distortion rate function for 
large rates. It is true that quantization theory is a subset of 
the source coding and rate distortion theory disciplines. 
Quantization theory is also in some senses more general 
than the present theory of source coding with respect to a 
fidelity criterion. Rate distortion theory as it has been 
developed to date has had limited success in setting perfor- 
mance bounds to anything except single letter distortion 
measures. The distortion measures considered in the paper 
(first put forward in [lo] and generalized to multi- 
dimensions in [3]) are not under this constraint. Rate 
distortion theory sets performance bounds on source codes 
but gives few indications of how to achieve these bounds. 
On the other hand, the constructive nature of quantization 
theory gives deep insights into the implementation problem 
for these codes. Present day quantization results of course 
deal only with “nice” probability measures and asymptotic 
results. Relaxing these constraints must be a subject of 
further study. Until now rate distortion theory has pro- 
vided the light to interpret vector quantizer performance. 
Perhaps in the future a synergistic effect between the two 
theories may begin to develop, greatly enriching both fields. 
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A Dynamic Programming Algorithm for 
Phase Estimation and Data Decoding 

‘on Random Phase Channels 
ODILE MACCHI, MEMBER, IEEE, AND LOUIS L. SCHARF, SENIOR MEMBER, IEEE 

Abstract-The problem of simultaneously estimating phase and decod- 
ing data symbols from baseband data is posed. The phase sequence is 
assumed to be a random sequence on the circle, and the symbols are 
assumed to be equally likely symbols transmitted over a perfectly equalized 
channel. A dynamic programming algorithm (Viterbi algorithm) is derived 
for decoding a maximum (I posteriori (MAP) phase-symbol sequence on a 
finite dimensional phase-symbol trellis. A new and interesting principle of 
optima&y ‘for simultaneously estimating phase and decoding phase- 
amplitude coded symbols leads to an efficient two-step decoding procedure 
for decoding phase-symbol sequences. Simulation results for binary, &aty 
phase shift keyed (PSK), and X-quadrature amplitude shift keyed (QASK) 
symbol sets transmitted over random walk and sinusoidal jitter channels are 
presented and compared with results one may obtain with a decision-directed 
algorithm or with the binary Viterbi algorithm introduced by Ungerboeck. 
When phase fluctuations are severe and when occasional large phase 
fluctuations exist, MAP phase-symbol sequence decoding on circles is 
superior to Ungerboeck’s technique, which in turn is superior to decision- 
directed techniques. 
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I. INTRODUCTION 

P HASE FLUCTUATIONS can significantly increase 
the error probability for symbols transmitted over a 

channel that may or may not have been equalized. This is 
especially true for phase shift keyed (PSK) and quadrature 
amplitude shift keyed (QASK) symboling, in which case 
accurate phase discrimination is essential for symbol de- 
coding. Even when the receiver contains a decision-directed 
phase-locked loop (DDPLL), performance loss in signal-to- 
noise ratio (SNR) with respect to a coherent decoding 
system can be in the range 5-10 dB. This fact is established 
in [l] for practical symbol sets and typical values of the 
phase variance parameter and symbol error probability. 

On telephone lines, linear distortion and phase jitter 
dictate the use of a channel equalizer and some kind of 
phase estimator to achieve high rate, low error probability 
data transmission. A common approach to phase estima- 
tion and data decoding is to use a decision-directed algo- 
rithm in which a phase estimate is updated on the basis of 
old phase estimates and old symbol decisions. The DDPLL 
of [5] is a first-order digital phase-locked loop (PLL) in 
which the phase estimate is updated on the basis of a new 
measured phase and an old symbol decision. In the jitter 
equalizer (JE) of [3] and [4] a complex gain is updated 
according to a simple decision-directed stochastic ap- 
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