
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-29, NO. 1, JANUARY 1983

Algorithms for Slid ing Block Codes
An Application o f Symbolic Dynamics to Information Theory

ROY L. ADLER, DON COPPERSMITH, AND MARTIN HASSNER, MEMBER, IEEE

Abstract--Ideas which have origins in Shannon’s work in information
theory have arisen independently in a mathematical discipline called sym-
bolic dynamics. These ideas have been refined and developed in recent
years to a point where they yield general algorithms for constructing
practical coding schemes with engineering applications. In this work we
prove an extension of a coding theorem of Marcus and trace a line of
mathematics from abstract topological dynamics to concrete logic network
diagrams.

I. INTRODUCTION

A. The Problem

W E ADDRESS the problem of encoding and decod-
ing digital data from one type of constraint to

another by means of finite state automata. The data are
long strings of symbols from a finite alphabet, usually
zeros and ones or blocks of them. In this paper, we
consider encoding arbitrary sequences of zeros and ones
into a constrained format dictated by the data processor.
The constraints may be due to physical limitations of a
transmission or storage system or artificial limitations dic-
tated by data processing procedures.

B. The Model

The appropriate mathematical models for dealing with
the problem are symbolic dynamical systems, i.e., spaces,
invariant under the shift transformation, of two-sided in-
finite sequences of symbols from finite alphabets. The term
dynamical system is due to the fact that such spaces are
composed of discrete time orbits, each orbit consisting of a
succession of shifted sequences.

Practical encoders and decoders have short finite mem-
ories but strings they process are so long as to seem
infinite. The proposed model is suitable to the problem
because

i) the constraints are time independent (shift invariant);
ii) encoders and decoders can be constructed from map-

pings between systems which commute with some
power of the shift (sliding block codes) [6], [25].

Manuscript received March IO, 1982; revised July 1, 1982. This work
was supported &part by NSF Grant MCS81-07092. This work was
presented in part at the IEEE International Symposium on Information
Theory, Santa Monica, CA, February 1981.

The authors are with IBM Thomas J. Watson Research Center, York-
town Heights, NY 10598.

Constraints encountered in practice are standard ones in
symbolic dynamics. Of particular importance are those
specified by a finite list of forbidden blocks of symbols,
e.g., upper and lower bounds on run lengths of zeros and
ones (Sec. VII), [14], [15], [161, [29], [33], [49]. In symbolic
dynamics such systems are called shifts of finite type or
topological Markov shifts [4], [51]. More complex con-
straints are also important such as ones involving the
power spectrum of symbol sequences, e.g., no dc compo-
nent in a signal representing the symbol sequence [14],[22],
[30], [32], [34], [41], [46]. These can be described as outputs
of a finite state automaton whose inputs are shifts of finite
type. In symbolic dynamics such systems are called sofic
(from the Hebrew word for finite) [50]. In engineering
contexts, the above constraints have been described by the
notion of a channel: namely, shifts of finite type are
deterministic finite state channels with finite memory, and
sofic systems are deterministic finite state channels with
infinite memory. Some areas where these constraints are
met are magnetic recording, fiber optics, and data proto-
cols in communication networks.

C. Shannon Theory

Suppose we wish to encode in a decodable way every
sequence (. . . x- ,, x0, x, * . f) of a system X satisfying one
set of constraints into another system Y of sequences
(. . ‘Y-l, Yo, Yl *. .) satisfying another. Each component
x,, y,, may itself consist of a finite block of symbols, say of
length p and q, respectively, in which case we say that the
coding rate r = p/q. The concept of topological entropy
governs when this is possible. Topological entropy is defined
as the exponential growth rate, as n --) co, of the number of
different strings of length n appearing in the infinite se-
quences of a symbolic system. The term “topological” is
used to distinguish this entropy from its probabilistic coun-
terpart. It was defined in purely topological terms in [3].

In the present context where output symbols are of equal
duration, Shannon’s noiseless coding theorem [48, p. 281
amounts to the following obvious statement: coding of
arbitrarily long finite strings is possible when the topologi-
cal entropy of X is less than that of Y and impossible when
the inequality is reversed, the case of equality being left
unresolved. Shannon called the system Y, a channel, and its
topological entropy, the channel capacity. He called the
system X, the source, and endowed it with a probabilistic

0018-9448,‘83,‘0100-0005$01.00 01983 IEEE

entropy (topological entropy maximizes probabilistic ent-
ropy supported by the source [121, [23]). The full content of
Shannon’s theorem applies to the situation where the topo-
logical entropy of the source is greater than that of the
channel but its probabilistic entropy is less.

We sharpen Shannon’s theorem for the special case
where the source entropy is the topological entropy to
show that coding is possible even in the case of equality. In
addition, the method of proof provides efficient sequential
encoding and decoding algorithms which do not depend on
the length of strings processed, a feature absent from
Shannon’s original theorem. We treat the class of shifts of
finite type (channels with finite memory) and leave the
more general case of sofic systems (channels with infinite
memory) to subsequent work. Actually, we deal with the
case where the topological entropy of the source is the
logarithm of an integer, the most common one in applica-
tions. The more general case where it is the logarithm of an
algebraic integer can be handled by a slight extension of
the “tableaux” method of [4], but then certain desirable
error propagation properties usually must be forgone.

and clarify the relationship between the two methods.
Franaszek’s ideas are very interesting and maybe lead to
simpler implementations. From a mathematician’s point of
view these works [191, [20] leave something to be desired-
namely, precise statements on the scope of the method
along with complete proofs. A. Lempel and M. Cohn [35]
work some examples by Franaszek’s method, but leave the
same mathematical questions unsettled.

The main results of our work were presented at the IEEE
International Symposium on Information Theory, Santa
Monica, CA (Feb. 1981) [2]. The theme, which is the.
application of recent developments in symbolic dynamics
to coding problems in information theory, was suggested
by M. Hassner in [26].

II. ABSTRACTDYNAMICALSYSTEMS

This paper is written for two worlds, engineering and
mathematics, at the risk of satisfying neither. It runs the
gamut from the sublimely abstract to the hard-nose con-
crete. We start with notions of sets, mappings, and topol-
ogy in Section II, supplant these with combinatorial ideas
by Section V, and finish at the end of Section IX with logic
circuit diagrams. The complete trip is hardly needed for
constructing codes, but it is useful in organizing the flow of
ideas and bringing order to the subject. For the less
mathematically minded, interested only in making codes
for some practical purpose, we suggest concentrating on
the description of the symbol splitting process of Section
VI (not the proof), the example of Section VIII, and the
implementation of it in Section IX. Following the pattern
there one should be able to construct encoders and de-
coders for any shift of finite type constraint. The method
can be extended to cover sofic systems arising from the
aforementioned spectral constraints, but this has not yet
appeared in print 1381 and its applicability is not fully
assessed. The excessive number of tables included in Sec-
tions VIII and IX are there to indicate the labor involved
in constructing codes.

Let X be a compact metric space and u a homeomor-
phism-i.e., continuous one-to-one map-of X onto itself.
We call the pair (X, a) an abstract dynamical system. For a
comprehensive treatment of such systems see [111. If X’ is a
closed u-invariant subset of X then the system (X’, a) is
called a subsystem of (X, a), and we write (X’, u) C (X, a).
We define the orbit, future orbit, and past orbit of a point x
by the respective sequences orb x 3 {a”~}, EZ, orb+ x =
{u’*x},~a, orb-x G {u”x},<~. In order to economize on
notation we shall always use the following convention for
metrics. We denote the distance between two points x, y
by] x - y] even though subtraction and absolute value
may not be defined.

Two orbits, orb x and orb y, are called positively (negu-
tively) asymptotic if 1 u”x - u”y I+ 0, n ---, co (n + - ~9).

We have the following indecomposability conditions for
a dynamical system and its higher iterates. A system is
called nonwandering transitive if for every pair of neighbor-
hoods there is a point in the first whose future orbit hits
the second. A system is called aperiodic if (X, a”) is
nonwandering transitive for all n.

Let (X, u), (Y, 7) be two abstract dynamical systems. A
continuous map cp of Y onto X such that cp o u = r o r,o is
called a topological homomorphism. If such a map exists we
have the following commutative diagram: (Fig. 1).

For the paper as a whole, we assume knowledge of the
Perron-Frobenius theory of nonnegative matrices [21], 1471
and some basic elements of symbolic dynamics which can
be found in [4], [8], [111, [27], [28].

We present only one proof, that of the main theorem in
Section VI. All others are standard and easy ones from
symbolic dynamics. These are stated without proof. Where
possible, references are cited in which proofs can be found;
otherwise they should be treated as exercises. Actually
Sections II-V is to be regarded as a survey.

Methods for doing noiseless coding have also been de-
veloped by P. Franaszek [14]-[191. In [19], [20] he gives a
general one which is different from ours yet intriguingly
based on the same inequality (6.1) from the Perron-
Frobenius theorv. We hone somedav to return to this tonic J I _I I respectively. We represent this situation as in Fig. 2.

We also refer to ‘p as a factor map and call (X, r) a
factor of (Y, a) and (Y, a) an extension of (X, 7). If, in
addition, cp is one-to-one (hence invertible, q-’ being con-
tinuous by compactness) we call it an isomorphism and say
that (X, a) is topologically conjugate to (Y, r) and write
(X, a) = (Y, r). Nonwandering transitivity and aperiodic-
ity are preserved under isomorphism. Topological con-
jugacy is the strongest sense of equivalence of dynamical
systems from the purely topological point of view and too
strong for many practical applications (see Remark 8.1).
Consequently, we introduce a weaker one.

Definition 2.1 (Parry 1451): We say (X, a) and (Y, r)
are finitely equivalent, and write (X, a) - (Y, r), if there
exists a common extension (Z, p) and boundedly finite-to-
one factor maps (p, II, of (Z, p) onto (X, a) and (Y, r),

6 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-29, NO. 1, JANUARY 1983

ADLER et d: ALGORITHMS FOR SLIDING BLOCK CODES 7

YOY

I I

For coding applications we need a certain kind of invert-
v cp. ibility condition for factor maps which for abstract systems

LA is expressed by the following.

Fig. 1. Commutative diagram of topological homomorphism.
Definition 2.4 (Kitchens [31 I): A factor map cp of (Y, a)

onto (X, r) is called right, left, or two-sided closing if
GLP)

/\

CJJX # ‘py whenever x # y and orb x, orb y are, respec-
tively, negatively, positively or both negatively and posi-
tively asymptotic.

‘p $J III. SYMBOLIC SYSTEMS

/ \
(Y,d (ka)

Fig. 2. Finite equivalence diagram.

Finite equivalence can be slightly strengthened, which is
done in the next definition, and still be weaker than
topological conjugacy.

Definition 2.2 (see [41, [24]): We say that (X, a) and
(Y, r) are almost one-to-one finitely equivalent and write
(X, u) 2 (Y, r) if, in addition to being finitely equivalent,
the factor maps are one-to-one except on nondoubly tran-
sitive points. A point x is said to be nondoubly transitive if
either orb+ x or orb- x fails to be dense in its dynamical
system, otherwise it is called doubly transitive.

Theorem 2.1 [4, p. IO]: = , - , and 5 are equivalence
relations and

(X,u) -(Y,r) -(X,u)“(Y,r) *(X,u)-(Y,r).

We remark that the set of doubly transitive points is an
invariant subset of a dynamical system and that factor
maps in Definition 2.2 are isomorphisms between subsys-
tems which, however, are not compact.

Definition 2.3 (Bowen-Dinaburg [7], [12]): The topo-
logical entropy h(X, a) for abstract dynamical systems is
defined as the largest growth rate possible, as n -+ co, of
the number of c-separated orbits of length n, i.e.,

h(X, u) = sup lim ilogN(e, n),
rao n+cc

where N(c, n) denotes the number of e-separated orbits of
length n. Two orbits of length n{uk~}05k5n--l and
{uky}aSkcn-, are said to be r-separated if] ukx - uky 12 E
>Oforsomek,OSkIn- 1.

An easy consequence of the definition is that, if (X, u) is
a factor of (Y, r), then h(X, a) 5 h(Y, r). Also, if (X’, u)
is a subsystem of (X, a), then h(X’, u) 5 h(X, a). We have
Theorem 2.2.

Theorem 2.2 [4, p. 91: If (X, a) is a finite-to-one factor
of (Y, r) then h(X, a) = h(Y, r).

Corollary 2.3: If (X, u) = (Y, r) then h(X, u) = h(Y, r).
Thus topological entropy is an invariant for all three
equivalence relations. We also have the next theorem.

Theorem 2.4 [3, p. 3211: h(X, a”) =I n] -h(X, a), n E
Z.

Let A be an alphabet (sometimes called a state space), by
which we mean a finite set of symbols (also called states)
with an ordering. We denote the cardinality of a set A by
I A] . Examples of alphabets are & = (0, 1 }, @ =
{(O,O), (0, l), (l,O), (1, l)}, etc. We freely abuse notation by
using indexing symbols to represent interchangeably both
an element of an alphabet and its ordinal number. Which it
should be clear from context. This sloppiness is often
compounded by the fact that numbers also appear as
alphabet symbols and that a numerical symbol may not
coincide with its ordinal number. The advantage of incon-
sistency here is that it keeps notation to a minimum.

As is customary, &’ denotes the set of two-sided infinite
sequences of elements of &. The space @ ’ can be endowed
with a metric, the distance between sequences x = {x~}~~=,
Y = {YAEZ beingdefinedbylx-y]=Zr=‘=_,]x,-y,]
/21” where I x, - y, 1 is defined to be one when x, # y,
and zero otherwise. In this metric the more two sequences
consecutively agree the closer they are, and we have a
neighborhood basis which consists of the family of sets,
called cylinder sets, of the form {x = (. . . x-,, x0,
XI,. . .): (x,+,; . .,xntk) = (a,;. .,a,)} where
(a,,* . -, ak) is some fixed k-tuple of symbols of & In this
topology @ ’ is compact.

We define the shift transformation u of Qz onto itself by
(ux), = x,+1 for x E &?‘, n E Z. In the above metric u is a
homeomorphism and we form the dynamical system (&=, a)
which is called the full N-shift where N =] 6? I . Any subsys-
tem (X, (7) C (6?=, u) is called a subshift. We use symbols
@ , 3, e to denote alphabets. Occasionally we use @x to
denote the alphabet of a dynamical system (X, a) which in
the above is a subset of &. Any finite n-tuple (a,; . .,a,)
which appears in any sequence of X is called an admissible
n-block. The topological entropy of a subshift is given by

h(X, u) = lim l/nlog N(n),
n-)-x

(3.1)

where N(n) is the number of admissible n-blocks. We
observe that

h(@=,u) =logI&l (3.2)

and h(X, a) 5 log] @] for (X, a) C (gz, a). The reader
can regard (3.1) as a definition [44] although it is an easy
exercise to derive it from Definition 2.3.

We introduce the notation x 1: = (xm, x,+,; . .,x,) for
a sub-(n - m + 1)-tuple of an n-tuple or sequence x. Given
a subshift (X, a) we can form a subshift (Xrnl, a), called
the higher n-block system of (X, a), where (XrH1, a) consists

8 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-29, NO. 1, JANUARY 1983

of sequences (. . . ,x 1’!T2, x I:-‘, x 17, . . .), where x E X.
The higher n-block system (XL”], a) is canonicahy isomor-
phic to (X, a) under the correspondence

(-x(“,,x);;-‘,x1;) ++(~-X-,,Xo,X,,-~)

(Xt”], a) is a subshift of the full shift based on an alphabet
of symbols consisting of all admissible n-blocks of X.

Definition 3.1: Let (X, a), (Y, u) be subshifts of two full
shifts (P, a), (%Z, a), respectively. A mapping ‘p of (Y, a)
onto (X, a) is called a k-block map requiring memory I and
anticipation m, if there exists a function cp: gk --) % such
that if {xn} = cp{y,} then

x, = dY,-6. hYn-t,>>
wherek=m+I+l,fornEZ.

We use here the following abuse of notation. The same
symbol ‘p is used to denote a mapping defined on se-
quences and the component function of several variables
by which it is specified. What is meant will always be clear
from context, hopefully.

In dynamical systems only the finiteness of k, not its
size, is important. We can often take advantage of the
conceptual simplification of regarding a k-block map as a
l-block map on a system with a larger alphabet. This is
done by replacing a k-block map cp by the l-block map
(~9~ ’ where 8 is the canonical isomorphism between (Y, a)
and (Ytkl, a). (See Fig. 3.)

However, for construction of encoders and decoders in
engineering applications it is important to have k and the
alphabet size as small as possible; so the above artifice is of
no advantage from this point of view.

Theorem 3.1 [11, p. 31: An onto mapping cp between
subshifts is a homomorphism if and only if it is a k-block
map.

If a k-block map QI between subshifts is invertible, then
its inverse ‘p-l is also a k-block map, perhaps with a
different k. We define a weaker form of invertibility.

Definition 3.2: Let ‘p be as in Definition 3.1 with
cp({Yn)) = {-%I>. ‘p is said to be right resolving with parame-
ters p, q, r of memory and anticipation if each y,, is uniquely
determined from the upcoming x,-~,. . .,x,,+~ and preced-
ingy,-,; . .,ynpl- in other words, there exists a function
f: ar X @p+q+’ + % such that

Y, =f(Yn-r,-,Yn-l; X,-p,-,X,+q).

A similar definition is given for left resolving by replacing
{xn}, {y,,} by {x-n}, {y-,} in the above definition.

We remark that Definition 3.2 is what Definition 2.4
becomes in the context of subshifts. Kitchens [31] used the
term right (left) closing here. In [4] the definition of right
and left resolving covered only the cases where r = 1,
p = q = 0. The concept of right resolving is not new in
information theory. It was called unifilar by McMillan [36,
p. 2161. We could also give the definition of two-sided
resolving [4] which is what two-sided closing becomes for
symbolic systems, but that will not be needed in the
present work. Suffice it to say that the importance of the

YBY’k’

P

I/

cpa-’

X

Fig. 3. Equivalence of k-block to the l-block map.

concept of resolvability is put into evidence by the follow-
ing theorem.

Theorem 3.2 [4, p. 231: A homomorphism is finite-to-one
if it is right or left resolving. (Right or left resolving imply
two-sided resolving but not conversely. For subshifts of
finite type which are defined in Section V finite-to-one
implies two-sided resolving.)

Closely associated with the concept of right and left
resolving is the notion of resolving block. Such blocks serve
as a means for resetting an encoding automaton con-
structed from a right resolving map. Let ‘p in Definition 3.1
be a l-block map, i.e., x, = cp(y,).

Definition 3.3 [11, [41: An X-admissible m-block
(a,,. * ., a,) is called a resolving block if there exists an
index i,, 1 I i, I m, such that if (y,, . * . ,y,) and
(Y;,. * * ,yA) are two Y-admissible m-blocks such that ‘p(yi)
= ‘p(y,‘) = a,, 1 I i 5 m, then y,, = y:,. In other words,
the block (a,; * -, a,) determines a unique preimage in the
i,th coordinate.

Remark 3.1: If QI is also right resolving with r = 1,
p = q = 0 and x I? = (a,;. .,a,) then the sequence y 1:
can be uniquely determined from x 1;” whenever x = ‘p(y).
Furthermore, if there are so many resolving blocks that in
every k-block there exists at least one, then ‘p is invertible,
in fact, ‘p-l can be seen to be a k-block map.

IV. ENCODERS AND DECODERS

Let (X, a) and (W, a) be two subshifts with alphabets @
and 3, respectively. In the vocabulary of engineering let us
call (X, u) the source and (W, a) the channel. Usually @
and $8 consist, respectively, of admissible p-blocks and
q-blocks of 0 and 1 for some fixed p and q. Furthermore,
the source usually consists of unconstrained sequences and
the channel of constrained ones. Thus 6! is the set of all 2P
p-blocks whereas $B is some subset of q-blocks.

Our problem is to construct two finite state automata:
an encoder which converts source sequences {xn} E X to
channel sequences {y,} E W, and a decoder which recovers
{xn} from {y,}. The coding rate is r = p/q (p source
symbols per q channel symbols) and we want this as large
as feasible. At the same time we want q and p small to
minimize complexity.

A finite state automaton, say the encoder, is given by two
functions

Y, = 4x,-,,-. *,x,+,, tn),

2, = f(&-[,‘. ‘,X,tm, z,-J, (4.1)
where z, belongs to some finite alphabet (J?, called the
internal states of the automaton. The elements y, are called
the output and x,,-,, . . *,x,+,, the inputs, with I, m param-

ADLER et al.: ALGORITHMS FOR SLIDING BLOCK CODES 9

I

YLY

d

I I

d

X “IX

Fig. 4. Commutative diagram of decoding map.

eters of memory and anticipation. The function e is called
the output function and f the next state function. By sub-
stitution, y, is a function of x,-,;..,x,+~, I,-,. The
numbering of variables in (4.1) may be slightly off from
standard usage. We adopt the present one to conform to
our notation of subsequent constructions.

The output sequences {y,} belong to a subsystem (Y, a)
C (W, a). By virtue of (4.1) this subsystem is a factor of a
system of ((3 X e)‘, a), which in turn is a factor of a
subsystem of ((a X e)‘, a). A single error in the input will
possibly propagate forever in the output. We take the point
of view that the source is error free. However, errors may
occur in the channel, and we want to limit the range of
their propagation in the decoder. In order to do this, we
should also make the decoder a finite state automaton, but
one in which the internal state at a particular time does not
depend on the input, but only on the previous state.

Thus the decoder is given by two functions:

xn = d(y,-r,. . .ryn+rii; F,>,

(4.2)
where Z belongs to some other finite alphabet 6?. Since the
set of states is finite, say (6 (= v, we can label them so that

&I = n (mod v).

From this we see that we require the decoder to be a
finite-block map satisfying

da’= u”d;
that is, we have the diagram of Fig. 4.

In designing a decoder, we try to make v as small as
possible, hopefully v = 1. This condition can always be
trivially achieved at the expense of increasing p and q by a
multiplicative factor v, but this would not count as an
improvement.

We would also like the encoder to be given by a finite
block map of (X, a) onto (Y, a), which would mean (X, u)
= (Y, a). This is usually not possible, so we must be
content with some weaker form of invertibility of the
decoding map, like right resolvability, which is sufficient
for constructing an encoding automaton.

V. SUBSHIFTS OF FINITE TYPE

We single out a special class of subshifts which go under
a variety of names, two of which we shall use, the choice
depending on the mode of description. The term subshift of
finite type shall be used to designate a subshift (X, a) when
X is defined by specifying a finite list of forbidden finite
blocks which do not occur anywhere in the sequences of X.

Let T = (ti,) be an N X N matrix of zeros and ones,
which we call a transition matrix. A k-tuple (x, , . . . , xk) of
symbols xi E @ , is called a T-admissible k-block if t,z,,,+I

- 1 for i= 1,s..
TX)

, k - 1. A two-sided infinite sequence
n ,,== is called T-admissible if t,., x,,+, = 1 for n E 2. Let

{T} denote the set of T-admissible sequences. We use the
term topological Markov shift to describe a subshift (X, u)
when X = {T}.

The first description tells what is forbidden, the second
what is allowed. Both definitions describe the same class of
dynamical systems: for one obtains a finite list of forbid-
den 2-blocks (i, j) from a transition matrix T whenever
ti, = 0. Conversely, if L is the length of the longest block
in the forbidden list, then a new alphabet can be chosen to
be the admissible (L - 1)-blocks. Tacking on the right
single symbols from the original alphabet in such a way as
to get admissible L-blocks defines a transition matrix be-
tween (L - I)-blocks which overlap in L - 2 places. The
system that results is isomorphic to the original one. For
this reason subshifts of finite type could also be called
(L - 1)-step Markov systems and topological Markov
shifts, l-step Markov.

A transition matrix T defines a directed graph, the
symbols are nodes and the transitions edges. If we label
edges with a new alphabet, then a new transition matrix
T[‘] is formed by specifying how the edges are connected.
The topological Markov shift ({T[*]}, a) is merely the
higher 2-block system of ({T}, u). Similarly we can form
still higher edge graphs to obtain all the higher block
systems ({T[“]}, a).

Using the notion of directed graph we can also define a
dynamical system (X, a) for arbitrary nonnegative integral
matrices T = (t,,) in the following manner. From i to j
draw t,, directed edges and label each with a distinct
symbol. Let us again use the notation T[*] to designate the
directed edge graph. Then T[*] is a zero-one transition
matrix, so we can form the dynamical system ({T12]}, u)
which serves as a definition of a topological Markov shift
given by a matrix in which appear positive integers larger
than one.

Sometimes we must deal with dynamical systems
({T}, up) involving a higher power of the shift. In order to
apply the results as they are expressed in Section VI we
must represent it as a first power and to this end we have
the following theorem.

Theorem 5.1: If the pth matrix power TIkl’ of the k th
higher edge graph T tkl for a transition matrix T is zero-one
(which is always the case for k = p), then ({T}, up} =
({TrklP}, a) with the conjugacy given by a canonical map
like in Section III. Alternatively if TP is not zero-one, then
its edge graph T P12] defined above is zero-one and
({T}, up) = ({TPrzl}, u).

A subshift which is a finite-to-one homomorphic image
of a topological Markov shift is called a sofic system. A
sofic system need not be a subshift of finite type (these
systems were studied in [9], [lo], [50]). However, a subshift
which is an isomorphic image of a subshift of finite type is
again a subshift of finite type. Sometimes, when the transi-
tion matrix specifying a topological Markov shift is large,
we can take advantage of the above fact by specifying the

10 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-29, NO. 1, JANUARY 1983

system by an isomorphism (invertible k-block map) from a
system given by a much smaller transition matrix, thus
reducing the overall complexity of the description. Symbols
in sequences in the domain of the above isomorphisms are
sometimes called channel states and symbols in sequences
of the range, channel symbols. An isomorphism of a shift of
finite type is sometimes called a deterministic channel with
finite memory and a homomorphism with a sofic image
which is not a shift of finite type, a deterministic channel
with infinite memory. We remark that the relation of the
above terminology to that in engineering literature is a bit
blurred. For example, whether the word, channel, should
refer to a mapping, its image, or both is nebulous. We shall
not dwell further on these pedantic difficulties, except to
say that (W, a) was called a channel in Section IV because
the constraints on W are typically specified by defining it
as the homomorphic,image of a shift of finite type.

We introduce some useful term@ology with regard to
topological Markov shifts. We say j is a (T-admissible)
successor of i, or equivalently the transition i to j is
allowable (under T), and write i --) j, if tij = 1. We also say
in this case, i is a (T-admissible) predecessor of j. We
denote the successors of i by the set T(i) = {j,; . . JIr(i,I}.
The transpose matrix T* defines another transition matrix
in which the roles of predecessor and successor have been
interchanged. Observe that ({T*}, a) is isomorphic with
C(T), a-‘>.

Definition 5.1: T is said to be irreducible if for every
i, j E W there exists a positive integer n (depending on i, j)
such that tl’J”) > 0, i.e., there exists i,; * -,in-, E & such
that i = i, + i, - . . . + i,-, --) i, = j.

Definition 5.2: We shall call T aperiodic if there exists
n > 0 such that T” > 0, i.e., tl’/“) > 0 for all i, j (n being
independent of i, j).

Definition 5.3: The greatest common divisor (gcd) of the
set {n: t(F) > 0, i E @, n = 1,2, . . * } of cycle lengths is
called thlperiod of T.

Theorem 5.2 [21, pp. 651, [97]: T is aperiodic if and
only if T is irreducible and has period 1.

Theorem 5.3 [4, p. 191, [24, p. 151: A topological Markov
shift ({T}, a) is nonwandering transitive if and only if T is
irreducible.

Theorem 5.4 [4, p. 191: A topological Markov shift
({T}, a) is aperiodic if and only if T is aperiodic.

Definition 5.4: A subalphabet a’ C & under transitions
T’ inherited from T is called an irreducible component if

i) i E a- T(i) C &?’
ii) i, j E @’ * ji,; . .,in-, E @’ such that i = i, + i,

-3 . ..j.- , + i, =j.

Theorem 5.5 [4, p. 211: If T(i) # 0 for every i E W,
then there exists an irreducible component.

The number N(n) of T-admissible n-blocks is given by

N(n) = $ t,‘.“,:‘), n Z-2. (5.1)
i,;=l "

It follows from the Perron-Frobenius theory of nonnega-
tive matrices that there exist positive constants a, b such
that

aX” 5 N(n) 5 bh”, (5-2)
where A is the largest positive characteristic value (spectral
radius) of T. Thus from (3.1)

h({T}, u) = logh. (5.3)
Let us address the problem of topological conjugacy.

Besides the topological entropy invariant some stronger
ones are known which are contained in the following
theorems.

Theorem 5.6 [31]: If ({T,}, a) and ({T,}, a) are two
equal entropy topological Markov shifts with the first a
factor of the second, then the block of the Jordan canoni-
cal form of T, with nonzero characteristic values is a
principal submatrix of that of T,.

Corollary 5.7 [40]: In Theorem 5.6 the characteristic
polynomial of T, divides that of T2 when the monomial
factors are deleted.

We also have an algebraic characterization of topological
conjugacy.

Theorem 5.8 [51]: ({T,}, a) = ({T2}, a) if and only if
there exists nonnegative integral rectangular matrices Ai, B,,
j= I,... ,n, for some n such that A,+,B,+, = BiAi, i =
1; * .) n - 1, T, = A,B, and T2 = B,,A,.

Using Theorem 5.8 it is easy to construct matrices T,, T2
with the same Jordan canonical form such that ({T/21}, a)

5 4 * ({Ti[‘]}, a). For example T, = 1 1
= 5 2

i 1

(1
and T,

2 1 . Assuming conjugacy it would follow from The-
orem 5.8 that there exists an integral 2 X 2 matrix S such
that ST, = T,S and det S = 1. However, an easy computa-
tion shows that 2 divides det S, a contradiction. Thus the
invariants presented above are not complete ones for topo-
logical conjugacy. In fact, the major unsolved problem in
symbolic dynamics is to give a finite procedure for de-
termining when two shifts of finite type are topologically
conjugate. Possibly there is none. Also unsolved is the
following conjecture which is still a far cry from a finite
procedure.

Conjecture 5.1 1511: ({T,}, a) = ({T2}, a) if and only if
there exists a positive integer 1 and nonnegative integral
matrices A, B such that AT, = T,A, T,B = BT,, T,’ = AB,
and Ti = BA.

The situation for determining finite equivalence or al-
most one-to-one finite equivalence is just the opposite. We
do have a finite procedure which comes down to checking
whether transition matrices have the same largest char-
acteristic value. The completeness of topological entropy
for finite equivalence and almost one-to-one finite equiva-
lence is revealed in the following theorems.

Theorem 5.9 [4], [45]: Let (X, u), (Y, a) be two non-
wandering transitive subshifts of finite type, i.e., their
transition matrices are irreducible. Then (X, a) - (Y, a) if
and only if h(X, a) = h(Y, a).

ADLER et d. : ALGORITHMS FOR SLIDING BLOCK CODES

(Lo)

A
P #

(Y.0) (X.0)
Fig. 5. Finite equivalence diagram (same as Fig. 2, reproduced of con-

venience1.

Theorem 5.10 [4]: Let (X, a) and (Y, a) be two
aperiodic subshifts of finite type. Then (X, a) * (Y, a) if
and only if h(X, a) = h(Y, u). Furthermore in [4], [45]
methods are given for constructing the associated factor
maps which are depicted in Fig. 5.

In the constructions one of the factor maps is right
resolving and the other is left-one is free to choose which.
We usually draw the right and left resolving maps on the
corresponding side of the diagram.

The special case where (X, u) is the full N-shift and
h(Y, a) = h(X, a) = log N, N an integer, was treated in
[l]. Marcus (371 showed how to achieve an invertible map
cp, which is not always possible if (X, a) is not a full
N-shift. If we select a right resolving $, then from Marcus’
result we obtain a right resolving finite block map cp- ’ IJ,
the very thing needed to construct an encoder and decoder
of Section IV.

In applications we generally have h(W , a) > h(X, a), so
we must find a subsystem (Y, a) C (W, a) such that
h(Y, a) = h(X, a). This problem was not addressed by
Marcus, but it can be done by strengthening his result,
which is the main theorem of this work.

VI. METHODOF SYMBOLSPLITTING

Main Theorem 6.1: Let (X, a) be the full N-shift for an
integer N > 2, i.e., X = {S} where S is an N X N matrix
all of whose entries are one. If T is an M X M irreducible
transition matrix such that h({T}, a) 2 h({S}, a) = log N,
then there exists by construction an irreducible transition
matrix ? with row sum N, an invertible left resolving
l-block factor map (isomorphism) ‘p of ({ ?}, u) onto a
subshift of finite type (Y, a) C ({T}, a), and a right resolv-
ing 2-block factor map 4 of ({T}, a) onto ({S}, a). The
composition cp-‘$ is a right resolving factor map of (Y, a)
onto (X, a).

Proof: The plan is to construct from T a matrix with
row sum > N, then delete excess transitions, that is change
some entries from 1 to 0, in order to get a matrix with row
sum N.

We have by hypothesis that h((T}, u) 2 log N, so h 2 N
where A is the spectral radius of T. From the Perron-
Frobenius theory of nonnegative matrices [21], [47] there
exists a column vector 0 = (o~),<,,~ which we call an
approximate characteristic vector, satisfying

TV 2 NV,
v > 0, (6.1)

Fig. 6. Coding scheme

where inequality here means componentwise inequality.
Since T has integer entries, in fact zeros and ones, we can
satisfy (6.1) with integers oui > 0 and furthermore with
gcd (0,) = 1. (See Appendix for a method of solving this
integer programming problem.)

If all u), = 1, then T itself is the sought after matrix; so
we assume max 0, > 1, which also implies min vi < max ui.
Let us call oi the weight of i.

Consider the set T(i) = {j,, . . . ,jlTCrj,} of successors of i.
For each i, 1 5 i 5 M, choose a disjoint,partition (Y = (Y, =
{A,,. . . ,Aia,} of T(i) where the following conditions hold

x II,=O (modN), 1 ~k<lal -1, (6.2)
iEAk

k- ’
vi - 2 2 v,/N 10. (6.3)

k=l ~Ez‘f~

We dispense with the subscript on (Y when it is clear from
context. Usually we pick partitions of T(i) with largest
possible 1 (Y 1 , but sometimes we must settle for 1 (Y I= 1.
Nevertheless, we show there exists an index i,, for which

namely, take i, for which o10 = max o, and T(i,) contains
an index, say j,, such that vJ, < v,~. Such an i, exists; for
otherwise T would be reducible because the indices of
maximum weight would “circulate” only among them-
selves. We are free to order symbols so that i, = 1. From
(6.1) follows

v,IT(l)l> 2 v$Nv,
/EVI)

from which we conclude 1 T(1) I> N. Consider next the
following sums modulo N:

V II

v,o/, + vJ2

vj, + . * . +f&.

Either there are N distinct values and one of them is 0
(mod N), or two repeat, in which case their difference

Y,> + ’
+ . . . +~,~=O(modN)wherel_(p<q5N.Thus

we can find a nonempty subset A, CJ T(l),] A, IS N <
1 T(lf] , such that

and

2 vJ=O (modN)
I-f,

1 v,<Nv,,
J’EA,

12 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-29, NO. 1, JANUARY 1983

equivalently as follows:

v, > 2 vi/N.
J-I

lal- ’ k--
I$ = v, - x v;i = v, - 2 2 vj,‘N

k=l k==l J’A,

This last inequality holds because state one is heaviest and
either (A, I< N, or IA, I= N andj, E A,,j, being lighter
than state 1.

k--l

Next we “split” i into new symbols i’, . ,ilall , which we
call offspring of i. With respect to the alphabet e’ = {ik:

1 < k 5 1 (Y~ 1, 1 5 i I M} of new symbols ordered in some
fashion, we obtain a new transition matrix T’ specified by
the transitions

Nv, - 2 2 ‘j
k=l jEA, x vj - JET;-Al lvj JET(i) u

LIZI
N

5
N

ik --f j', j E A, C T(i),

wherej’ are offspring ofj, i.e., T’(ik) = {j’: j E Ak}.
We define a l-block map cp of {T’} to {T} by

cpik = i.

This map is obviously onto. Suppose i is a predecessor ofj
under transitions of T. Then, because no elements of (Y,
overlap, there is a unique offspring ik of i such that T’(ik)
contains the offspring of j. This fact establishes that ‘p is
left resolving and that every 2-block (i, j) is a resolvable
one. Consequently by Definition 3.2, ‘p is invertible, in
other words, an isomorphism.

We form an approximate characteristic subvector v’ with
components vi*, 1 5 k I) ai 1, 1 5 i 5 M, for T’ as fol-
lows:

= 2 v,/N = 2 v;,/N.
J’EAI.1 j’E T’(A”l)

Next we take the subalphabet e” = {i” E (I?‘, vjk > 0}
along with transitions which we denote by T”, that are
inherited from T’ by deleting transitions ik + j’ whenever
v:k or I$ = 0, in other words, by crossing out rows and
columns of T’ corresponding to components of o’ that
vanish. From (6.10), (6.11) we see that T”(ik) # 0, ik E
e”. So by Definition 5.4 there eg-sts an irreducible compo-
nent, i.e., a further subalphabet (!? along with an irreducible
transition matrix T inherited from T”. From (6.10), (6.11)
we have

V;A I 2 v)/N = 2 v;,,/N
j’s T(P) j’ET”(lk)

= 2 v;l/N, ik E ??.
j’ET(rk)

If U is the restriction of v’ to the components with indices
in ??, then

~-f,

Ial- ’

v;l,lr v, - c Vik.
k=l

65.6)

% 2 NC, u> 0.

The system ({T},) u is a topological Markov subshift of
({T’}, a). The restriction of cp to {T} is a left resolving
invertible l-block map of ({T}, a) onto the subshift
(q(T), u) C ({T}, a) of finite type, and its inverse ‘p-l a
2-block map.

We use the term “sub” above because, as we shall show,
T’v’ Z. NV’ but v’ may not be strictly positive. Actually it is
an approximate characteristic vector for a subsystem as we
shall see. We observe that (6.6) expresses the fact that the
weight of i equals the total weight of its offspring among
whom one, ilal, may be weightless. From (6.2)-(6.6) we
conclude

From (6.6) follows that no offspring is heavier than its
parent, and offspring are actually lighter when there are
more than one of nonvanishing weight. We have proved
that at least one index of maximum weight has been split
into lighter ones: namely, 1 into l’, . . +, lIaI , 1 (Y (2 2. Thus,
compared to T, either the maximum weight of symbols of
T’ or the number of symbols of maximum weight has been
reduced. The same is true for T” and ?!

I+ are integers, 67)

I+ IO, ik E &‘, (6.8)
v,L > 0, 1 5 k 51 LX, I - 1; in particular ~~1, V;Z > 0,

(6.9)

v;r-= 1 u;,/N, 15k+,)-1, (6.10)
j'ET'(rk)

and

We repeat this splitting process with the role of the new
T played by the previous 7, continuing until a vector V is
reached having all components equal one, at which point
we terminate.

At each step we have a l-block left resolving isomor-
phism QI of ({T}, u) into ({T}, u) whose inverse ‘p-i is a
2-block map. If there are n steps, then the resulting com-
position of isomorphisms yields a l-block left resolving
isomorphism, which we denote again by q, of the final
({T}, a) into the original ({T}, a) whose inverse QYJ-’ is an
(n + 1)-block map.

V(,d 5
,,,Ez(i, ,) vJ!“N*

(6.11)
a

The final transition matrix r satisfies

TG2-NC
Equations (6.7)-(6.10) are immediate, and (6.11) is derived with all components of U = 1. Thus T has row sum 1 N.

ADLER cl al. : ALGORITHMS FOR SLIDING BLOCK CODES 13

From (6.6) we conclude that the weight of the progeny of i
at the final step is 5 oi, the i th component of the original u
of (6.1) (it would be equal if at each step the inequality
v’ > 0 held or T’ were irreducible). This means that i
ultimately gets split into 5 vi symbols, and the final Tis an
e X %? matrix, where

Mc 2 v,. (6.12)
i=l

To form f we delete some excess transitions in the final
T so that every row sum equals N. The resulting matrix
may not be irreducible, so, we take ? to be an irreducible
component. The alphabet e for f will be a subset of ??. The
composition of isomorphisms constructed on {r} when
restricted to (?} is the desired isomorphism cp, and (Y, o)
= (q(T), o) is a subshift of ({T}, a) of finite type.

Since f has row sum N we can write f(j) = { j,, . .; ,j,}
for each i E Q1 and define a 2-block map 4 of ({T},a)
onto the full N-shift ({S}, a) by

44, j,) = k, l<k_(N. (6.13)

It is clear by its definition that + is right resolving. cl

Remark 6.1: There are many choices of 4 depending on

of lengths p and p + 1, joined by two simple paths, P,:
i, = k, + k, + ’ . . --) k, = j,, connecting C, to C,, and
P,:j,=I,+I,... --) I, = i,, connecting C, to C,. At each
node in the configuration at most two edges (transitions)
have been used from those specified by FL’]. Because Tt’l
has row sum N 2 2 just like T, we can and shall retain
these edges when deleting excess transitions from Tt’l.
Furthermore, because Ttrl is irreducible, every node out-
side the configuration has at least one edge directed along
a path to the configuration. These we also retain. We then
delete excess transitions from the remaining ones specified
by Trrl to form a transition matrix of row sum N. This
matrix may be reducible, but there is one irreducible
component, which we denote by T, and its graph contains
the above configuration. ? has row sum N. Also ? is
aperiodic because it is irreducible and the gcd of cycle
lengths is one, (there are cycles of length p and p + 1). We
now apply the results of [l] to construct a still higher block
system ? of p (also having row sum N) for which a 2-block
map I/J can be defined as in (6.13) having resolving blocks.

q

VII. RUN-LENGTH CONSTRAINTS

how f(i) is ordered. If each symbol has the same ordinal
number, whenever it appears as a successor, then # reduces
to a l-block map. A particular 4 may or may not have
resolving blocks. A necessary condition for existence of J,
with resolving blocks is aperiodicity’ of f (see 111). An
unsolved conjecture, called the “road coloring problem,” is
that it is also sufficient. The most general result so far
appears in [43]. Nevertheless is any specific examples re-
solving blocks have always been easily found merely by
hunting for them. Although a complete solution to the
problem has been elusive, in [l] a method is given for
solving the road coloring problem for some higher n-block
system of an arbitrary aperiodic transition matrix with
integer spectral radius. We use this to prove the following
result.

A constraint frequently encountered in engineering ap-
plications is one modeled by a subshift of finite type (Y, a)
of the full 2-shift (X, a) with &?x = &y = (0, l}, the forbid-
den blocks of which are specified by lower and upper
bounds on the number of consecutive 0 separating the 1.
Such a system is said to have a [d, k] run-length constraint,
where d is the lower and k the upper bound. An explana-
tion for the prominence of this sort of constraint will be
given later.

The finite list of blocks designated by the above con-
straint consists of blocks

(1,1),(1,0,1),-~, ~l,o,-,-Al~,
d-l

Theorem 6.2: If T is aperiodic, then ? can be con-
structed so that $J has resolving blocks in its image.

and
[o,-,o].

,
k+l

Proof: ,We repeat the construction of Theorem 6.1
except that in choosing partitions (Y we insist that inequal-
ity hold in (6.3). Although now more steps may be required
to achieve an approximate characteristic vector of all l’s, at
the end of each, T = T” = T’ and the accompanying 91 is
an isomorphism of {T}, a) onto ({T}, a). Thus the final
(CT}, u) is topologically conjugate to the original ({T}, a)
by means of a composition of isomorphisms from each
stage of the splitting process. As before, the final Thas row
sum 1 N. By invariance of aperiodicity under isomorphism
T is aperiodic, From considerations treated in [4, pp. 14,
151 there exists a higher block system T(‘) whose graph
contains the following configuration: two disjoint cycles,
C,: i, + i, + ... -+ i

P
-+ i, and C,: j, + . . . + J;+, -+ j,,

‘A necessary condition for aperiodicity of ? is that T also be aperiodic.

If d = 0, blocks of the first type do not appear in the list;
and if k = 00, the second type block is absent. To repre-
sent this system as a topological Markov shift according to
the recipe of Section V requires an N X N transition
matrix where N is the cardinality of the set of admissible
k-blocks. A more convenient method of representing the
[d, k] constraint is by means of a smaller, actually (k + 1)
X (k + I), transition matrix together with a 2-block iso-
morphism map. Let g(r) = (0, 1; . .,k} and T be given by

1

i-,i+l, O<i<d,
i-i+ l,O, dri<k,
i --) 0, i = k.

We define a l-block map 19 of {T} onto a subshift of
C-F 0) by

This is easily proved by considerations in [4, defn. (2.8); (3.191.

14 IEEE TRANSACTIONSON INFORMATION THEORY, VOL. IT-29, NO. 1,JANUARY 1983

Fig. 7. State transition diagram of (2,7) system

In Fig. 7 we depict the directed graph of T for [d, k] = [2,7]
with edges leading into nodes i labeled by the values of 8.

The following statements are easily established. 9 is right
resolving. The l-block 1 is a resolving block. In the image
of 8 the symbol 1 appears at least once in every block of
length k + 1. Thus 6 is an isomorphism by Remark 3.1.
The system (9(T), u) C (X, a) coincides with the subshift
of finite type (Y, a) specified by the [d, k] constraint.

The entropy h[d, k] c h(Y, a) = h({T}, a) of such
[d, k]-constrained systems was computed in [49] and tabu-
lated in [41]. It is given by h[d, k] = log, A, where h is the
largest positive root of the characteristic equation of T,
which is

Zk+l -
Zk+l-d _ 1

z-l =
0 fork < cc,

Zl-d (7.1)
z---z

z-l
0 fork= co.

We cannot code between (X, a) and any subshift of
({T}, a) because X < 2, i.e., h({T}, a) < h(X, a). How-
ever, we can code between (X, aP> and some subshift of
({T}, ~4) (in other words, at a rate r = p/q < 1, of p
source symbols to q channel symbols) whenever h(X, uP)
5 h({T}, uq), i.e.,

P/4 5 log, h 9 (7.2)
which follows from Theorem 2.4 and (3.2), (5.2). Subject to
the limitation imposed by (7.2) we want to select p/q as
large as we are willing to pay for in terms of complexity.
The well-known theory of continued fractions can be ap-
plied to find “best” rational approximations p/q to log, X.
We present samples in Table I.

From Table I we observe that the [1,7] constraint admits
a code with rate 2 : 3 while [2,7] admits one with rate 1 : 2.
It would therefore seem that coding for the first constraint
can be done more efficiently than for the second. However,
physical constraints explained below make [2,7] more at-
tractive with regard to information density.

The importance of run-length constraints is due to a
particular way information is ascribed to the behavior of
certain physical devices having two states. In the writing
(sending) mode we cause transition from one state to the
other to occur at specified time intervals. In the reading
(receiving) mode we measure the time intervals between
transitions. This measurement is made in terms of integral
multiples of a unit of time we call a clock unit. If there are
1 + 1 clock units between two transitions, then we assign
the symbol 1 to the first one and 0 to the remaining 1. The
appearance of [d, k] constraints with this scheme is natu-
ral. In order to detect transitions properly, they cannot
occur too close together, so a minimum allowable time, say
tmin, between them is prescribed. If t,, = d + 1 clock

TABLE I
RATIONALAPPROXIMATIONSTO h = h[d,k]

d, k

O,l 2/3 < 9/13 4 h < 7,‘10
0,2 7/8 <h<22/25
093 17,‘18 <h < 18,‘19
0,4 39/40 -=c h i 79/81
0, 00 h=l
I,2 2/5 < 15/37 < h -C 13/32
1,3 l/2 < 11,'20<h<5,'9
I,4 l/2 < 3/5 < 8/13 <h <5/E?
1,5 l/2 i 13/20 < h <28/43
I,6 2/3 < 95/142 ih i 93/139
I,7 2/3 < 36/53 i h -C 17/25
1.m same as [0, 1]
236 118/237 < h < l/2
x7 l/2 < IS/29 <h < 14/27
2, CfJ l/2 < 11/20<hc5/9
336 1,'3<h<3,'8
3,7 2/5 < 15/37 <h -e 13/32
3,w 6/13 < 13/28 -C h =C 7/15
438 1/'3<h< II/32
4,15 1/3<h<2,'5
4, 16 2/5 <h -=c 99/241
4, m 2/5<hc13/32
5,12 l/3 <h<31/92
5, cc l/3 < 17/47<hcc4/11
9, cc 1/4<h<6/23

41
i 8/9

4 40/41

< l/2
iI
<2/3 < I
-C 2/3
Cl
<I

<l
<I

< l/2
4 l/2
==z l/2

i l/2
4 l/2
i l/2
< l/2
i l/3

units, then we get the lower bound d for run-lengths of the
0. On the other hand, clocks are imperfect devices. They
drift and lose power to discriminate the number of clock
units between transitions which are far apart. Requiring
that transitions be separated by no more than k + 1 clock
units places the upper-bound k on runs of the 0.

The information density E = E [d, k] is not the coding
rate r = p/q but the amount of information per unit time,
and this is given by

dt 1
E = p/%-y- (7.3)

‘min

for the above scheme. Applying (7.3) we have E[2,7] =
(3/2)(1/t,in) and E[1,7] = (4/3)(1/t,,) so that given the
same tmin for each we have E[2,7] = (9/8)E[1,7]. In this
case, the clock unit for the [2,7] is 2/3 of that for [1,7].
Consequently, in order to achieve the higher density a
more accurate clock is required. In fact, with a perfect
clock we can get an infinite’ amount of information per
unit time.

Substituting values from Table I into (7.3) and taking
into account the low complexity indicated by a rate r = l/2
singles out the [2,7] constraint as a likely candidate for

*What we mean is that E(d, k) can be made arbitrarily large by
choosing d and k sufficiently large. This follows from

lim E(d,k)=E(d,w)=
(d4- l)logA,

k - m
t
ET,”

where X, is the largest root of xdtl - xd - 1 = 0, another form of (7.2).
This root satisfies

(c&“d,hd~ (LeJ”li
for large d. Thus E(d, co) grows like constant times log d.

ADLER et al. : ALGORITHMS FOR SLIDING BLOCK CODES 15

applications. Indeed IBM Disk Files, models 3370, 3380,
incorporate a code based on it. These products are mag-
netic recording devices. The transitions are magnetic ones
occurring in circular tracks on disks. Time is equated to
distance along a track by steady rotation of a disk. We can
therefore treat information in a spatial context in exactly
the same way as the temporal one described above. The
quantity tmin can be equated to the reciprocal of maximum
density of magnetic transitions (flux changes) on a track,
and formula (7.3) can be turned into a measure of recorded
information density.

The issues involved in selecting the most appropriate
constraint are very complex indeed. After balancing factors
such as complexity of available codes, accuracy of inexpen-
sive clocking schemes, density of detectable flux changes,
the [2,7] constraint was chosen for the above products. A
code for it was available. According to methods in [151 a
code between [2,7] constrained sequences and uncon-
strained sequences of the 0 and the 1 was gotten with rate
1 : 2 from a set of correspondences like Table II (see [42]).

On the left side of Table II is a uniquely decipherable
prefix free list of blocks from unconstrained sequences and
on the right, one obeying the [2,7] constraint. A uniquely
decipherable prefix free list is a collection of blocks, no one
of which is the beginning of another; consequently every
sequence can be partitioned into them in only one way. It
is an interesting exercise to show that the system of all
possible concatenations of blocks on the right side of Table
II, which generates another kind of dynamical system
called a renewal system, is also a subshift of finite type.
There are 24 permutations of the above correspondences
from which a code can be gotten. One of these is employed
in the aforementioned magnetic storage products. We re-
mark in passing that an encoder and decoder as in Section
IV can be constructed from Table II. The one used in the
IBM products [13] has a slightly simpler implementation
than those described by Tables XI, XVII, and (9.5). Corre-
spondence tables of uniquely decipherable lists, not neces-
sarily prefix free, have been discovered for other con-
straints [29]. The question arises: how does one find such
tables achieving a desired rate for arbitrary subshifts of
finite type and from which simple encoder/decoder au-
tomata can be made? Is there a method? Our approach is
an alternate solution to the problem. We remark that when
one compares encoders and decoders produced by our
method and the best of those constructed from any other
method, the complexity of electronic design is about the
same.

VIII. SYMBOL SPLITTING FOR THE [2,7]
CONSTRAINT

We now carry out the method of symbol splitting for the
[2,7] run-length constraint and derive an encoder and
decoder from it.

Let the source (X, o) be the full 2-shift and the channel
(Y, u) the subshift of finite type given by the [2,7] con-
straint with &x = gr = (0, l}. We use the specification

TABLE11
CORRESPONDENCE BETWEEN PREFIX

FREE LISTS

11 c* 0100
IO t+ 1000
011 +--) 000100
010 + + 001000
000 +- - 100100
0011 + * 00100100
0010 + + 00001000

given in Section VII and depicted in Fig. 7, namely,
(Y, a) = (9(T), a) where &(Tj = (0, 1,2,3,4,5,6,7},

O- 1
l- 2
2-o 3

T,3’0 4
4-o 5
5-O 6
6-O 7
7-o)

and 9 is the l-block map

9(i) = y7
(,

1 SiI7,
i = 0. (8.1)

(Here i, j are symbols of g(T) which differ from their
ordinal numbers by 1.)

From Table I we see that this constraint admits coding
at rate 1 : 2. Thus we want to code between the full 2-shift
(X, a) and the system ({T}, u *) involving the second power
of u. In order to apply Section VI we use Theorem 5.1 to
represent ({T}, a*) as a topological Markov shift involving
the first power of u. In this case it conveniently turns out
that T2 is a zero-one matrix so we get ({T}, u2) =
({T’}, a). Specifying T2 by its transitions we get

T* =

‘0 --f 2
l+O 3
240 1 4
3-O 1 5
4-O 1 6
5-o 1 7
6-O 1

.7-+ 1

(8.2)

One can easily verify that o = (2,3,4,4,3,3, 1, l), read
as a column vector, is an approximate characteristic vector
for T*, i.e., T2V 2 2v or equivalently

2 vj 2 2f-4,
jET'(i)

which is the more convenient form for use with (8.2).
In accordance with Section VI we construct f2 (not to

be confused with (f)*), with alphabet {O’, O*, l’, l*, 13, 2’,
2*, 23, 24, 3’, 3*, 33, 34, 4’, 4*, 43, 5’, 5*, 53, 6’, 7’}, which
is obtained by splitting the symbols of &.(r*) = &$-). We
introduce a notation which keeps track of the genealogy of
symbols at each stage of the splitting process and at the
same time indicates their weight. We replace a symbol
i E t+&) by i’,“~. At each step the parent symbols are of

IEEE TRANSACTIONS ON INFORMATIONTHEORY,VOL. IT-29, NO. 1,JANUARY 1983

TABLE III
SPLITTING STENO

TABLE IV
SPLICING STEP 1

01.2 + 21.4 = 2’ 22,4
5’ 4’ 3’ 2’ 1’

12.3
; cl;,: = 01.2

3’ 32.4
22,4 ~ I,:3 1 ,I 41.3 12.3 41 42.3
32.4 --f II,3 51.3 = 1’ 12.3 5’ 5%)
4253 + 1’.3 6’ zz 1’ 12.3 6'

52.3 + 11.3 7' = 1' 12.3 7'

6’ I: y;.: I'>3 = ()I%2 1' 12.3
71 > = 1’ 12.3

the form i J, k having weight v,,. k = k -j + 1. Their off-
spring become symbols of the form iJ’, k’, where j 5 j’, k’ 5
k, having weight k’ - j’ + 1. In addition we abbreviate ij, J
by ij. Thus we start with the assignment of Table III.

Observe that 2 ‘s4 has successors 0 ‘2’ 1’,3,4’,3. This suc-
cessor set is to be partitioned according to (6.2) and (6.3)
into {O’,*} and { 11,3,4’,3}. We then split 2’,4 into two
offsprings 2’ and 22,4 and form transitions

2’ + O’J,
22,4 ~ 11'3 41,3

At the end of the first step 1’,3 will have been split into l’,
12,3, and 4 ‘,3 into 4’, 4293, so that the above transitions
become

2’ + 01-2,
22,4 ~ 1’ 12~3 41 42,3.

In the next stage the successors of 2*14 will be partitioned
into {l’, 4’}, { 12.3}, {42,3} and 22,4 will be split into 2*, 23,
and 24.

From now on when presenting transition tables, we take
advantage of the following economy. Whenever several
states have the same successors, we write them together on
the same line to the left of the arrow, e.g., line two in Table
IV.

The first step of the splitting process yields Table IV.
Continuing we have Table V and VI. We remark that there
are other choices for successors of some of the states. For
example, we could have had

0’ + 2’ 22,
o2 + 23 24,

etc. However, those of Table VI have been carefully selected
due to considerations taken up in Section IX.

In order to form f2 having row sum 2 we drop transi-
tions 6’ + O’, O*, l’, and 7’ + 1’ to get Table VII.

TABLE V
SPLITTING STEP 2

()‘,2 + 2’ 22.4 zz 2’ 22 23 24
5’ 4’ 3’ 2’ 1’ * 0’.2 z 01.2

12-3 + 31 32.4 = 3' 32 33 34
52 42 32 22 + 12.3

23 --f ,’ 41

= 52 53

12.3
I’ + 1’ 12.3 = 1’ 12.3

TABLE VI
SPLITTING STEP 3

= 22 24
= 21 23

5’ 4’ 3’ 2’ 1’ + 01.2 = 0’ 02
l2 - 3’ zz 3’ 33
l3 --f 32 = 32 34

52 42 32 22 + 12.3 = l2 l3
= 1’ 4’
= 42 43

33 + 1’ 5’ = 1’ 5’

12.3

7’ + 1’ 12.3

TABLE VII
ENCODING STATETRANSITIONTABLE

The mapping cp: {?‘} + {T2} is defined by dropping
superscripts. The mapping 4 according to (6.13) is a 2-block
map with values 0 or 1 depending on transitions into the
respective first or second column on the right of Table VII.
For example $(O’, 2*) = 0 and $(O’, 24) = 1, etc. The map
9 extends to a one-block map of {T*} - YL2], which
means that 19 maps Q-2) onto &?r~ according to

9(i) =
,1

y ll
i=O
i=l

0 0 21i17

We now have the diagram of Fig. 8.
We proceed to describe an encoder and decoder based

on the mappings (P, a,$. Let {x,J, {Q, {u,J, and {Y,} be
the sequences, respectively, in X, {?*}, {T*}, and Y[*].

ADLER et cd.: ALGGtiTHM.9 FOR SLIDING BLOCK CODES 17

TABLE VIII
PREDECESSOR TABLE

5’ 4’ 3’ 2’ $ I:

7’ 6’ ;: ,’ ;: $
0’ -+
12 +

; I:

;:

;t

;!

24 +

;:

42 43

7
43

2: 53

-+ 6’

Fig. 8. A more detailed coding scheme. 53 + 7’

Thus x, E (0, l}, z, is of the form ii E tl&, 24, is of the
form i E &pl and y,, E {OO,Ol, 10,l l}.

The encoder is the following finite state automaton as
per (4.1)

Yn = 4zJ = +k)

z, =fk, %I), (g-3)
where e does not depend directly on any input x, but only
on internal state z,, e.g., e(0’) = 10, e(12) = 01, e(34) = 00,
etc., and the function f is read off Table VII according to
the rule: z, is the entry in column one on the right of the
arrow from z,-,, if x, = 0; and the one in column two, if
x, = 1: e.g., 7’ = f(0, 53). That f is well-defined follows
from the right resolving property of 4, which is verified by
noting that each successor pair in Table VII consists of two
distinct states.

The block 0 1 0 0 0 0 is resolving for J/ because upon
following this input we can see how the initial ambiguity is
resolved; namely,

if z,-, E @ .(+l

and if

then
and if

then
and if

then
and if

then
and if

then
and if

then

x, = 0,

Z,E {22,21,02,3’,32,12,41,42,5’,52,61,71},
X nfl = 1,

Z n+1 E {13,01,23,33},
X n+2 = 0,

Z nf2 E {32,22,4’,51},
X n+3 = 0,

Z n+3 E {12,02},

X n+4 = 0,

Z nt4 E {3’,2’),
X nf5 = 0,

Z n+5 = 02.

(g-4)
Thus in six steps the encoding automaton can be reset to
O2 by the above sequence of inputs no matter what the
initial state was.

The decoder is the map d = #qP ‘a-‘.
The map 9 is a right resolving l-block map. The blocks

01 and 10, which are l-blocks in terms of the alphabet

&y121, are resolving, i.e., 1?-‘(01) and 19-‘(10) have single
preimages 0 and 1, respectively. One of these blocks occurs
in every T2-admissible Cblock. Thus 9-l is a 4-block map,
that is

U” = WY,-3, x-2, Yn-1, YA

e.g., if (ynP3, yne2, Y,-~, y,) = (00,01,00,00), thenu,-, is
undetermined, u,-~ = ,O, u,- ’ = 2, u, = 4.

The map rp is left resolving because in the predecessor
Table VIII, which is another way of writing Table VII, no
symbol when its superscript is removed appears twice in a
row on the left of the arrow.

A resolving block occurs in every block of four symbols.
This is because ‘p-l is known to be a (1 + 3)-block map
from the fact that there were three steps in the splitting
process. So

Z” = (P-k, %+1, u”+z, %+3).

A sample computation of ‘p-l is as follows. Suppose
(u,, un+‘, u,+~, u,+~) = (0,2,1,3). T&n

Z nt3 E {3’,3$33,34},

and we get in succession from Table VIII

Z n+1 E P21

z, = 0’.

We can efficiently express this computation by
0’,22, 1*,3,3’,2,3,4, (8.5)

which contains the possibilities of z,, z,+,, z,,+~, z,+s cor-
responding to a particular u,, u,+,, u~+~, unt3. This is a
useful way to carry out the computation necessary to
tabulate the values of the four-block map (p-l, which we
do in Tables IX and X.

The map J, is a 2-block map

x, = ~(z,-l~z”>

read off from Table VII.
Putting the three maps together we get

X” = dbn-4, Yn--39 Yn-21 x-1, Y,7 XI+17 Yn+29 Yn+3),

(8.6)

'BEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-29, NO. 1, JANUARY 1983

TABLE IX
BLOCK LIST FOR DECODING hh~

xn Z” =“+I z,+2 p,+3 Y” Y”,l
not in range of encoder 00 00

1
I

23

33

4’ 6’ *l-3

53 7’ 11-3 00 00

4’ oh2 21-4
5’ 01.2 21-4 I

00 00

42 1293 31-4

52 12.3 3l-4

6’ 12.3 31-4

7’ 12.3 3l-4

43 1’ 01.2

53 1’ 01.2

01.2
ol,2 - -

01.2 - -
01.2

12.3 31-4
-

12.3 31-4 _

1233 31-4 _
12.3 31-4 _

12.3 ,‘-4 -
12.3 ,I-4 -

1’ 01.2 -
1’ o’v2 -
1’ O’J -
1’ 01.2 -

;: t:
6’
01.2

;: 42.3 01.2 21-4 ,I-3

;: 12.3 3’ -4

;: 51 :: $1

;f 01.2 52.3 21-4 ,I-’

ii :?’ 01.2 31-4

O’!Z - -

00 00

00 00

00 01

00 10

00 10

01 00
01 00
01 00
01 00
01 00
01 00
10 00
10 00
10 00
10 00
10 00
10 00
10 01

24

1 34

43

53

1 24

34

2’

0 3’
4’

5’

22

32

0 42

52

6’

7’

23

1 33

43

53

1 0’
0 02
1 0’
0 02
1 0’
0 02
1 13
0 I2
1 13
0 12
1 13
0 12
1 1’

yn+2 ‘G3 00

00 10

01 00

10 00

10 01

- -

00 -

01 -

00 00
00 01
00 10
01 00
10 00
10 01
00 00
00 01
00 10
01 00
10 00
10 01

which is diagrammed in Fig. 9. A sample computation is
provided in Fig. 10.

For a standard implementation of the encoder and de-
coder we must give d, e, fin terms of Boolean functions of
binary variables (bits). Since] &,+,] = 24, it takes 5 bits to
label the states of z,. We then have that d is a map of 16
bits to 1 bit, i.e., a Boolean function of 16 binary variables;
e a map of 5 bits to 2 bits, i.e., two functions of possibly
five variables each; and f a map of 6 bits to 5 bits.
Furthermore, an error in the input of d ostensibly propa-
gates 8 bits in the output. The above complexity and error
propagation is what we might have to settle for in a general
situation. However, by taking advantage of choices which
we are allowed to make in the construction of Table VII
and which are somehow inherent in the [2,7] constraint we
can reduce complexity and error propagation. Needless to
say, this is highly desirable, if not essential, for practical

TABLE X
DECODER TRUTH TABLE

5 85 1)6 1)7 $8
1 ‘b’ ‘b’ ‘b’ ‘b* - - - -
1 001001--
1 0 1 0 0 0 0 - 0
1 0 1 0 0 1 0 0 0
1 1 0 0 0 0 0 - 0
1 1 0 0 0 1 0 0 0
1 1 0 0 1 - - - -
0 all others in range of e
O/’ blocks not in range of e

... Y.-4. Y.-y Y.-p Y.-l. Y,, Y.,l. Y.+z, Y.+,* '..

7

I
. . . . xn, . .

Fig. 9. Description of decoder as a composition of finite sliding block
maps.

. . . . -, 0, 2, i, o,,
I

I -1
P

,4l, 0’.

I

*

i
Fig. 10. Sample of decoding computation.

implementation; and we deal with this subject in the next
section.

Remark 8.1: We comment here on the observation made
in Section II that a weaker notion than isomorphism is
needed for practical applications. There is no subsystem of
({T2}, a) isomorphic to the full 2-shift. This can be seen by
the following argument. The number of fixed points is
invariant under isomorphism. There are two fixed points in
the full 2-shift-namely, the sequence of all ones and the
sequence of all zeros. However, there are no fixed points in
{(T2}, a). Thus, if we want to code between arbitrary
sequences and [2,7] run-length constrained ones at the rate
1 : 2, then we must forego isomorphism in favor of right

ADLER et a/. : ALGORITHMS FOR SLIDING BLOCK CODES 19

resolving homomorphism. Actually ismorphism is still pos-
sible at rates of lm: 2m for a large m.

TABLE XI
REDUCED DECODER TRUTH TABLE

IX. I~LE~NTATION

Before describing hardware for the [2,7] code we take up
the question of reducing complexity and error propagation.

First, observe that we have been able to put each symbol
of Ci+) into a unique column on the right side of Table
VII. This means that 1c, is really a l-block map

x, = hJ>

z 1)l 1)2 l)3 1)4 1)s 1)6 1)7 1)s
10000----
l--l--l--
I-l---o-o
II----o-o
11--l----
0 all others

e.g., #(l’) = 0, J/(4’) = 1. Therefore (8.6) can be expressed
by

x, = 4Yn-39 Yn-2, Yn-1, Yn, Yn+,, Yn+2, Yn+3) (9.1)
which reduces d from a 16 bit function to a 1Cbit one.

Second, weeshow that Table VII admits a way of filling
in the columns such that x, does not depend on
ynh3, ynd2, y,-,. Table IX is a tabulation of all possibil-
ities of x,, z,, z,+,, z,,+~, z,,+~ corresponding to each fixed
y,, yn+,, Y,,+~, Y~+~. It substantiates the above claim by
virtue of the fact that all z,‘s corresponding to each bit
pattern of a 4-block (y,, y,+,, y,,,, Y~+~) have been fit
into the same column of Table VII and hence output the
same x,. We use the notation of (8.5) which shows how,
from the predecessor Table VIII, the z, are gotten, via the
u,, from the y,. We conclude from Table IX, for example,
that 22, 32, 42, 52, 6’, 7, should be put in the same column
on Table VII.

Vll b+1 v,+2 v,+3 Encoded
- --A data

Odd bits

Even bits

-
X”

Decoded
data

Fig. 11. Logic network for decoder.

From Table IX we tabulate in Table X the truth table
for the decoder which is a Boolean function of 8 bits

5 = d(v,,- . -,vg),

where E = x,, Y, = (v,, q2), Y,+, = (q3, v4), Y~+~ =
(T5> q6), Yn+3 = (117, %?I

The last line of Table X consists of what we call “don’t
care” conditions. It means that we are free to choose the
output E for those S-blocks (q,, . * . ,Q) not in the range of
the encoder, in particular those violating the [2,7] con-
straint. The choice may be made with various ends in
mind, for example, simplifying hardware, error correcting,
etc. To convert a truth table such as Table X into a
Boolean function we invoke the following.

However, by setting 5 = 1 for a judicious choice of
(Sl,. . -7%) violating the [2,7] constraint we have another
equally valid truth table for the function d operating on the
range of e: namely Table XI. Table XI minimizes hardware
for d, and the Boolean function for it is

‘i = q,q4 ” 73116 ” q2jr6% ” 5j,q2q3?4 ” %q61)8* (9.3)

Equation (9.3) yields the logic network in Fig. 11 for the
decoder.

We remark that due to the fact that ‘p is left resolving
there is another way of constructing decoders by means of
an automaton with a stack. We shall not go into this topic
here, but it is a useful alternative when d is a function of
very many variables.

Theorem 9.1 [39, p. 771: Every Boolean function
f(Xl,. . * ,xn) can be expressed in the disjunctive normal
form

f(x,,.*.&J = ((___ C;E(O ,yfhr%b;’ --.x2
17 ,”)

where xy = Xi and x,’ = xi.
If we set 6 = 0 in the last line of Table X, then combin-

ing Table X and Theorem 9.1 and simplifying we get

Next we turn our attention to the encoder. We reproduce
Table VII, to which we add the outputs that result upon
the tabulated state transition. Table XII contains all neces-
sary information for construction of the encoding automa-
ton. Some of the states of this table can be amalgamated,
which results in a smaller table, hence reduced encoder
complexity. The rule for amalgamation is the following:
state which have identical successor/output pairs are com-
bined. For example, 5’, 4’, 3’, 2l, 1’ are amalgamated into
one state which we can label I’. This results in a smaller
table to which the rule is again applied. We present this
series of reductions in Tables XIII through XVI.

After amalgamation, the encoder is the finite state au-
tomaton

--- ---
“%~2q31/4%~6%178. (9.2)

Y, = 4xn3 z,-J

z, =fh Ll) (9.4)

20 IEEE TRANSACTIONSON INFORMATIONTHEORY,VOL. IT-29,N0. 1,JANUARY 1983

TABLE XII TABLE XV
ENCODINGSTATJT~ANSITIONANDOLJTPUTTABLE THIRDREDU~TI~N

;:
42/00

I: 5’/00
43/00
I’/10

52/00
6’/00

53/00

7’/00
l’/lO
I’/10

TABLE XIII
FIRSTREDUCTION

8: 7
1’ +
12

;: 2
33 23 -

24 -t

53 ;: ;

2=/00
l’/OO
02/01
l’po
22/cQ
P/l0
I’/00
22/m
22/00
22/00

24/00
23/c@
O’/Ol
33/00
34/00
P/l0
l’/lO
43/00
53/00
I’/10

TABLE XIV
SECONDREDUCTION

12 8: :
22/00
I’/00

24/w
23/00

1’ --f

;: :

02/01
22/00

O’/Ol

P/l0
34/w

;:
l’/OO

P/l0

1
I’/10

34
43

22/oo 43/00
--f 2=/00 I’/10

where the next state function f is read off of Table XVI just
like before. The state space for z, is C? =
{O’, 02, l’, 22, 23, 24, 43}, having cardinality 7. When given
by Boolean functions, e and f of (9.4) map 4 bits, respec-
tively, to 2 and 3 bits, a substantial reduction in complexity
compared to e and f of (8.3). Note the difference between
the e of (8.3) and that of (9.4); namely, the former depends
explicitly only on z, whereas the later on both x, and z,- ,.
In this connection we make some observations apropos
dynamical systems. In Section VIII (2, a) was an exten-
sion of (Y, a2), a fact which requires h(Z, a) = h(Y, a2).
By means of amalgamation we have introduced in Section
IX a new dynamical system (Z, u) with smaller topological
entropy, which means (Y, u2) cannot be a homomorphic
image of it. However, (Y, u 2, is the homomorphic image of
a skew product of X and Z in which the entropy comes
from its (X, a) factor. This skew product system is the
topological Markov shift defined by the transitions
(%- 17 z,-1) + (%T f(%v z,- ,)) gotten from Table XVI.

As in the decoder we express our variables in binary
form. Thus, let x, be given by 5,; and y, by q,, v2. Let z,-,
be given by 12, S3, 14; and z, by {;, S;, C. In terms of
binary labels Table XVI becomes Table XVII.

13 8: ,’ 22/00
l’/OO

24/m
23/00

;2 : 02/01

;: ;

02/10
O’/Ol

l’/OO
P/l0
I’/10

43 22/00 +
22/oo

43/00
I’/10

TABLE XVI
FINAL ENCODINGTABLE

x, = 0 X” = 1

zn-I “n/r,

,“: 7 22/00

;i I:

l’/OO
02/01

at I:

02/10
l’/OO
2=/w
2=/00

G/Y??

24/00
23/00
O’/Ol
O’/lO
l’/lO

43/00
I’/10 -

TABLE XVII
ENCODERTRIJTHTABLE

[I=0 Cl = 1

52 53 J4 5; 5; s; G / .G 5; 1)’ / 1)2 91 12

$ = = 000 1 -011/00101/0 0
00

i2
-010/00100/0 0

= =OlO ~001/01000/0 1
0 1 1

ij = = = 100 101 -001/10000/10 -010/00010/10 -011/00110/00
110 -011/00010/10

Also, as in the decoder, we are going to take advantage
of a “don’t care” condition-namely, we are free to choose
convenient values for [i, $4, C, n,, and n2, whenever 5;, 13,
5, = 1, l,l. To minimize encoder logic we add the follow-
ing transition/output entry to Table XVII:

1 1 1 --) Oll/lO llO/lO.

Applying Theorem 9.1 to the information contained in
Table XVII along with the “don’t care” condition and
simplifying, we get

i-; = &s; ” ‘t,&&,
- -

c; = E,C3 ” 52,

From (9.5) we diagram the logic network for the encoder
in Fig. 12.

Finally, we remark that the internal state z, of the
encoder can be reset to 001 by the input 0100. This follows
from (8.4) and the fact that 12, O2 have been amalgamated
for z,+3 and O2 = 001. We note that the spurious state 111,
which is transient, behaves nicely with respect to the initial-

ADLER et al: ALGORITHMSFOR SLIDING BLOCK CODES

Initialize z.
with
r2=0
I,=0
r4=1

TV 2 NV.

Three cases arise:

1) v > 0;
2) v 2 0, v # 0, and some v, = 0;
3) v = 0.

V”
Encoded data

I
J

Fig. 12. Logic network for encoder

Case 1 yields a solution to (Al). Case 3 means that there is no
approximate characteristic vector v with v, 5 L, which we shall
prove below. So we must try again with larger L. Case 2 is
interesting because v is then an approximate characteristic sub-
vector. We can apply the same method as the one which gets T
from T’ in the steps of the splitting process of Theorem 6.1. We
thereby obtain a new matrix T and an integral vector U such that

izing sequence. By being able to reset the internal state of
the encoder at will we can generate specific constraint
outputs of our choice by means of inputs alone.

APPENDIX

The purpose of this section is to provide the reader with a
method for finding an approximate characteristic vector which
can easily be programmed for computer (particularly in APL),
and, in fact, lends itself to hand computation for examples of
moderate size. This method, for solving the following integer
programming problem, was used in [191.

Suppose X is the spectral radius (largest positive characteristic
vector) of an M X M transition matrix T. If N is an integer I X
then, by the Perron-Frobenius theory, there exists a vector v of
integers satisfying

Tv>Nv, v > 0. (‘41)
We wish to find such a vector. In order to do so, choose an initial
vector v(O), for instance whose components vi (‘) = L where L is an
integer > 0. Define inductively

&+I) zz
! - tin(V?), [jtl tlli:.)/iii) (A2)

where [a] means the largest integer in a nonnegative number a.
Let

2, 3 .(n) (A3)
where n is the first integer such that v(“+‘) = v(~). Such an n
exists because vl”’ are all nonnegative integers and vjnf ‘1 YZ v!“).
In fact n 5 L . M. From (A2), (A3) we have

where Tis an irreducible component of the matrix gotten from T
by crossing out the i th row and column whenever v, = 0, and U is
the restriction of v to indices of this irreducible component. This
new matrix is suitable, perhaps even preferrable to the original, as
an initial one for the splitting process described in Theorem 6.1.

Remark Al: If u is a vector of integers satisfying Tu 2 NM and
u 5 v(O) then by induction it is easy to see that u 5 vcn). Hence
u 2 v. So if there are approximate characteristic vectors (or
subvectors) with components 5 L, then (A2) will converge in a
finite number of steps to the largest one; and we know by the
Perron-Frobenius theory that if we choose L large enough there
will be approximate characteristic vectors within its range.

There are various parameters of encoders and decoders we
wish to optimize. A significant factor in the complexity of such
devices based on mappings constructed in Theorem 6.1 is the size
of i? Therefore we wish to solve (Al) with Bv, small. The
complexity of the decoder as well as its error propagation proper-
ties is related to the block size of the mapping cp in Theorem 6.1,
which is governed by the number of steps in the splitting process,
which in turn is connected vaguely to the size of max vi. This
means we also want that quantity small. So, after finding a
solution to (Al), it may be desirable to find a “better” one. A
reasonable procedure is to take a solution, reduce one of its
components and apply (A2) again. If there is a better v to be
found, then it will be found by doing this in a systematic fashion.

111

PI

131

[41

[51

[61

[71

PI

[91

[lOI

REFERENCES

R. L. Adler, L. W. Goodwyn, and B. Weiss, “Equivalence of
topological Markov shifts,” Israel J. Math, vol. 21, pp. 49-63, 1977.
R. L. Adler and M. Hassner, “Algorithms for sliding block codes,”
in Intern. Symp. Inform. TheaT, Abstracts of Papers, Santa Monica,
CA, p. 50, Feb. 9-12, 1981.
R. L. Adler, A. G. Konheim, and M. H. McAndrew, “Topological
entropy,” Trans. Amer. Math. Sot., vol. 114, pp. 309-319, 1965.
R. L. Adler and B. Marcus, “Topological entropy and equivalence
of dynamical systems,” Mem. Amer. Math. Sot., vol. 219, 1979.
R. L. Adler and B. Weiss, “Similarity of automorphisms of the
torus,” Mem. Amer. Math. SIX., vol. 98, 1970.
T. Berger and J. K. Y. Lau, “On binary sliding block codes,” IEEE
Trans. Inform. Theoty, vol. IT-23, pp. 343-353, 1977.
R. Bowen, “Entropy for group endomorphisms and homogeneous
spaces,” Trans. Amer. Math. Sot., vol. 153, pp. 401-414, 1971.
E. M. Coven and M. E. Paul, “Endomorphisms of irreducible
subshifts of finite type,” Muth. Syst. TheoT, vol. 8, pp. 167-175,
1974.
E. M. Coven and M. E. Paul, “Sofic systems,” Israel J. Math., vol.
20, pp. 165-177, 1975.
E. M. Coven and M. E. Paul, “Finite procedures for sofic systems,”

22

[Ill

iI21

[I31

[I41

[I51

iI61

[I71

1181

[I91

PO1

Pll

P21

f231

[241

~251

WI

[271

WI

1291

[301

Monutsh. Math, vol. 83, pp. 265-278, 1977.
M. Denker, C. Grillenberger, and K. Sigmund, Ergodic Theory on
Compuct Spuces, Lecture Notes in Muth. 527. New York:
Springer-Verlag, 1976.
E. I. Dinaburg, “On the relations among various entropy character-
istics of dynamical systems,” Muth USSR Izvestija, vol. 5, pp.
337-378,197l.
J. S. Eggenberger and P. Hodges, “Sequential encoding and decod-
ing of variable word length, fixed rate data codes,” U.S. Patent
4,115,768, 1978.
P. A. Franaszek, “Sequence-state coding for digital transmission,”
Bell Sys. Tech. J., pp. 113-157, 1968.
- “ On synchronous variable length coding for discrete noiseless
channels,” Inform. Contr., vol. l-J, pp. 155-164, 1969.
-, “Sequence-state methods for run-length-limited coding,” IBM
J. Res. Deo., vol. 14, pp. 376-383, 1970.
- “On future-dependent block coding for input restricted chan-
nels,” IBM J. Res. Dee., vol. 23, pp. 75-81, 1979.
- “Synchronous bounded delay coding for input restricted
channels,” IBM J. Res. Dev., vol. 24, pp. 43-48, 1980.
-, “A general method for channel coding,” IBM J. Res. Dev.,
vol. 24, pp. 638-641, 1980.
-, “Construction of bounded delay codes for discrete noiseless
channels,” IBM Res. Dev., vol. 26, pp. 506-514, 1982.
F. R. Gantmacher, The Theory of Matrices, Vol. II. Chelsea, NY,
1959.
E. Gorog, “Redundant alphabets with desirable frequency spectrum
properties,” IBM J. Res. Dev., vol. 12, pp. 234-240, 1968.
T. N. T. Goodman, “Relating topological entropy and measure
entropy,” Bull. London Math. Sot., vol. 3, pp. 176- 180, 1971.
R. L. Gray, “Generalizing period and topological entropy to transi-
tive nonwandering systems,” Masters thesis, Univ. of NC, Chapel
Hill, 1978.
R. M. Gray, “Sliding-block source coding,” IEEE Truns. Inform.
Theory, vol. 21, pp. 357-368, 1975.
M. Hassner, “A nonprobabilistic source and channel coding theory,”
Ph.D. dissertation, UCLA, 1980.
G. A. Hedlund, Transformations Commuting with the Shift, Topologi-
cul Dynamics (an International Symposium), Joseph Auslander and
Walter Gottshalk, Eds. New York: W. A. Benjamin, 1968.
-, “Endomorphisms and automorphisms of the shift dynamical
system,” Math Syst. Theoty, vol. 3, pp. 320-375, 1969.
T. Horiguchi and K. Morita, “An optimi;ation of modulation codes
in digital recording,” IEEE Truns. Mugn., vol. MAG-12, no. 6, pp.
740-742, 1976.
S. S. Hong and D. L. Ostapko, “Codes for self-clocking, AC-cou-
pled transmission: Aspects of synthesis and analysis,” IBM J. Res.
Dev., vol. 19, pp. 358-365, 1975.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-29, NO. 1, JANUARY 1983

[311

[321

[331

[341

[351

[361

[371

[381

[391

I401

1411

~421

[431

[441

[451

[461

[471
1481

[491

[501

[5ll

B. Kitchens, “Continuity properties of factor maps in ergodic
theory,” Ph.D. dissertation, Univ. of NC, Chapel Hill, 198 1,
H. Kobayashi, “ Coding schemes for reduction of intersymbol inter-
ference in data transmission systems,” IBM J. Res. Dev., vol. 14,
pp. 343-353, 1970.
-, “A survey of coding schemes for transmission or recording of
digital data,” IEEE Trans. Comm. Tech., vol. COM-19, pp. 1087-
1100, 1971.
D. A. Lindholm, “Power spectra of channel codes for digital
magnetic recording,” IEEE Truns. Mugn., vol. MAG-14, pp. 321-
323, 1978.
A. Lempel and M. Cohn, “Look ahead coding for input restricted
channels,” IEEE Trans. Inform. Theory, vol. IT-28, pp. 933-937,
Nov. 1982.
B. McMillan, “The basic theorems of information theory,” Ann.
Math. Stat., vol. 24, pp. 196-219, 1953.
B. Marcus, “Factors and extensions of full shifts,” Monutshefte fiir
Math, vol. 88, pp. 239-247, 1979.
-, “Sofic systems and encoding data on magnetic tape,” pre-
liminary report notices,” Amer. Math. Sot., vol. 29, p. 43, 1982.
R. E. Miller, Switching Theory, Vol. 1. New York: John Wiley,
1965.
M. Nasu, “Uniformly finite-to-one and onto extensions of homo-
morphisms between strongly connected graphs,” Preprint, Research
Institute of Electrical Communication, Tohohu Univ., Sendai, Japan.
K. Norris and D. S. Bloomberg, Channel capacity of charge con-
strained run-length limited codes,” IEEE Trans. Magn., vol. MAG-
17, pp. 3452-3455, 1981.
“Small Winchester drives move up to main frame encoding
schemes,” Electron. Des., pp. 51-52, Oct. 15, 1981.
G. L. O’Brien, “ The road-colouring problem,” Israel J. Muth ,, vol.
39, pp. 145-154, 1981.
W. Parry, “Intrinsic Markov chains,” Trans. Amer. Math. Sot., vol.
112, pp. 55-66, 1964.
-, “A finitary classification of topological Markov chains and
sofic systems,” Bull. London Math. Sot., vol. 9, pp. 86-92, 1977.
A. M. Patel, “Zero modulation encoding in magnetic recording,”
IBMJ. Res. Dev., vol. 19, no. 4, pp. 366-378, 1975.
E. Seneta, Non Negatioe Matrices. New York: John Wiley, 1973.
C. E. Shannon and W. Weaver, The Muthematicul Theory of Com-
munication. Urbana: Univ. IL, 1963.
D. T. Tang and L. R. Bahl, “Block codes for a class of constrained
noiseless channels,” Inform. Contr., vol. 17, pp. 436-461, 1970.
B. Weiss, “Subshifts of finite type and sofic systems,” Monutsh.
Muth., vol. 77, pp. 462-474, 1973.
R. F. Williams, “Classification of shifts of finite type,” Ann. Math.,
vol. 98, pp. 120- 153, 1973; Errata, Ann. Muth., vol. 99, pp.
380-381, 1974.

