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Algorithms for Slid ing Block Codes 
An Application  o f Symbolic Dynamics to Information Theory 
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Abstract--Ideas which have origins in Shannon’s work in information 
theory have arisen independently in a mathematical discipline called sym- 
bolic dynamics. These ideas have been refined and developed in recent 
years to a point where they yield general algorithms for constructing 
practical coding schemes with engineering applications. In this work we 
prove an extension of a coding theorem of Marcus and trace a line of 
mathematics from abstract topological dynamics to concrete logic network 
diagrams. 

I. INTRODUCTION 

A. The Problem 

W  E ADDRESS the problem of encoding and decod- 
ing digital data from one type of constraint to 

another by means of finite state automata. The data are 
long strings of symbols from a finite alphabet, usually 
zeros and ones or blocks of them. In this paper, we 
consider encoding arbitrary sequences of zeros and ones 
into a constrained format dictated by the data processor. 
The constraints may be due to physical limitations of a  
transmission or storage system or artificial limitations dic- 
tated by data processing procedures. 

B. The Model 

The appropriate mathematical models for dealing with 
the problem are symbolic dynamical systems, i.e., spaces, 
invariant under the shift transformation, of two-sided in- 
finite sequences of symbols from finite alphabets. The term 
dynamical system is due to the fact that such spaces are 
composed of discrete time orbits, each orbit consisting of a  
succession of shifted sequences. 

Practical encoders and decoders have short finite mem- 
ories but strings they process are so long as to seem 
infinite. The proposed model is suitable to the problem 
because 

i) the constraints are time independent (shift invariant); 
ii) encoders and decoders can be constructed from map- 

pings between systems which commute with some 
power of the shift (sliding block codes) [6], [25]. 
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Constraints encountered in practice are standard ones in 
symbolic dynamics. Of particular importance are those 
specified by a finite list of forbidden blocks of symbols, 
e.g., upper and lower bounds on run lengths of zeros and 
ones (Sec. VII), [14], [15], [ 161, [29], [33], [49]. In symbolic 
dynamics such systems are called shifts of finite type or 
topological Markov shifts [4], [51]. More complex con- 
straints are also important such as ones involving the 
power spectrum of symbol sequences, e.g., no dc compo- 
nent in a signal representing the symbol sequence [ 14],[22], 
[30], [32], [34], [41], [46]. These can be described as outputs 
of a  finite state automaton whose inputs are shifts of finite 
type. In symbolic dynamics such systems are called sofic 
(from the Hebrew word for finite) [50]. In engineering 
contexts, the above constraints have been described by the 
notion of a  channel: namely, shifts of finite type are 
deterministic finite state channels with finite memory, and 
sofic systems are deterministic finite state channels with 
infinite memory. Some areas where these constraints are 
met are magnetic recording, fiber optics, and data proto- 
cols in communication networks. 

C. Shannon Theory 

Suppose we wish to encode in a decodable way every 
sequence (. . . x- ,, x0, x, * . f ) of a  system X satisfying one 
set of constraints into another system Y of sequences 
(. . ‘Y-l, Yo, Yl *. . ) satisfying another. Each component 
x,, y,, may itself consist of a  finite block of symbols, say of 
length p and q, respectively, in which case we say that the 
coding rate r = p/q. The concept of topological entropy 
governs when this is possible. Topological entropy is defined 
as the exponential growth rate, as n --) co, of the number of 
different strings of length n appearing in the infinite se- 
quences of a  symbolic system. The term “topological” is 
used to distinguish this entropy from its probabilistic coun- 
terpart. It was defined in purely topological terms in [3]. 

In the present context where output symbols are of equal 
duration, Shannon’s noiseless coding theorem [48, p. 281 
amounts to the following obvious statement: coding of 
arbitrarily long finite strings is possible when the topologi- 
cal entropy of X is less than that of Y and impossible when 
the inequality is reversed, the case of equality being left 
unresolved. Shannon called the system Y, a channel, and its 
topological entropy, the channel capacity. He called the 
system X, the source, and endowed it with a probabilistic 
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entropy (topological entropy maximizes probabilistic ent- 
ropy supported by the source [ 121, [23]). The full content of 
Shannon’s theorem applies to the situation where the topo- 
logical entropy of the source is greater than that of the 
channel but its probabilistic entropy is less. 

We sharpen Shannon’s theorem for the special case 
where the source entropy is the topological entropy to 
show that coding is possible even in the case of equality. In 
addition, the method of proof provides efficient sequential 
encoding and decoding algorithms which do not depend on 
the length of strings processed, a feature absent from 
Shannon’s original theorem. We treat the class of shifts of 
finite type (channels with finite memory) and leave the 
more general case of sofic systems (channels with infinite 
memory) to subsequent work. Actually, we deal with the 
case where the topological entropy of the source is the 
logarithm of an integer, the most common one in applica- 
tions. The more general case where it is the logarithm of an 
algebraic integer can be handled by a slight extension of 
the “tableaux” method of [4], but then certain desirable 
error propagation properties usually must be forgone. 

and clarify the relationship between the two methods. 
Franaszek’s ideas are very interesting and maybe lead to 
simpler implementations. From a mathematician’s point of 
view these works [ 191, [20] leave something to be desired- 
namely, precise statements on the scope of the method 
along with complete proofs. A. Lempel and M. Cohn [35] 
work some examples by Franaszek’s method, but leave the 
same mathematical questions unsettled. 

The main results of our work were presented at the IEEE 
International Symposium on Information Theory, Santa 
Monica, CA (Feb. 1981) [2]. The theme, which is the. 
application of recent developments in symbolic dynamics 
to coding problems in information theory, was suggested 
by M. Hassner in [26]. 

II. ABSTRACTDYNAMICALSYSTEMS 

This paper is written for two worlds, engineering and 
mathematics, at the risk of satisfying neither. It runs the 
gamut from the sublimely abstract to the hard-nose con- 
crete. We start with notions of sets, mappings, and topol- 
ogy in Section II, supplant these with combinatorial ideas 
by Section V, and finish at the end of Section IX with logic 
circuit diagrams. The complete trip is hardly needed for 
constructing codes, but it is useful in organizing the flow of 
ideas and bringing order to the subject. For the less 
mathematically minded, interested only in making codes 
for some practical purpose, we suggest concentrating on 
the description of the symbol splitting process of Section 
VI (not the proof), the example of Section VIII, and the 
implementation of it in Section IX. Following the pattern 
there one should be able to construct encoders and de- 
coders for any shift of finite type constraint. The method 
can be extended to cover sofic systems arising from the 
aforementioned spectral constraints, but this has not yet 
appeared in print 1381 and its applicability is not fully 
assessed. The excessive number of tables included in Sec- 
tions VIII and IX are there to indicate the labor involved 
in constructing codes. 

Let X be a compact metric space and u a homeomor- 
phism-i.e., continuous one-to-one map-of X onto itself. 
We call the pair (X, a) an abstract dynamical system. For a 
comprehensive treatment of such systems see [ 111. If X’ is a 
closed u-invariant subset of X then the system (X’, a) is 
called a subsystem of (X, a), and we write (X’, u) C (X, a). 
We define the orbit, future orbit, and past orbit of a point x 
by the respective sequences orb x 3 {a”~}, EZ, orb+ x = 
{u’*x},~a, orb-x G {u”x},<~. In order to economize on 
notation we shall always use the following convention for 
metrics. We denote the distance between two points x, y 
by ] x - y ] even though subtraction and absolute value 
may not be defined. 

Two orbits, orb x and orb y, are called positively (negu- 
tively) asymptotic if 1 u”x - u”y I+ 0, n ---, co (n + - ~9). 

We have the following indecomposability conditions for 
a dynamical system and its higher iterates. A system is 
called nonwandering transitive if for every pair of neighbor- 
hoods there is a point in the first whose future orbit hits 
the second. A system is called aperiodic if (X, a”) is 
nonwandering transitive for all n. 

Let (X, u), (Y, 7) be two abstract dynamical systems. A 
continuous map cp of Y onto X such that cp o u = r o r,o is 
called a topological homomorphism. If such a map exists we 
have the following commutative diagram: (Fig. 1). 

For the paper as a whole, we assume knowledge of the 
Perron-Frobenius theory of nonnegative matrices [21], 1471 
and some basic elements of symbolic dynamics which can 
be found in [4], [8], [ 111, [27], [28]. 

We present only one proof, that of the main theorem in 
Section VI. All others are standard and easy ones from 
symbolic dynamics. These are stated without proof. Where 
possible, references are cited in which proofs can be found; 
otherwise they should be treated as exercises. Actually 
Sections II-V is to be regarded as a survey. 

Methods for doing noiseless coding have also been de- 
veloped by P. Franaszek [14]-[ 191. In [19], [20] he gives a 
general one which is different from ours yet intriguingly 
based on the same inequality (6.1) from the Perron- 
Frobenius theorv. We hone somedav to return to this tonic J I _I I respectively. We represent this situation as in Fig. 2. 

We also refer to ‘p as a factor map and call (X, r) a 
factor of (Y, a) and (Y, a) an extension of (X, 7). If, in 
addition, cp is one-to-one (hence invertible, q-’ being con- 
tinuous by compactness) we call it an isomorphism and say 
that (X, a) is topologically conjugate to (Y, r) and write 
(X, a) = (Y, r). Nonwandering transitivity and aperiodic- 
ity are preserved under isomorphism. Topological con- 
jugacy is the strongest sense of equivalence of dynamical 
systems from the purely topological point of view and too 
strong for many practical applications (see Remark 8.1). 
Consequently, we introduce a weaker one. 

Definition 2.1 (Parry 1451): We say (X, a) and (Y, r) 
are finitely equivalent, and write (X, a) - (Y, r), if there 
exists a common extension (Z, p) and boundedly finite-to- 
one factor maps (p, II, of (Z, p) onto (X, a) and (Y, r), 
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I I 

For coding applications we need a certain kind of invert- 
v cp. ibility condition for factor maps which for abstract systems 

LA is expressed by the following. 

Fig. 1. Commutative diagram of topological homomorphism. 
Definition 2.4 (Kitchens [31 I): A factor map cp of (Y, a) 

onto (X, r) is called right, left, or two-sided closing if 
GLP) 

/\ 

CJJX # ‘py whenever x # y and orb x, orb y are, respec- 
tively, negatively, positively or both negatively and posi- 
tively asymptotic. 

‘p $J III. SYMBOLIC SYSTEMS 

/ \ 
(Y,d (ka) 

Fig. 2. Finite equivalence diagram. 

Finite equivalence can be slightly strengthened, which is 
done in the next definition, and still be weaker than 
topological conjugacy. 

Definition 2.2 (see [ 41, [24]): We  say that (X, a) and 
(Y, r) are almost one-to-one finitely equivalent and write 
(X, u) 2 (Y, r) if, in addition to being finitely equivalent, 
the factor maps are one-to-one except on nondoubly tran- 
sitive points. A point x is said to be nondoubly transitive if 
either orb+ x or orb- x fails to be dense in its dynamical 
system, otherwise it is called doubly transitive. 

Theorem 2.1 [ 4, p. IO]: = , - , and 5 are equivalence 
relations and 

(X,u) -(Y,r) -(X,u)“(Y,r) *(X,u)-(Y,r). 

We remark that the set of doubly transitive points is an 
invariant subset of a  dynamical system and that factor 
maps in Definition 2.2 are isomorphisms between subsys- 
tems which, however, are not compact. 

Definition 2.3 (Bowen-Dinaburg [7], [12]): The topo- 
logical entropy h( X, a) for abstract dynamical systems is 
defined as the largest growth rate possible, as n -+ co, of 
the number of c-separated orbits of length n, i.e., 

h(X, u) =  sup lim ilogN(e, n), 
rao n+cc 

where N(c, n) denotes the number of e-separated orbits of 
length n. Two orbits of length n{uk~}05k5n--l and 
{uky}aSkcn-, are said to be r-separated if ] ukx - uky 12 E 
>Oforsomek,OSkIn- 1. 

An easy consequence of the definition is that, if (X, u) is 
a  factor of (Y, r), then h( X, a) 5 h(Y, r). Also, if (X’, u) 
is a  subsystem of (X, a), then h(X’, u) 5 h(X, a). We have 
Theorem 2.2. 

Theorem 2.2 [4, p. 91: If (X, a) is a  finite-to-one factor 
of (Y, r) then h( X, a) = h( Y, r). 

Corollary 2.3: If (X, u) = (Y, r) then h( X, u) = h( Y, r). 
Thus topological entropy is an invariant for all three 
equivalence relations. We  also have the next theorem. 

Theorem 2.4 [3, p. 3211: h(X, a”) =I n  ] -h(X, a), n  E 
Z. 

Let A be an alphabet (sometimes called a state space), by 
which we mean a finite set of symbols (also called states) 
with an ordering. We  denote the cardinality of a  set A by 
I A ] . Examples of alphabets are & = (0, 1  }, @  = 
{(O,O), (0, l), (l,O), (1, l)}, etc. We  freely abuse notation by 
using indexing symbols to represent interchangeably both 
an element of an alphabet and its ordinal number. Which it 
should be clear from context. This sloppiness is often 
compounded by the fact that numbers also appear as 
alphabet symbols and that a  numerical symbol may not 
coincide with its ordinal number. The advantage of incon- 
sistency here is that it keeps notation to a minimum. 

As is customary, &’ denotes the set of two-sided infinite 
sequences of elements of &. The space @ ’ can be endowed 
with a metric, the distance between sequences x = {x~}~~=, 
Y = {YAEZ beingdefinedbylx-y]=Zr=‘=_,]x,-y,] 
/21” where I x, - y, 1  is defined to be one when x, #  y, 
and zero otherwise. In this metric the more two sequences 
consecutively agree the closer they are, and we have a 
neighborhood basis which consists of the family of sets, 
called cylinder sets, of the form {x = ( . . . x-,, x0, 
XI,. . .): (x,+,; . .,xntk) = (a,;. .,a,)} where 
(a,,* . -, ak) is some fixed k-tuple of symbols of & In this 
topology @ ’ is compact. 

We  define the shift transformation u of Qz onto itself by 
(ux), = x,+1 for x E &?‘, n E Z. In the above metric u is a 
homeomorphism and we form the dynamical system (&=, a) 
which is called the full N-shift where N = ] 6? I . Any subsys- 
tem (X, (7) C (6?=, u) is called a subshift. We  use symbols 
@ , 3, e  to denote alphabets. Occasionally we use @x to 
denote the alphabet of a  dynamical system (X, a) which in 
the above is a subset of &. Any finite n-tuple (a,; . .,a,) 
which appears in any sequence of X is called an admissible 
n-block. The topological entropy of a  subshift is given by 

h(X, u) = lim l/nlog N(n), 
n-)-x 

(3.1) 

where N(n) is the number of admissible n-blocks. We  
observe that 

h(@=,u) =logI&l (3.2) 

and h( X, a) 5 log ] @ ] for (X, a) C (gz, a). The reader 
can regard (3.1) as a definition [44] although it is an easy 
exercise to derive it from Definition 2.3. 

We  introduce the notation x 1: = (xm, x,+,; . .,x,) for 
a  sub-(n - m  + 1)-tuple of an n-tuple or sequence x. Given 
a subshift (X, a) we can form a subshift (Xrnl, a), called 
the higher n-block system of (X, a), where ( XrH1, a) consists 
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of sequences (. . . ,x 1’!T2, x I:-‘, x 17, . . . ), where x E X. 
The higher n-block system (XL”], a) is canonicahy isomor- 
phic to (X, a) under the correspondence 

(-x(“,,x);;-‘,x1;) ++(~-X-,,Xo,X,,-~) 

(Xt”], a) is a subshift of the full shift based on an alphabet 
of symbols consisting of all admissible n-blocks of X. 

Definition 3.1: Let (X, a), (Y, u) be subshifts of two full 
shifts (P, a), (%Z, a), respectively. A mapping ‘p of (Y, a) 
onto (X, a) is called a k-block map requiring memory I and 
anticipation m, if there exists a function cp: gk --) % such 
that if {xn} = cp{y,} then 

x, = dY,-6. hYn-t,>> 
wherek=m+I+l,fornEZ. 

We use here the following abuse of notation. The same 
symbol ‘p is used to denote a mapping defined on se- 
quences and the component function of several variables 
by which it is specified. What is meant will always be clear 
from context, hopefully. 

In dynamical systems only the finiteness of k, not its 
size, is important. We can often take advantage of the 
conceptual simplification of regarding a k-block map as a 
l-block map on a system with a larger alphabet. This is 
done by replacing a k-block map cp by the l-block map 
(~9~ ’ where 8 is the canonical isomorphism between (Y, a) 
and ( Ytkl, a). (See Fig. 3.) 

However, for construction of encoders and decoders in 
engineering applications it is important to have k and the 
alphabet size as small as possible; so the above artifice is of 
no advantage from this point of view. 

Theorem 3.1 [ 11, p. 31: An onto mapping cp between 
subshifts is a homomorphism if and only if it is a k-block 
map. 

If a k-block map QI between subshifts is invertible, then 
its inverse ‘p-l is also a k-block map, perhaps with a 
different k. We define a weaker form of invertibility. 

Definition 3.2: Let ‘p be as in Definition 3.1 with 
cp({Yn)) = {-%I>. ‘p is said to be right resolving with parame- 
ters p, q, r of memory and anticipation if each y,, is uniquely 
determined from the upcoming x,-~,. . .,x,,+~ and preced- 
ingy,-,; . .,ynpl- in other words, there exists a function 
f: ar X @p+q+’ + % such that 

Y, =f(Yn-r,-,Yn-l; X,-p,-,X,+q). 

A similar definition is given for left resolving by replacing 
{xn}, {y,,} by {x-n}, {y-,} in the above definition. 

We remark that Definition 3.2 is what Definition 2.4 
becomes in the context of subshifts. Kitchens [31] used the 
term right (left) closing here. In [4] the definition of right 
and left resolving covered only the cases where r = 1, 
p = q = 0. The concept of right resolving is not new in 
information theory. It was called unifilar by McMillan [36, 
p. 2161. We could also give the definition of two-sided 
resolving [4] which is what two-sided closing becomes for 
symbolic systems, but that will not be needed in the 
present work. Suffice it to say that the importance of the 

YBY’k’ 

P 

I/ 

cpa-’ 

X 

Fig. 3. Equivalence of k-block to the l-block map. 

concept of resolvability is put into evidence by the follow- 
ing theorem. 

Theorem 3.2 [ 4, p. 231: A homomorphism is finite-to-one 
if it is right or left resolving. (Right or left resolving imply 
two-sided resolving but not conversely. For subshifts of 
finite type which are defined in Section V finite-to-one 
implies two-sided resolving.) 

Closely associated with the concept of right and left 
resolving is the notion of resolving block. Such blocks serve 
as a means for resetting an encoding automaton con- 
structed from a right resolving map. Let ‘p in Definition 3.1 
be a l-block map, i.e., x, = cp( y,). 

Definition 3.3 [ 11, [ 41: An X-admissible m-block 
(a,,. * ., a,) is called a resolving block if there exists an 
index i,, 1 I i, I m, such that if (y,, . * . ,y,) and 
(Y;,. * * ,yA) are two Y-admissible m-blocks such that ‘p( yi) 
= ‘p( y,‘) = a,, 1 I i 5 m, then y,, = y:,. In other words, 
the block (a,; * -, a,) determines a unique preimage in the 
i,th coordinate. 

Remark 3.1: If QI is also right resolving with r = 1, 
p = q = 0 and x I? = (a,;. .,a,) then the sequence y 1: 
can be uniquely determined from x 1;” whenever x = ‘p(y). 
Furthermore, if there are so many resolving blocks that in 
every k-block there exists at least one, then ‘p is invertible, 
in fact, ‘p-l can be seen to be a k-block map. 

IV. ENCODERS AND DECODERS 

Let (X, a) and (W, a) be two subshifts with alphabets @ 
and 3, respectively. In the vocabulary of engineering let us 
call (X, u) the source and (W, a) the channel. Usually @ 
and $8 consist, respectively, of admissible p-blocks and 
q-blocks of 0 and 1 for some fixed p and q. Furthermore, 
the source usually consists of unconstrained sequences and 
the channel of constrained ones. Thus 6! is the set of all 2P 
p-blocks whereas $B is some subset of q-blocks. 

Our problem is to construct two finite state automata: 
an encoder which converts source sequences {xn} E X to 
channel sequences {y,} E W, and a decoder which recovers 
{xn} from {y,}. The coding rate is r = p/q (p source 
symbols per q channel symbols) and we want this as large 
as feasible. At the same time we want q and p small to 
minimize complexity. 

A finite state automaton, say the encoder, is given by two 
functions 

Y, = 4x,-,,-. *,x,+,, tn), 

2, = f(&-[,‘. ‘,X,tm, z,-J, (4.1) 
where z, belongs to some finite alphabet (J?, called the 
internal states of the automaton. The elements y, are called 
the output and x,,-,, . . *,x,+,, the inputs, with I, m param- 
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Fig. 4. Commutative diagram of decoding map. 

eters of memory and anticipation. The function e is called 
the output function and f the next state function. By sub- 
stitution, y, is a  function of x,-,;..,x,+~, I,-,. The 
numbering of variables in (4.1) may be slightly off from 
standard usage. We  adopt the present one to conform to 
our notation of subsequent constructions. 

The output sequences {y,} belong to a subsystem (Y, a) 
C (W, a). By virtue of (4.1) this subsystem is a factor of a  
system of ((3 X e)‘, a), which in turn is a factor of a  
subsystem of ((a X e)‘, a). A single error in the input will 
possibly propagate forever in the output. We  take the point 
of view that the source is error free. However, errors may 
occur in the channel, and we want to limit the range of 
their propagation in the decoder. In order to do this, we 
should also make the decoder a finite state automaton, but 
one in which the internal state at a  particular time does not 
depend on the input, but only on the previous state. 

Thus the decoder is given by two functions: 

xn = d(y,-r,. . .ryn+rii; F,>, 

(4.2) 
where Z  belongs to some other finite alphabet 6?. Since the 
set of states is finite, say ( 6  ( = v, we can label them so that 

&I = n (mod v). 

From this we see that we require the decoder to be a 
finite-block map satisfying 

da’= u”d; 
that is, we have the diagram of Fig. 4. 

In designing a decoder, we try to make v as small as 
possible, hopefully v = 1. This condition can always be 
trivially achieved at the expense of increasing p and q by a 
multiplicative factor v, but this would not count as an 
improvement. 

We  would also like the encoder to be given by a finite 
block map of (X, a) onto (Y, a), which would mean (X, u) 
= (Y, a). This is usually not possible, so we must be 
content with some weaker form of invertibility of the 
decoding map, like right resolvability, which is sufficient 
for constructing an encoding automaton. 

V. SUBSHIFTS OF FINITE TYPE 

We single out a special class of subshifts which go under 
a variety of names, two of which we shall use, the choice 
depending on the mode of description. The term subshift of 
finite type shall be used to designate a subshift (X, a) when 
X is defined by specifying a finite list of forbidden finite 
blocks which do not occur anywhere in the sequences of X. 

Let T  = (ti,) be an N X N matrix of zeros and ones, 
which we call a  transition matrix. A k-tuple (x, , . . . , xk) of 
symbols xi E @ , is called a T-admissible k-block if t,z,,,+I 

- 1  for i= 1,s.. 
TX) 

, k - 1. A two-sided infinite sequence 
n ,,== is called T-admissible if t,., x,,+, = 1 for n  E 2. Let 

{T} denote the set of T-admissible sequences. We  use the 
term topological Markov shift to describe a subshift (X, u) 
when X = {T}. 

The first description tells what is forbidden, the second 
what is allowed. Both definitions describe the same class of 
dynamical systems: for one obtains a finite list of forbid- 
den 2-blocks (i, j) from a transition matrix T  whenever 
ti, = 0. Conversely, if L  is the length of the longest block 
in the forbidden list, then a new alphabet can be chosen to 
be the admissible (L - 1)-blocks. Tacking on the right 
single symbols from the original alphabet in such a way as 
to get admissible L-blocks defines a transition matrix be- 
tween (L - I)-blocks which overlap in L - 2  places. The 
system that results is isomorphic to the original one. For 
this reason subshifts of finite type could also be called 
(L - 1)-step Markov systems and topological Markov 
shifts, l-step Markov. 

A transition matrix T  defines a directed graph, the 
symbols are nodes and the transitions edges. If we label 
edges with a new alphabet, then a new transition matrix 
T[‘] is formed by specifying how the edges are connected. 
The topological Markov shift ({T[*]}, a) is merely the 
higher 2-block system of ({T}, u). Similarly we can form 
still higher edge graphs to obtain all the higher block 
systems ({T[“]}, a). 

Using the notion of directed graph we can also define a 
dynamical system (X, a) for arbitrary nonnegative integral 
matrices T  = (t,,) in the following manner. From i to j 
draw t,, directed edges and label each with a distinct 
symbol. Let us again use the notation T[*] to designate the 
directed edge graph. Then T[*] is a  zero-one transition 
matrix, so we can form the dynamical system ({T12]}, u) 
which serves as a definition of a  topological Markov shift 
given by a matrix in which appear positive integers larger 
than one. 

Sometimes we must deal with dynamical systems 
({T}, up) involving a higher power of the shift. In order to 
apply the results as they are expressed in Section VI we 
must represent it as a first power and to this end we have 
the following theorem. 

Theorem 5.1: If the pth matrix power TIkl’ of the k th 
higher edge graph T  tkl for a  transition matrix T  is zero-one 
(which is always the case for k = p), then ({T}, up} = 
({TrklP}, a) with the conjugacy given by a canonical map 
like in Section III. Alternatively if TP is not zero-one, then 
its edge graph T  P12] defined above is zero-one and 
({T}, up) = ({TPrzl}, u). 

A subshift which is a finite-to-one homomorphic image 
of a  topological Markov shift is called a sofic system. A 
sofic system need not be a subshift of finite type (these 
systems were studied in [9], [lo], [50]). However, a  subshift 
which is an isomorphic image of a  subshift of finite type is 
again a subshift of finite type. Sometimes, when the transi- 
tion matrix specifying a topological Markov shift is large, 
we can take advantage of the above fact by specifying the 
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system by an isomorphism (invertible k-block map) from a 
system given by a much smaller transition matrix, thus 
reducing the overall complexity of the description. Symbols 
in sequences in the domain of the above isomorphisms are 
sometimes called channel states and symbols in sequences 
of the range, channel symbols. An isomorphism of a shift of 
finite type is sometimes called a deterministic channel with 
finite memory and a homomorphism with a sofic image 
which is not a shift of finite type, a deterministic channel 
with infinite memory. We remark that the relation of the 
above terminology to that in engineering literature is a bit 
blurred. For example, whether the word, channel, should 
refer to a mapping, its image, or both is nebulous. We shall 
not dwell further on these pedantic difficulties, except to 
say that (W, a) was called a channel in Section IV because 
the constraints on W are typically specified by defining it 
as the homomorphic,image of a shift of finite type. 

We introduce some useful term@ology with regard to 
topological Markov shifts. We say j is a (T-admissible) 
successor of i, or equivalently the transition i to j is 
allowable (under T), and write i --) j, if tij = 1. We also say 
in this case, i is a (T-admissible) predecessor of j. We 
denote the successors of i by the set T(i) = {j,; . . JIr(i,I}. 
The transpose matrix T* defines another transition matrix 
in which the roles of predecessor and successor have been 
interchanged. Observe that ({T*}, a) is isomorphic with 
C(T), a-‘>. 

Definition 5.1: T is said to be irreducible if for every 
i, j E W there exists a positive integer n (depending on i, j) 
such that tl’J”) > 0, i.e., there exists i,; * -,in-, E & such 
that i = i, + i, - . . . + i,-, --) i, = j. 

Definition 5.2: We shall call T aperiodic if there exists 
n > 0 such that T” > 0, i.e., tl’/“) > 0 for all i, j (n being 
independent of i, j). 

Definition 5.3: The greatest common divisor (gcd) of the 
set {n: t(F) > 0, i E @, n = 1,2, . . * } of cycle lengths is 
called thlperiod of T. 

Theorem 5.2 [21, pp. 651, [97]: T is aperiodic if and 
only if T is irreducible and has period 1. 

Theorem 5.3 [ 4, p. 191, [ 24, p. 151: A topological Markov 
shift ({T}, a) is nonwandering transitive if and only if T is 
irreducible. 

Theorem 5.4 [4, p. 191: A topological Markov shift 
({T}, a) is aperiodic if and only if T is aperiodic. 

Definition 5.4: A subalphabet a’ C & under transitions 
T’ inherited from T is called an irreducible component if 

i) i E a- T(i) C &?’ 
ii) i, j E @’ * ji,; . .,in-, E @’ such that i = i, + i, 

-3 . ..j.- , + i, =j. 

Theorem 5.5 [4, p. 211: If T(i) # 0 for every i E W, 
then there exists an irreducible component. 

The number N(n) of T-admissible n-blocks is given by 

N(n) = $ t,‘.“,:‘), n Z-2. (5.1) 
i,;=l " 

It follows from the Perron-Frobenius theory of nonnega- 
tive matrices that there exist positive constants a, b such 
that 

aX” 5 N(n) 5 bh”, (5-2) 
where A is the largest positive characteristic value (spectral 
radius) of T. Thus from (3.1) 

h({T}, u) = logh. (5.3) 
Let us address the problem of topological conjugacy. 

Besides the topological entropy invariant some stronger 
ones are known which are contained in the following 
theorems. 

Theorem 5.6 [31]: If ({T,}, a) and ({T,}, a) are two 
equal entropy topological Markov shifts with the first a 
factor of the second, then the block of the Jordan canoni- 
cal form of T, with nonzero characteristic values is a 
principal submatrix of that of T,. 

Corollary 5.7 [40]: In Theorem 5.6 the characteristic 
polynomial of T, divides that of T2 when the monomial 
factors are deleted. 

We also have an algebraic characterization of topological 
conjugacy. 

Theorem 5.8 [51]: ({T,}, a) = ({T2}, a) if and only if 
there exists nonnegative integral rectangular matrices Ai, B,, 
j= I,... ,n, for some n such that A,+,B,+, = BiAi, i = 
1; * .) n - 1, T, = A,B, and T2 = B,,A,. 

Using Theorem 5.8 it is easy to construct matrices T,, T2 
with the same Jordan canonical form such that ({T/21}, a) 

5 4 * ({Ti[‘]}, a). For example T, = 1 1 
= 5 2 

i 1 

( 1 
and T, 

2 1 . Assuming conjugacy it would follow from The- 
orem 5.8 that there exists an integral 2 X 2 matrix S such 
that ST, = T,S and det S = 1. However, an easy computa- 
tion shows that 2 divides det S, a contradiction. Thus the 
invariants presented above are not complete ones for topo- 
logical conjugacy. In fact, the major unsolved problem in 
symbolic dynamics is to give a finite procedure for de- 
termining when two shifts of finite type are topologically 
conjugate. Possibly there is none. Also unsolved is the 
following conjecture which is still a far cry from a finite 
procedure. 

Conjecture 5.1 1511: ({T,}, a) = ({T2}, a) if and only if 
there exists a positive integer 1 and nonnegative integral 
matrices A, B such that AT, = T,A, T,B = BT,, T,’ = AB, 
and Ti = BA. 

The situation for determining finite equivalence or al- 
most one-to-one finite equivalence is just the opposite. We 
do have a finite procedure which comes down to checking 
whether transition matrices have the same largest char- 
acteristic value. The completeness of topological entropy 
for finite equivalence and almost one-to-one finite equiva- 
lence is revealed in the following theorems. 

Theorem 5.9 [4], [45]: Let (X, u), (Y, a) be two non- 
wandering transitive subshifts of finite type, i.e., their 
transition matrices are irreducible. Then (X, a) - (Y, a) if 
and only if h(X, a) = h(Y, a). 



ADLER et d. : ALGORITHMS FOR SLIDING BLOCK CODES 

(Lo) 

A 
P # 

(Y.0) (X.0) 
Fig. 5. Finite equivalence diagram (same as Fig. 2, reproduced of con- 

venience1. 

Theorem 5.10 [4]: Let (X, a) and (Y, a) be two 
aperiodic subshifts of finite type. Then (X, a) * (Y, a) if 
and only if h(X, a) = h(Y, u). Furthermore in [4], [45] 
methods are given for constructing the associated factor 
maps which are depicted in Fig. 5. 

In the constructions one of the factor maps is right 
resolving and the other is left-one is free to choose which. 
We  usually draw the right and left resolving maps on the 
corresponding side of the diagram. 

The special case where (X, u) is the full N-shift and 
h(Y, a) = h( X, a) = log N, N an integer, was treated in 
[l]. Marcus (371 showed how to achieve an invertible map 
cp, which is not always possible if (X, a) is not a  full 
N-shift. If we select a  right resolving $, then from Marcus’ 
result we obtain a right resolving finite block map cp- ’ IJ, 
the very thing needed to construct an encoder and decoder 
of Section IV. 

In applications we generally have h( W , a) > h( X, a), so 
we must find a subsystem (Y, a) C (W, a) such that 
h(Y, a) = h( X, a). This problem was not addressed by 
Marcus, but it can be done by strengthening his result, 
which is the main theorem of this work. 

VI. METHODOF SYMBOLSPLITTING 

Main Theorem 6.1: Let (X, a) be the full N-shift for an 
integer N > 2, i.e., X = {S} where S is an N X N matrix 
all of whose entries are one. If T  is an M  X M irreducible 
transition matrix such that h({T}, a) 2  h({S}, a) = log N, 
then there exists by construction an irreducible transition 
matrix ? with row sum N, an invertible left resolving 
l-block factor map (isomorphism) ‘p of ({ ?}, u) onto a 
subshift of finite type (Y, a) C ({T}, a), and a right resolv- 
ing 2-block factor map 4 of ({T}, a) onto ({S}, a). The 
composition cp-‘$ is a right resolving factor map of (Y, a) 
onto (X, a). 

Proof: The plan is to construct from T  a matrix with 
row sum > N, then delete excess transitions, that is change 
some entries from 1 to 0, in order to get a matrix with row 
sum N. 

We  have by hypothesis that h((T}, u) 2  log N, so h 2 N 
where A is the spectral radius of T. From the Perron- 
Frobenius theory of nonnegative matrices [21], [47] there 
exists a column vector 0 = (o~),<,,~ which we call an 
approximate characteristic vector, satisfying 

TV 2 NV, 
v > 0, (6.1) 

Fig. 6. Coding scheme 

where inequality here means componentwise inequality. 
Since T  has integer entries, in fact zeros and ones, we can 
satisfy (6.1) with integers oui > 0 and furthermore with 
gcd (0,) = 1. (See Appendix for a  method of solving this 
integer programming problem.) 

If all u), = 1, then T  itself is the sought after matrix; so 
we assume max 0, > 1, which also implies min vi < max ui. 
Let us call oi the weight of i. 

Consider the set T(i) = {j,, . . . ,jlTCrj,} of successors of i. 
For each i, 1  5 i 5  M, choose a disjoint,partition (Y = (Y, = 
{A,,. . . ,Aia,} of T(i) where the following conditions hold 

x II,=O (modN), 1 ~k<lal -1, (6.2) 
iEAk 

k- ’ 
vi - 2  2 v,/N 10. (6.3) 

k=l ~Ez‘f~ 

We dispense with the subscript on (Y when it is clear from 
context. Usually we pick partitions of T(i) with largest 
possible 1 (Y 1 , but sometimes we must settle for 1  (Y I= 1. 
Nevertheless, we show there exists an index i,, for which 

namely, take i, for which o10 = max o, and T(i,) contains 
an index, say j,, such that vJ, < v,~. Such an i, exists; for 
otherwise T  would be reducible because the indices of 
maximum weight would “circulate” only among them- 
selves. We  are free to order symbols so that i, = 1. From 
(6.1) follows 

v,IT(l)l> 2 v$Nv, 
/EVI) 

from which we conclude 1 T(1) I> N. Consider next the 
following sums modulo N: 

V II 

v,o/, +  vJ2 

vj, +  . * . +f&. 

Either there are N distinct values and one of them is 0 
(mod N), or two repeat, in which case their difference 

Y,> + ’ 
+ . . . +~,~=O(modN)wherel_(p<q5N.Thus 

we can find a nonempty subset A, CJ T(l), ] A, IS N < 
1 T(lf] , such that 

and 

2 vJ=O (modN) 
I-f, 

1  v,<Nv,, 
J’EA, 
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equivalently as follows: 

v, > 2 vi/N. 
J-I 

lal- ’ k-- 
I$ = v, - x v;i = v, - 2 2 vj,‘N 

k=l k==l J’A, 

This last inequality holds because state one is heaviest and 
either (A, I< N, or IA, I= N andj, E A,,j, being lighter 
than state 1. 

k--l 

Next we “split” i into new symbols i’, . ,ilall , which we 
call offspring of i. With respect to the alphabet e’ = {ik: 

1 < k 5 1 (Y~ 1, 1 5 i I M} of new symbols ordered in some 
fashion, we obtain a new transition matrix T’ specified by 
the transitions 

Nv, - 2 2 ‘j 
k=l jEA, x vj - JET;-Al lvj JET(i) u 

LIZI 
N 

5 
N 

ik --f j', j E A, C T(i), 

wherej’ are offspring ofj, i.e., T’(ik) = {j’: j E Ak}. 
We define a l-block map cp of {T’} to {T} by 

cpik = i. 

This map is obviously onto. Suppose i is a predecessor ofj 
under transitions of T. Then, because no elements of (Y, 
overlap, there is a unique offspring ik of i such that T’( ik) 
contains the offspring of j. This fact establishes that ‘p is 
left resolving and that every 2-block (i, j) is a resolvable 
one. Consequently by Definition 3.2, ‘p is invertible, in 
other words, an isomorphism. 

We form an approximate characteristic subvector v’ with 
components vi*, 1 5 k I) ai 1, 1 5 i 5 M, for T’ as fol- 
lows: 

= 2 v,/N = 2 v;,/N. 
J’EAI.1 j’E T’( A”l) 

Next we take the subalphabet e” = {i” E (I?‘, vjk > 0} 
along with transitions which we denote by T”, that are 
inherited from T’ by deleting transitions ik + j’ whenever 
v:k or I$ = 0, in other words, by crossing out rows and 
columns of T’ corresponding to components of o’ that 
vanish. From (6.10), (6.11) we see that T”(ik) # 0, ik E 
e”. So by Definition 5.4 there eg-sts an irreducible compo- 
nent, i.e., a further subalphabet (!? along with an irreducible 
transition matrix T inherited from T”. From (6.10), (6.11) 
we have 

V;A I 2 v)/N = 2 v;,,/N 
j’s T(P) j’ET”(lk) 

= 2 v;l/N, ik E ??. 
j’ET(rk) 

If U is the restriction of v’ to the components with indices 
in ??, then 

~-f, 

Ial- ’ 

v;l,lr v, - c Vik. 
k=l 

65.6) 

% 2 NC, u> 0. 

The system ({T}, ) u is a topological Markov subshift of 
({T’}, a). The restriction of cp to {T} is a left resolving 
invertible l-block map of ({T}, a) onto the subshift 
(q(T), u) C ({T}, a) of finite type, and its inverse ‘p-l a 
2-block map. 

We use the term “sub” above because, as we shall show, 
T’v’ Z. NV’ but v’ may not be strictly positive. Actually it is 
an approximate characteristic vector for a subsystem as we 
shall see. We observe that (6.6) expresses the fact that the 
weight of i equals the total weight of its offspring among 
whom one, ilal, may be weightless. From (6.2)-(6.6) we 
conclude 

From (6.6) follows that no offspring is heavier than its 
parent, and offspring are actually lighter when there are 
more than one of nonvanishing weight. We have proved 
that at least one index of maximum weight has been split 
into lighter ones: namely, 1 into l’, . . +, lIaI , 1 (Y ( 2 2. Thus, 
compared to T, either the maximum weight of symbols of 
T’ or the number of symbols of maximum weight has been 
reduced. The same is true for T” and ?! 

I+ are integers, 67) 

I+ IO, ik E &‘, (6.8) 
v,L > 0, 1 5 k 51 LX, I - 1; in particular ~~1, V;Z > 0, 

(6.9) 

v;r-= 1 u;,/N, 15k+,)-1, (6.10) 
j'ET'(rk) 

and 

We repeat this splitting process with the role of the new 
T played by the previous 7, continuing until a vector V is 
reached having all components equal one, at which point 
we terminate. 

At each step we have a l-block left resolving isomor- 
phism QI of ({T}, u) into ({T}, u) whose inverse ‘p-i is a 
2-block map. If there are n steps, then the resulting com- 
position of isomorphisms yields a l-block left resolving 
isomorphism, which we denote again by q, of the final 
({T}, a) into the original ({T}, a) whose inverse QYJ-’ is an 
(n + 1)-block map. 

V(,d 5 
,,,Ez(i, ,) vJ!“N* 

(6.11) 
a 

The final transition matrix r satisfies 

TG2-NC 
Equations (6.7)-(6.10) are immediate, and (6.11) is derived with all components of U = 1. Thus T has row sum 1 N. 
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From (6.6) we conclude that the weight of the progeny of i 
at the final step is 5 oi, the i th component of the original u  
of (6.1) (it would be equal if at each step the inequality 
v’ > 0 held or T’ were irreducible). This means that i 
ultimately gets split into 5 vi symbols, and the final Tis an 
e X %?  matrix, where 

Mc 2 v,. (6.12) 
i=l 

To form f we delete some excess transitions in the final 
T  so that every row sum equals N. The resulting matrix 
may not be irreducible, so, we take ? to be an irreducible 
component. The alphabet e for f will be a subset of ??. The 
composition of isomorphisms constructed on {r} when 
restricted to (?} is the desired isomorphism cp, and (Y, o) 
= (q(T), o) is a  subshift of ({T}, a) of finite type. 

Since f has row sum N we can write f(j) = { j,, . .; ,j,} 
for each i E Q1 and define a 2-block map 4 of ({T},a) 
onto the full N-shift ({S}, a) by 

44, j,) = k, l<k_(N. (6.13) 

It is clear by its definition that + is right resolving. cl 

Remark 6.1: There are many choices of 4  depending on 

of lengths p and p + 1, joined by two simple paths, P,: 
i, = k, + k, + ’ . . --) k, = j,, connecting C, to C,, and 
P,:j,=I,+I,... --) I, = i,, connecting C, to C,. At each 
node in the configuration at most two edges (transitions) 
have been used from those specified by FL’]. Because Tt’l 
has row sum N 2 2 just like T, we can and shall retain 
these edges when deleting excess transitions from Tt’l. 
Furthermore, because Ttrl is irreducible, every node out- 
side the configuration has at least one edge directed along 
a path to the configuration. These we also retain. We  then 
delete excess transitions from the remaining ones specified 
by Trrl to form a transition matrix of row sum N. This 
matrix may be reducible, but there is one irreducible 
component, which we denote by T, and its graph contains 
the above configuration. ?  has row sum N. Also ? is 
aperiodic because it is irreducible and the gcd of cycle 
lengths is one, (there are cycles of length p and p + 1). We  
now apply the results of [l] to construct a  still higher block 
system ? of p  (also having row sum N) for which a 2-block 
map I/J can be defined as in (6.13) having resolving blocks. 

q  

VII. RUN-LENGTH CONSTRAINTS 

how f(i) is ordered. If each symbol has the same ordinal 
number, whenever it appears as a successor, then # reduces 
to a l-block map. A particular 4 may or may not have 
resolving blocks. A necessary condition for existence of J, 
with resolving blocks is aperiodicity’ of f (see 111). An 
unsolved conjecture, called the “road coloring problem,” is 
that it is also sufficient. The most general result so far 
appears in [43]. Nevertheless is any specific examples re- 
solving blocks have always been easily found merely by 
hunting for them. Although a complete solution to the 
problem has been elusive, in [l] a  method is given for 
solving the road coloring problem for some higher n-block 
system of an arbitrary aperiodic transition matrix with 
integer spectral radius. We  use this to prove the following 
result. 

A constraint frequently encountered in engineering ap- 
plications is one modeled by a subshift of finite type (Y, a) 
of the full 2-shift (X, a) with &?x = &y = (0, l}, the forbid- 
den blocks of which are specified by lower and upper 
bounds on the number of consecutive 0 separating the 1. 
Such a system is said to have a [d, k] run-length constraint, 
where d is the lower and k the upper bound. An explana- 
tion for the prominence of this sort of constraint will be 
given later. 

The finite list of blocks designated by the above con- 
straint consists of blocks 

(1,1),(1,0,1),-~, ~l,o,-,-Al~, 
d-l 

Theorem 6.2: If T  is aperiodic, then ? can be con- 
structed so that $J has resolving blocks in its image. 

and 
[o,-,o]. 

, 
k+l 

Proof: ,We repeat the construction of Theorem 6.1 
except that in choosing partitions (Y we insist that inequal- 
ity hold in (6.3). Although now more steps may be required 
to achieve an approximate characteristic vector of all l’s, at 
the end of each, T  = T” = T’ and the accompanying 91 is 
an isomorphism of {T}, a) onto ({T}, a). Thus the final 
(CT}, u) is topologically conjugate to the original ({T}, a) 
by means of a  composition of isomorphisms from each 
stage of the splitting process. As before, the final Thas row 
sum 1 N. By invariance of aperiodicity under isomorphism 
T  is aperiodic, From considerations treated in [4, pp. 14, 
151 there exists a higher block system T(‘) whose graph 
contains the following configuration: two disjoint cycles, 
C,: i, + i, + ... -+ i 

P 
-+ i, and C,: j, + . . . + J;+, -+ j,, 

‘A necessary condition for aperiodicity of ? is that T also be aperiodic. 

If d  = 0, blocks of the first type do not appear in the list; 
and if k = 00, the second type block is absent. To repre- 
sent this system as a topological Markov shift according to 
the recipe of Section V requires an N X N transition 
matrix where N is the cardinality of the set of admissible 
k-blocks. A more convenient method of representing the 
[d, k] constraint is by means of a  smaller, actually (k + 1) 
X (k + I), transition matrix together with a 2-block iso- 
morphism map. Let g(r) = (0, 1; . .,k} and T  be given by 

1 

i-,i+l, O<i<d, 
i-i+ l,O, dri<k, 
i --) 0, i = k. 

We  define a l-block map 19 of {T} onto a subshift of 
C-F 0) by 

This is easily proved by considerations in [4, defn. (2.8); (3.191. 
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Fig. 7. State transition diagram of (2,7) system 

In Fig. 7 we depict the directed graph of T for [d, k] = [2,7] 
with edges leading into nodes i labeled by the values of 8. 

The following statements are easily established. 9 is right 
resolving. The l-block 1 is a resolving block. In the image 
of 8 the symbol 1 appears at least once in every block of 
length k + 1. Thus 6 is an isomorphism by Remark 3.1. 
The system (9(T), u) C (X, a) coincides with the subshift 
of finite type (Y, a) specified by the [d, k] constraint. 

The entropy h[d, k] c h(Y, a) = h({T}, a) of such 
[d, k]-constrained systems was computed in [49] and tabu- 
lated in [41]. It is given by h[d, k] = log, A, where h is the 
largest positive root of the characteristic equation of T, 
which is 

Zk+l - 
Zk+l-d _ 1 

z-l = 
0 fork < cc, 

Zl-d (7.1) 
z---z 

z-l 
0 fork= co. 

We cannot code between (X, a) and any subshift of 
({T}, a) because X < 2, i.e., h({T}, a) < h(X, a). How- 
ever, we can code between (X, aP> and some subshift of 
({T}, ~4) (in other words, at a rate r = p/q < 1, of p 
source symbols to q channel symbols) whenever h( X, uP) 
5 h({T}, uq), i.e., 

P/4 5 log, h 9 (7.2) 
which follows from Theorem 2.4 and (3.2), (5.2). Subject to 
the limitation imposed by (7.2) we want to select p/q as 
large as we are willing to pay for in terms of complexity. 
The well-known theory of continued fractions can be ap- 
plied to find “best” rational approximations p/q to log, X. 
We present samples in Table I. 

From Table I we observe that the [ 1,7] constraint admits 
a code with rate 2 : 3 while [2,7] admits one with rate 1 : 2. 
It would therefore seem that coding for the first constraint 
can be done more efficiently than for the second. However, 
physical constraints explained below make [2,7] more at- 
tractive with regard to information density. 

The importance of run-length constraints is due to a 
particular way information is ascribed to the behavior of 
certain physical devices having two states. In the writing 
(sending) mode we cause transition from one state to the 
other to occur at specified time intervals. In the reading 
(receiving) mode we measure the time intervals between 
transitions. This measurement is made in terms of integral 
multiples of a unit of time we call a clock unit. If there are 
1 + 1 clock units between two transitions, then we assign 
the symbol 1 to the first one and 0 to the remaining 1. The 
appearance of [d, k] constraints with this scheme is natu- 
ral. In order to detect transitions properly, they cannot 
occur too close together, so a minimum allowable time, say 
tmin, between them is prescribed. If t,, = d + 1 clock 

TABLE I 
RATIONALAPPROXIMATIONSTO h = h[d,k] 

d, k 

O,l 2/3 < 9/13 4 h < 7,‘10 
0,2 7/8 <h<22/25 
093 17,‘18 <h < 18,‘19 
0,4 39/40 -=c h i 79/81 
0, 00 h=l 
I,2 2/5 < 15/37 < h -C 13/32 
1,3 l/2 < 11,'20<h<5,'9 
I,4 l/2 < 3/5 < 8/13 <h <5/E? 
1,5 l/2 i 13/20 < h <28/43 
I,6 2/3 < 95/142 ih i 93/139 
I,7 2/3 < 36/53 i h -C 17/25 
1.m same as [0, 1] 
236 118/237 < h < l/2 
x7 l/2 < IS/29 <h < 14/27 
2, CfJ l/2 < 11/20<hc5/9 
336 1,'3<h<3,'8 
3,7 2/5 < 15/37 <h -e 13/32 
3,w 6/13 < 13/28 -C h =C 7/15 
438 1/'3<h< II/32 
4,15 1/3<h<2,'5 
4, 16 2/5 <h -=c 99/241 
4, m 2/5<hc13/32 
5,12 l/3 <h<31/92 
5, cc l/3 < 17/47<hcc4/11 
9, cc 1/4<h<6/23 

41 
i 8/9 

4 40/41 

< l/2 
iI 
<2/3 < I 
-C 2/3 
Cl 
<I 

<l 
<I 

< l/2 
4 l/2 
==z l/2 

i l/2 
4 l/2 
i l/2 
< l/2 
i l/3 

units, then we get the lower bound d for run-lengths of the 
0. On the other hand, clocks are imperfect devices. They 
drift and lose power to discriminate the number of clock 
units between transitions which are far apart. Requiring 
that transitions be separated by no more than k + 1 clock 
units places the upper-bound k on runs of the 0. 

The information density E = E [d, k] is not the coding 
rate r = p/q but the amount of information per unit time, 
and this is given by 

dt 1 
E = p/%-y- (7.3) 

‘min 

for the above scheme. Applying (7.3) we have E[2,7] = 
(3/2)(1/t,in) and E[1,7] = (4/3)(1/t,,) so that given the 
same tmin for each we have E[2,7] = (9/8)E[1,7]. In this 
case, the clock unit for the [2,7] is 2/3 of that for [ 1,7]. 
Consequently, in order to achieve the higher density a 
more accurate clock is required. In fact, with a perfect 
clock we can get an infinite’ amount of information per 
unit time. 

Substituting values from Table I into (7.3) and taking 
into account the low complexity indicated by a rate r = l/2 
singles out the [2,7] constraint as a likely candidate for 

*What we mean is that E(d, k) can be made arbitrarily large by 
choosing d and k sufficiently large. This follows from 

lim E(d,k)=E(d,w)= 
(d4- l)logA, 

k - m 
t 
ET,” 

where X, is the largest root of xdtl - xd - 1 = 0, another form of (7.2). 
This root satisfies 

( c&“d,hd~ ( LeJ”li 
for large d. Thus E( d, co) grows like constant times log d. 
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applications. Indeed IBM Disk Files, models 3370, 3380, 
incorporate a code based on it. These products are mag- 
netic recording devices. The transitions are magnetic ones 
occurring in circular tracks on disks. Time is equated to 
distance along a track by steady rotation of a  disk. We  can 
therefore treat information in a spatial context in exactly 
the same way as the temporal one described above. The 
quantity tmin can be equated to the reciprocal of maximum 
density of magnetic transitions (flux changes) on a track, 
and formula (7.3) can be turned into a measure of recorded 
information density. 

The issues involved in selecting the most appropriate 
constraint are very complex indeed. After balancing factors 
such as complexity of available codes, accuracy of inexpen- 
sive clocking schemes, density of detectable flux changes, 
the [2,7] constraint was chosen for the above products. A 
code for it was available. According to methods in [ 151 a 
code between [2,7] constrained sequences and uncon- 
strained sequences of the 0 and the 1 was gotten with rate 
1 : 2  from a set of correspondences like Table II (see [42]). 

On the left side of Table II is a  uniquely decipherable 
prefix free list of blocks from unconstrained sequences and 
on the right, one obeying the [2,7] constraint. A uniquely 
decipherable prefix free list is a  collection of blocks, no one 
of which is the beginning of another; consequently every 
sequence can be partitioned into them in only one way. It 
is an interesting exercise to show that the system of all 
possible concatenations of blocks on the right side of Table 
II, which generates another kind of dynamical system 
called a renewal system, is also a subshift of finite type. 
There are 24 permutations of the above correspondences 
from which a code can be gotten. One of these is employed 
in the aforementioned magnetic storage products. We  re- 
mark in passing that an encoder and decoder as in Section 
IV can be constructed from Table II. The one used in the 
IBM products [13] has a slightly simpler implementation 
than those described by Tables XI, XVII, and (9.5). Corre- 
spondence tables of uniquely decipherable lists, not neces- 
sarily prefix free, have been discovered for other con- 
straints [29]. The question arises: how does one find such 
tables achieving a desired rate for arbitrary subshifts of 
finite type and from which simple encoder/decoder au- 
tomata can be made? Is there a method? Our approach is 
an alternate solution to the problem. We  remark that when 
one compares encoders and decoders produced by our 
method and the best of those constructed from any other 
method, the complexity of electronic design is about the 
same. 

VIII. SYMBOL SPLITTING FOR THE [2,7] 
CONSTRAINT 

We now carry out the method of symbol splitting for the 
[2,7] run-length constraint and derive an encoder and 
decoder from it. 

Let the source (X, o) be the full 2-shift and the channel 
(Y, u) the subshift of finite type given by the [2,7] con- 
straint with &x = gr = (0, l}. We  use the specification 

TABLE11 
CORRESPONDENCE BETWEEN PREFIX 

FREE LISTS 

11 c* 0100 
IO t+ 1000 
011 +--) 000100 
010 + + 001000 
000 +- - 100100 
0011 + * 00100100 
0010 + + 00001000 

given in Section VII and depicted in Fig. 7, namely, 
(Y, a) = (9(T), a) where &(Tj = (0, 1,2,3,4,5,6,7}, 

O- 1 
l- 2  
2-o 3 

T,3’0 4 
4-o 5 
5-O 6 
6-O 7 
7-o ) 

and 9 is the l-block map 

9(i) = y7 
( , 

1  SiI7, 
i = 0. (8.1) 

(Here i, j are symbols of g(T) which differ from their 
ordinal numbers by 1.) 

From Table I we see that this constraint admits coding 
at rate 1 : 2. Thus we want to code between the full 2-shift 
( X, a) and the system ({T}, u  *) involving the second power 
of u. In order to apply Section VI we use Theorem 5.1 to 
represent ({T}, a*) as a topological Markov shift involving 
the first power of u. In this case it conveniently turns out 
that T2 is a zero-one matrix so we get ({T}, u2) = 
({T’}, a). Specifying T2 by its transitions we get 

T* = 

‘0 --f 2 
l+O 3 
240 1 4 
3-O 1 5 
4-O 1 6 
5-o 1 7 
6-O 1 

.7-+ 1 

(8.2) 

One can easily verify that o  = (2,3,4,4,3,3, 1, l), read 
as a column vector, is an approximate characteristic vector 
for T*, i.e., T2V 2 2v or equivalently 

2 vj 2  2f-4, 
jET'(i) 

which is the more convenient form for use with (8.2). 
In accordance with Section VI we construct f2 (not to 

be confused with (f)*), with alphabet {O’, O*, l’, l*, 13, 2’, 
2*, 23, 24, 3’, 3*, 33, 34, 4’, 4*, 43, 5’, 5*, 53, 6’, 7’}, which 
is obtained by splitting the symbols of &.(r*) = &$-). We  
introduce a notation which keeps track of the genealogy of 
symbols at each stage of the splitting process and at the 
same time indicates their weight. We  replace a symbol 
i E t+&) by i’,“~. At each step the parent symbols are of 
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TABLE III 
SPLITTING STENO 

TABLE IV 
SPLICING STEP 1 

01.2 + 21.4 = 2’ 22,4 
5’ 4’ 3’ 2’ 1’ 

12.3 
; cl;,: = 01.2 

3’ 32.4 
22,4 ~ I,:3 1 ,I 41.3 12.3 41 42.3 
32.4 --f II,3 51.3 = 1’ 12.3 5’ 5%) 
4253 + 1’.3 6’ zz 1’ 12.3 6' 

52.3 + 11.3 7' = 1' 12.3 7' 

6’ I: y;.: I'>3 = ()I%2 1' 12.3 
71 > = 1’ 12.3 

the form i J, k having weight v,,. k = k -j + 1. Their off- 
spring become symbols of the form iJ’, k’, where j 5  j’, k’ 5 
k, having weight k’ - j’ + 1. In addition we abbreviate ij, J 
by ij. Thus we start with the assignment of Table III. 

Observe that 2  ‘s4 has successors 0 ‘2’ 1’,3,4’,3. This suc- 
cessor set is to be partitioned according to (6.2) and (6.3) 
into {O’,*} and { 11,3,4’,3}. We  then split 2’,4 into two 
offsprings 2’ and 22,4 and form transitions 

2’ + O’J, 
22,4 ~ 11'3 41,3 

At the end of the first step 1’,3 will have been split into l’, 
12,3, and 4 ‘,3 into 4’, 4293, so that the above transitions 
become 

2’ + 01-2, 
22,4 ~ 1’ 12~3 41 42,3. 

In the next stage the successors of 2*14 will be partitioned 
into {l’, 4’}, { 12.3}, {42,3} and 22,4 will be split into 2*, 23, 
and 24. 

From now on when presenting transition tables, we take 
advantage of the following economy. Whenever several 
states have the same successors, we write them together on 
the same line to the left of the arrow, e.g., line two in Table 
IV. 

The first step of the splitting process yields Table IV. 
Continuing we have Table V and VI. We  remark that there 
are other choices for successors of some of the states. For 
example, we could have had 

0’ + 2’ 22, 
o2 + 23 24, 

etc. However, those of Table VI have been carefully selected 
due to considerations taken up in Section IX. 

In order to form f2 having row sum 2 we drop transi- 
tions 6’ + O’, O*, l’, and 7’ + 1’ to get Table VII. 

TABLE V 
SPLITTING STEP 2 

()‘,2 + 2’ 22.4 zz 2’ 22 23 24 
5’ 4’ 3’ 2’ 1’ * 0’.2 z  01.2 

12-3 + 31 32.4 = 3' 32 33 34  
52  42  32  22  + 12.3 

23  --f ,’ 41 

= 52 53 

12.3 
I’ + 1’ 12.3 = 1’ 12.3 

TABLE VI 
SPLITTING STEP 3 

= 22 24 
= 21 23 

5’ 4’ 3’ 2’ 1’ + 01.2 = 0’ 02 
l2 - 3’ zz 3’ 33 
l3 --f 32 = 32 34 

52 42 32 22 + 12.3 = l2 l3 
= 1’ 4’ 
= 42 43 

33 + 1’ 5’ = 1’ 5’ 

12.3 

7’ + 1’ 12.3 

TABLE VII 
ENCODING STATETRANSITIONTABLE 

The mapping cp: {?‘} + {T2} is defined by dropping 
superscripts. The mapping 4 according to (6.13) is a 2-block 
map with values 0 or 1 depending on transitions into the 
respective first or second column on the right of Table VII. 
For example $(O’, 2*) = 0 and $(O’, 24) = 1, etc. The map 
9 extends to a one-block map of {T*} - YL2], which 
means that 19 maps Q-2) onto &?r~ according to 

9(i) = 
,1 

y ll 
i=O 
i=l 

0  0 21i17 

We  now have the diagram of Fig. 8. 
We  proceed to describe an encoder and decoder based 

on the mappings (P, a,$. Let {x,J, {Q, {u,J, and {Y,} be 
the sequences, respectively, in X, {?*}, {T*}, and Y[*]. 
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TABLE VIII 
PREDECESSOR TABLE 

5’ 4’ 3’ 2’ $ I: 

7’ 6’ ;: ,’ ;: $ 
0’ -+ 
12 + 

; I: 

;: 

;t 

;! 

24 + 

;: 

42 43 

7 
43 

2: 53 

-+ 6’ 

Fig. 8. A more detailed coding scheme. 53 + 7’ 

Thus x, E (0, l}, z, is of the form ii E tl&, 24, is of the 
form i E &pl and y,, E {OO,Ol, 10,l l}. 

The encoder is the following finite state automaton as 
per (4.1) 

Yn = 4zJ = +k) 

z, =fk, %I), (g-3) 
where e does not depend directly on any input x, but only 
on internal state z,, e.g., e(0’) = 10, e(12) = 01, e(34) = 00, 
etc., and the function f is read off Table VII according to 
the rule: z, is the entry in column one on the right of the 
arrow from z,-,, if x, = 0; and the one in column two, if 
x, = 1: e.g., 7’ = f(0, 53). That f is well-defined follows 
from the right resolving property of 4, which is verified by 
noting that each successor pair in Table VII consists of two 
distinct states. 

The block 0 1 0 0 0 0 is resolving for J/ because upon 
following this input we can see how the initial ambiguity is 
resolved; namely, 

if z,-, E @ .(+l 

and if 

then 
and if 

then 
and if 

then 
and if 

then 
and if 

then 
and if 

then 

x, = 0, 

Z,E {22,21,02,3’,32,12,41,42,5’,52,61,71}, 
X nfl = 1, 

Z n+1 E {13,01,23,33}, 
X n+2 = 0, 

Z nf2 E {32,22,4’,51}, 
X n+3 = 0, 

Z n+3 E {12,02}, 

X  n+4 = 0, 

Z nt4 E {3’,2’), 
X nf5 = 0, 

Z n+5 = 02. 

(g-4) 
Thus in six steps the encoding automaton can be reset to 
O2 by the above sequence of inputs no matter what the 
initial state was. 

The decoder is the map d = #qP ‘a-‘. 
The map 9 is a right resolving l-block map. The blocks 

01 and 10, which are l-blocks in terms of the alphabet 

&y121, are resolving, i.e., 1?-‘(01) and 19-‘(10) have single 
preimages 0 and 1, respectively. One of these blocks occurs 
in every T2-admissible Cblock. Thus 9-l is a  4-block map, 
that is 

U” = WY,-3, x-2, Yn-1, YA 

e.g., if (ynP3, yne2, Y,-~, y,) = (00,01,00,00), thenu,-, is 
undetermined, u,-~ = ,O, u,- ’ = 2, u, = 4. 

The map rp is left resolving because in the predecessor 
Table VIII, which is another way of writing Table VII, no 
symbol when its superscript is removed appears twice in a 
row on the left of the arrow. 

A resolving block occurs in every block of four symbols. 
This is because ‘p-l is known to be a (1 + 3)-block map 
from the fact that there were three steps in the splitting 
process. So 

Z” = (P-k, %+1, u”+z, %+3). 

A sample computation of ‘p-l is as follows. Suppose 
(u,, un+‘, u,+~, u,+~) = (0,2,1,3). T&n 

Z nt3 E {3’,3$33,34}, 

and we get in succession from Table VIII 

Z n+1 E P21 

z, = 0’. 

We can efficiently express this computation by 
0’,22, 1*,3,3’,2,3,4, (8.5) 

which contains the possibilities of z,, z,+,, z,,+~, z,+s cor- 
responding to a particular u,, u,+,, u~+~, unt3. This is a 
useful way to carry out the computation necessary to 
tabulate the values of the four-block map (p-l, which we 
do in Tables IX and X. 

The map J, is a  2-block map 

x, = ~(z,-l~z”> 

read off from Table VII. 
Putting the three maps together we get 

X” = dbn-4, Yn--39 Yn-21 x-1, Y,7 XI+17 Yn+29 Yn+3), 

(8.6) 
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TABLE IX 
BLOCK LIST FOR DECODING hh~ 

xn Z” =“+I z,+2 p,+3 Y” Y”,l 
not in range of encoder 00 00 

1 
I 

23 

33 

4’ 6’ *l-3 

53 7’ 11-3 00 00 

4’ oh2 21-4 
5’ 01.2 21-4 I 

00 00 

42 1293 31-4 

52 12.3 3l-4 

6’ 12.3 31-4 

7’ 12.3 3l-4 

43 1’ 01.2 

53 1’ 01.2 

01.2 
ol,2 - - 

01.2 - - 
01.2 

12.3 31-4 
- 

12.3 31-4 _ 

1233 31-4 _ 
12.3 31-4 _ 

12.3 ,‘-4 - 
12.3 ,I-4 - 

1’ 01.2 - 
1’ o’v2 - 
1’ O’J - 
1’ 01.2 - 

;: t: 
6’ 
01.2 

;: 42.3 01.2 21-4 ,I-3 

;: 12.3 3’ -4 

;: 51 :: $1 

;f 01.2 52.3 21-4 ,I-’ 

ii :?’ 01.2 31-4 

O’!Z - - 

00 00 

00 00 

00 01 

00 10 

00 10 

01 00 
01 00 
01 00 
01 00 
01 00 
01 00 
10 00 
10 00 
10 00 
10 00 
10 00 
10 00 
10 01 

24 

1 34 

43 

53 

1 24 

34 

2’ 

0 3’ 
4’ 

5’ 

22 

32 

0 42 

52 

6’ 

7’ 

23 

1 33 

43 

53 

1 0’ 
0 02 
1 0’ 
0 02 
1 0’ 
0 02 
1 13 
0 I2 
1 13 
0 12 
1 13 
0 12 
1 1’ 

yn+2 ‘G3 00 

00 10 

01 00 

10 00 

10 01 

- - 

00 - 

01 - 

00 00 
00 01 
00 10 
01 00 
10 00 
10 01 
00 00 
00 01 
00 10 
01 00 
10 00 
10 01 

which is diagrammed in Fig. 9. A sample computation is 
provided in Fig. 10. 

For a standard implementation of the encoder and de- 
coder we must give d, e, fin terms of Boolean functions of 
binary variables (bits). Since ] &,+, ] = 24, it takes 5 bits to 
label the states of z,. We then have that d is a map of 16 
bits to 1 bit, i.e., a Boolean function of 16 binary variables; 
e a map of 5 bits to 2 bits, i.e., two functions of possibly 
five variables each; and f a map of 6 bits to 5 bits. 
Furthermore, an error in the input of d ostensibly propa- 
gates 8 bits in the output. The above complexity and error 
propagation is what we might have to settle for in a general 
situation. However, by taking advantage of choices which 
we are allowed to make in the construction of Table VII 
and which are somehow inherent in the [2,7] constraint we 
can reduce complexity and error propagation. Needless to 
say, this is highly desirable, if not essential, for practical 

TABLE X 
DECODER TRUTH TABLE 

5 85 1)6 1)7 $8 
1 ‘b’ ‘b’ ‘b’ ‘b* - - - - 
1 001001-- 
1 0 1 0 0 0 0 - 0 
1 0 1 0 0 1 0 0 0 
1 1 0 0 0 0 0 - 0 
1 1 0 0 0 1 0 0 0 
1 1 0 0 1 - - - - 
0 all others in range of e 
O/’ blocks not in range of e 

... Y.-4. Y.-y Y.-p Y.-l. Y,, Y.,l. Y.+z, Y.+,* '.. 

7 

I 
. . . . xn, . . 

Fig. 9. Description of decoder as a composition of finite sliding block 
maps. 

. . . . -, 0, 2, i, o,, 
I 

I -1 
P 

,4l, 0’. 

I 

* 

i 
Fig. 10. Sample of decoding computation. 

implementation; and we deal with this subject in the next 
section. 

Remark 8.1: We comment here on the observation made 
in Section II that a weaker notion than isomorphism is 
needed for practical applications. There is no subsystem of 
({T2}, a) isomorphic to the full 2-shift. This can be seen by 
the following argument. The number of fixed points is 
invariant under isomorphism. There are two fixed points in 
the full 2-shift-namely, the sequence of all ones and the 
sequence of all zeros. However, there are no fixed points in 
{(T2}, a). Thus, if we want to code between arbitrary 
sequences and [2,7] run-length constrained ones at the rate 
1 : 2, then we must forego isomorphism in favor of right 
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resolving homomorphism. Actually ismorphism is still pos- 
sible at rates of lm: 2m for a large m. 

TABLE XI 
REDUCED DECODER TRUTH TABLE 

IX. I~LE~NTATION 

Before describing hardware for the [2,7] code we take up 
the question of reducing complexity and error propagation. 

First, observe that we have been able to put each symbol 
of Ci+) into a unique column on the right side of Table 
VII. This means that 1c, is really a l-block map 

x, = hJ> 

z 1)l 1)2 l)3 1)4 1)s 1)6 1)7 1)s 
10000---- 
l--l--l-- 
I-l---o-o 
II----o-o 
11--l---- 
0 all others 

e.g., #(l’) = 0, J/(4’) = 1. Therefore (8.6) can be expressed 
by 

x, = 4Yn-39 Yn-2, Yn-1, Yn, Yn+,, Yn+2, Yn+3 ) (9.1) 
which reduces d from a 16 bit function to a 1Cbit one. 

Second, weeshow that Table VII admits a way of filling 
in the columns such that x, does not depend on 
ynh3, ynd2, y,-,. Table IX is a tabulation of all possibil- 
ities of x,, z,, z,+,, z,,+~, z,,+~ corresponding to each fixed 
y,, yn+,, Y,,+~, Y~+~. It substantiates the above claim by 
virtue of the fact that all z,‘s corresponding to each bit 
pattern of a 4-block (y,, y,+,, y,,,, Y~+~) have been fit 
into the same column of Table VII and hence output the 
same x,. We use the notation of (8.5) which shows how, 
from the predecessor Table VIII, the z, are gotten, via the 
u,, from the y,. We conclude from Table IX, for example, 
that 22, 32, 42, 52, 6’, 7, should be put in the same column 
on Table VII. 

Vll b+1 v,+2 v,+3 Encoded 
- --A data 

Odd bits 

Even bits 

- 
X” 

Decoded 
data 

Fig. 11. Logic network for decoder. 

From Table IX we tabulate in Table X the truth table 
for the decoder which is a Boolean function of 8 bits 

5 = d(v,,- . -,vg), 

where E = x,, Y, = (v,, q2), Y,+, = (q3, v4), Y~+~ = 
(T5> q6), Yn+3 = (117, %?I 

The last line of Table X consists of what we call “don’t 
care” conditions. It means that we are free to choose the 
output E for those S-blocks (q,, . * . ,Q) not in the range of 
the encoder, in particular those violating the [2,7] con- 
straint. The choice may be made with various ends in 
mind, for example, simplifying hardware, error correcting, 
etc. To convert a truth table such as Table X into a 
Boolean function we invoke the following. 

However, by setting 5 = 1 for a judicious choice of 
(Sl,. . -7%) violating the [2,7] constraint we have another 
equally valid truth table for the function d operating on the 
range of e: namely Table XI. Table XI minimizes hardware 
for d, and the Boolean function for it is 

‘i = q,q4 ” 73116 ” q2jr6% ” 5j,q2q3?4 ” %q61)8* (9.3) 

Equation (9.3) yields the logic network in Fig. 11 for the 
decoder. 

We remark that due to the fact that ‘p is left resolving 
there is another way of constructing decoders by means of 
an automaton with a stack. We shall not go into this topic 
here, but it is a useful alternative when d is a function of 
very many variables. 

Theorem 9.1 [39, p. 771: Every Boolean function 
f(Xl,. . * ,xn) can be expressed in the disjunctive normal 
form 

f(x,,.*.&J = (( ___ C;E(O ,yfhr%b;’ --.x2 
17 ,” ) 

where xy = Xi and x,’ = xi. 
If we set 6 = 0 in the last line of Table X, then combin- 

ing Table X and Theorem 9.1 and simplifying we get 

Next we turn our attention to the encoder. We reproduce 
Table VII, to which we add the outputs that result upon 
the tabulated state transition. Table XII contains all neces- 
sary information for construction of the encoding automa- 
ton. Some of the states of this table can be amalgamated, 
which results in a smaller table, hence reduced encoder 
complexity. The rule for amalgamation is the following: 
state which have identical successor/output pairs are com- 
bined. For example, 5’, 4’, 3’, 2l, 1’ are amalgamated into 
one state which we can label I’. This results in a smaller 
table to which the rule is again applied. We present this 
series of reductions in Tables XIII through XVI. 

After amalgamation, the encoder is the finite state au- 
tomaton 

--- --- 
“%~2q31/4%~6%178. (9.2) 

Y, = 4xn3 z,-J 

z, =fh Ll) (9.4) 
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TABLE XII TABLE XV 
ENCODINGSTATJT~ANSITIONANDOLJTPUTTABLE THIRDREDU~TI~N 

;: 
42/00 

I: 5’/00 
43/00 
I’/10 

52/00 
6’/00 

53/00 

7’/00 
l’/lO 
I’/10 

TABLE XIII 
FIRSTREDUCTION 

8: 7 
1’ + 
12 

;: 2 
33 23 - 

24 -t 

53 ;: ; 

2=/00 
l’/OO 
02/01 
l’po 
22/cQ 
P/l0 
I’/00 
22/m 
22/00 
22/00 

24/00 
23/c@ 
O’/Ol 
33/00 
34/00 
P/l0 
l’/lO 
43/00 
53/00 
I’/10 

TABLE XIV 
SECONDREDUCTION 

12 8: : 
22/00 
I’/00 

24/w 
23/00 

1’ --f 

;: : 

02/01 
22/00 

O’/Ol 

P/l0 
34/w 

;: 
l’/OO 

P/l0 

1 
I’/10 

34 
43 

22/oo 43/00 
--f 2=/00 I’/10 

where the next state function f is read off of Table XVI just 
like before. The state space for z, is C? = 
{O’, 02, l’, 22, 23, 24, 43}, having cardinality 7. When given 
by Boolean functions, e and f of (9.4) map 4 bits, respec- 
tively, to 2 and 3 bits, a substantial reduction in complexity 
compared to e and f of (8.3). Note the difference between 
the e of (8.3) and that of (9.4); namely, the former depends 
explicitly only on z, whereas the later on both x, and z,- ,. 
In this connection we make some observations apropos 
dynamical systems. In Section VIII (2, a) was an exten- 
sion of (Y, a2), a fact which requires h(Z, a) = h(Y, a2). 
By means of amalgamation we have introduced in Section 
IX a new dynamical system (Z, u) with smaller topological 
entropy, which means (Y, u2) cannot be a homomorphic 
image of it. However, (Y, u 2, is the homomorphic image of 
a skew product of X and Z in which the entropy comes 
from its (X, a) factor. This skew product system is the 
topological Markov shift defined by the transitions 
(%- 17 z,-1) + (%T f(%v z,- ,)) gotten from Table XVI. 

As in the decoder we express our variables in binary 
form. Thus, let x, be given by 5,; and y, by q,, v2. Let z,-, 
be given by 12, S3, 14; and z, by {;, S;, C. In terms of 
binary labels Table XVI becomes Table XVII. 

13 8: ,’ 22/00 
l’/OO 

24/m 
23/00 

;2 : 02/01 

;: ; 

02/10 
O’/Ol 

l’/OO 
P/l0 
I’/10 

43 22/00 + 
22/oo 

43/00 
I’/10 

TABLE XVI 
FINAL ENCODINGTABLE 

x, = 0 X” = 1 

zn-I “n/r, 

,“: 7 22/00 

;i I: 

l’/OO 
02/01 

at I: 

02/10 
l’/OO 
2=/w 
2=/00 

G/Y?? 

24/00 
23/00 
O’/Ol 
O’/lO 
l’/lO 

43/00 
I’/10 - 

TABLE XVII 
ENCODERTRIJTHTABLE 

[I=0 Cl = 1 

52 53 J4 5; 5; s; G / .G 5; 1)’ / 1)2 91 12 

$ = = 000 1 -011/00101/0 0 
00 

i2 
-010/00100/0 0 

= =OlO ~001/01000/0 1 
0 1 1 

ij = = = 100 101 -001/10000/10 -010/00010/10 -011/00110/00 
110 -011/00010/10 

Also, as in the decoder, we are going to take advantage 
of a “don’t care” condition-namely, we are free to choose 
convenient values for [i, $4, C, n,, and n2, whenever 5;, 13, 
5, = 1, l,l. To minimize encoder logic we add the follow- 
ing transition/output entry to Table XVII: 

1 1 1 --) Oll/lO llO/lO. 

Applying Theorem 9.1 to the information contained in 
Table XVII along with the “don’t care” condition and 
simplifying, we get 

i-; = &s; ” ‘t,&&, 
- - 

c; = E,C3 ” 52, 
--- 

From (9.5) we diagram the logic network for the encoder 
in Fig. 12. 

Finally, we remark that the internal state z, of the 
encoder can be reset to 001 by the input 0100. This follows 
from (8.4) and the fact that 12, O2 have been amalgamated 
for z,+3 and O2 = 001. We note that the spurious state 111, 
which is transient, behaves nicely with respect to the initial- 
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Initialize z. 
with 
r2=0 
I,=0 
r4=1 

TV 2 NV. 

Three cases arise: 

1) v > 0; 
2) v 2 0, v # 0, and some v, = 0; 
3) v = 0. 

V” 
Encoded data 

I 
J 

Fig. 12. Logic network for encoder 

Case 1 yields a solution to (Al). Case 3 means that there is no 
approximate characteristic vector v with v, 5 L, which we shall 
prove below. So we must try again with larger L. Case 2 is 
interesting because v is then an approximate characteristic sub- 
vector. We can apply the same method as the one which gets T 
from T’ in the steps of the splitting process of Theorem 6.1. We 
thereby obtain a new matrix T and an integral vector U such that 

izing sequence. By being able to reset the internal state of 
the encoder at will we can generate specific constraint 
outputs of our choice by means of inputs alone. 

APPENDIX 

The purpose of this section is to provide the reader with a 
method for finding an approximate characteristic vector which 
can easily be programmed for computer (particularly in APL), 
and, in fact, lends itself to hand computation for examples of 
moderate size. This method, for solving the following integer 
programming problem, was used in [ 191. 

Suppose X is the spectral radius (largest positive characteristic 
vector) of an M X M transition matrix T. If N is an integer I X 
then, by the Perron-Frobenius theory, there exists a vector v of 
integers satisfying 

Tv>Nv, v > 0. (‘41) 
We wish to find such a vector. In order to do so, choose an initial 
vector v(O), for instance whose components vi (‘) = L where L is an 
integer > 0. Define inductively 

&+I) zz 
! - tin( V?), [ jtl tlli:.)/iii) (A2) 

where [a] means the largest integer in a nonnegative number a. 
Let 

2, 3 .(n) (A3) 
where n is the first integer such that v(“+‘) = v(~). Such an n 
exists because vl”’ are all nonnegative integers and vjnf ‘1 YZ v!“). 
In fact n 5 L . M. From (A2), (A3) we have 

where Tis an irreducible component of the matrix gotten from T 
by crossing out the i th row and column whenever v, = 0, and U is 
the restriction of v to indices of this irreducible component. This 
new matrix is suitable, perhaps even preferrable to the original, as 
an initial one for the splitting process described in Theorem 6.1. 

Remark Al: If u is a vector of integers satisfying Tu 2 NM and 
u 5 v(O) then by induction it is easy to see that u 5 vcn). Hence 
u 2 v. So if there are approximate characteristic vectors (or 
subvectors) with components 5 L, then (A2) will converge in a 
finite number of steps to the largest one; and we know by the 
Perron-Frobenius theory that if we choose L large enough there 
will be approximate characteristic vectors within its range. 

There are various parameters of encoders and decoders we 
wish to optimize. A significant factor in the complexity of such 
devices based on mappings constructed in Theorem 6.1 is the size 
of i? Therefore we wish to solve (Al) with Bv, small. The 
complexity of the decoder as well as its error propagation proper- 
ties is related to the block size of the mapping cp in Theorem 6.1, 
which is governed by the number of steps in the splitting process, 
which in turn is connected vaguely to the size of max vi. This 
means we also want that quantity small. So, after finding a 
solution to (Al), it may be desirable to find a “better” one. A 
reasonable procedure is to take a solution, reduce one of its 
components and apply (A2) again. If there is a better v to be 
found, then it will be found by doing this in a systematic fashion. 

111 

PI 

131 

[41 

[51 

[61 

[71 

PI 

[91 

[lOI 
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