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AMract-An error in the subject paper is pointed out: when the axioms 
given there are restricted to the discrete case, they do not imply the 
discrete case of the principle of minimum cross-entropy. The principle is 
shown to follow, however, from the adoption of an additional axiom: if new 
information is consistent with a prior estimate of a probability distribution, 
then the posterior estimate equals the prior. Minor other improvements and 
corrections to the arguments in the paper are made. 

I. INTRODUCTION 

In Section IV of the above paper,’ we showed that cross- 
entropy minimization for the case of continuous probability 
densities follows from the four axioms given in Section III and 
summarized here. 

I. Uniqueness : 

q=poIisunique. 
II. Invariance: 

(Tp)o(rY) = r(poz). 

III. System Independence: 

(P*P*)(4 A 122) = (P,04)(P1°J*). 

IV. Subset Independence: 

(P”(IA M))*Si= (p*S,)‘Ij. 

In Section V, we considered the discrete case. In Section V-A we 
argued that the derivation for the continuous case also applied to 
the discrete case. In Section V-B, we showed that entropy maxi- 
mization follows in the discrete case from a version of the axioms 
that does not include a prior (eq. (44)). 

The argument in Section V-A is wrong-cross-entropy minimi- 
zation does not follow from the four axioms in the discrete case. 
In particular, for discrete probability distributions, the invariance 
axiom reduces to the special case of permutation invariance, 
which is insufficient for proving Theorem II (that H is equivalent 
to the form /dxq(x)g(q(x)/p(x)), where g depends only on 
the ratio q/p). Indeed, there is nothing in the axioms that forces 
the functional H to depend on the priorp in the discrete case. To 
see this another way, note that entropy maximization satisfies the 
discrete form of the axioms-the prior is just ignored. Entropy 
maximization does not, however, satisfy Property 2 of [l], 

poI=p if andonlyifp ~3, (2) 

which just states that the posterior estimate of qt should be the 
same as the prior estimate p if the new information does not 
contradict the prior in any way. This property, which is one way 
of expressing the sense in which we use the term prior, is clearly 
desirable for an inference procedure. Here we adopt a weak form 
of (2) as an axiom for the discrete case. We use the notation and 
definitions of the paper.’ 
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II. MINIMUM CROSS-ENTROPY IN THE DISCRETE CASE 

Here is the new axiom. 
Axiom V: Let 1 be the “null” constraint 1= (qt E 9), which 

is satisfied by any density q E 9. Then, for any prior p E 9, 

por=p (3) 
holds. 

Justification: In the absence of new information, we should not 
change our prior estimate. 

In the discrete case, we have q = ql, q2; . .,q,,, p = 
Pl, P2,‘. ‘,Pn, and the following version of Theorem II. 

Theorem IIa: Let H(q, p) satisfy uniqueness, subset indepen- 
dence, invariance, and (3). Then H is equivalent to a function of 
the form 

f’(q, P) = i qih(qj/Pj)r 
j=l 

(4) 

for some function h. 

Proof: From Theorem I, H is equivalent to a function with 
the sum form 

F(q, P) = iI f(qj, P,), 
j=l 

(5) 

for some function f. We begin by defining 

u(x, y) = afcy) 

and showing that u(x, y) depends only on the ratio x/y. 
We invoke subset independence in the case of null subset 

constraints 1, = (qt * S, E 5;). (See the definitions in Section III 
of the paper.‘) Since I A M = M, subset independence reduces 
in this case to 

(poM)*S;= (p*S,)oI,. 

Applying the new axiom (3) to the right-hand side yields 
(poM)*S, =p*S,. (7) 

Note that this is just a special case of subset aggregation-prop- 
erty 9 in [l]. Let q = p 0 M. Then 

qj Pi -= 
c qk c Pk 

k&Y, kc& 

holds when j E S,. The ratio q,/p, is constant on each S,: 

c qk 
% k&V, mi 

P,=n==. 
kc& kc& 

Now, the condition for a constrained minimum of F yields 

aF(q,p) af(qjy Pi> 
aqj = aq, = u(q,,p,) = -X- ami, 

for some Lagrange multipliers A, (Y. Since the right side is inde- 
pendent of j, it follows that u(q,, pi) is constant on each S,. 

At this point we know that qj/pj and u(f,, p,) are constants 
forj E S,. We can always arrange the numbering so that 1,2 E S,. 
Then 

41 -= fi 

q2 P2 
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and 

U(%,Pl) = u(q,fP,) 
both hold. We  now show that u(x, y) = u(x’, y’) for any posi- 
tive numbers x, y, x’, y’ less than 1 and with equal ratios x/y = 
x’/y’. We  choose positive numbers x” and y ” that have the same 
ratio 

x” x x’ -=-=- 
Y’, Y Y’ 

and are so small that 
x” < 1 - x, y” < 1 - y, 
x” < 1 - x’, y” < 1 - y’. 

We  can then construct p  and choose m, so that 
41 =x, Pl =Yt 
q* =  XI’, p2  = y”. 

We find u(x, y) = u(x”, y”). Similarly, with different choices 
for p  and m,, we find u(x’, y’) = U(X)‘, y”). It follows that u 
depends only on the ratio of its arguments: u(x, y) = u(x/y). 
Equation (6) therefore has the general solution f(x, y) = 
xh (x/y) + v(y). Substitution of this solution into (5) yields 

F(q,P) =  5  qJh(q,/Pj) +  i u(Pj>. 
j=l j=l 

Since the second term depends only on the fixed prior, it cannot 
affect the minimization of F and can be dropped. This completes 
the proof of Theorem Ha. 

In the foregoing proof of Theorem IIa for the discrete case, we 
used the new axiom (3) and subset independence to derive (7), a  
special case of subset aggregation. As one might expect, subset 
aggregation can be adopted as an axiom instead of (3). We  chose 
(3) because it expresses a weaker property than subset aggrega- 
tion, because its role in forcing the posterior to depend on the 
prior is intuitively clear, and because its justification is compel- 
ling. 

III. OTHER CORRECTIONS AND COMMENTS 

In the proof of Theorem III (on page 31) of the paper,’ (36) 
can be obtained more simply without (30) and (35)-instead of 
differentiating (35) with respect to xi and x2, we differentiate 
(34) after substituting r,r, for r. 

Similarly, in the derivation of maximum entropy in Section 
V-B, we can use 

u(qirk) =  -a’ui - P’bk - X’ 

instead of the more complicated equation at the bottom of the 
left column on page 33. 

An error occurs on page 33 of the paper,’ in the text just before 
(48). We  state that the integration of u(x) = A log(x) + B yields 
f(x) =  Axlog + Bx - A, where u(x) = f’(x). This is wrong; 
the correct result is f(x) = Axlog( x) +  (B - A)x +  C. For- 
tunately, no conclusions are invalidated, since the constant terms 
in (48) do not affect the minimization of H. 
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The study addressed one aspect of adaptive array antennas, namely, the 
ability of a retrodirective array (RDA) to form a beam in the direction of 
a pilot signal, using the phase conjugacy principle. Methods of pairwise 
phase-locked loop (PLL) coupling for tracking improvement in structur- 
ally static and dynamically distorting arrays were developed and analyzed. 

Two new types of PLL tracking networks were developed, based on the 
max imum likelihood principle. The delta coupling method was designed 
to track electrical phase angle differential increments. The geometry 
coupled approach exploited assumed differences in the rates of array 
distortion and pilot signal directional motion by tracking the changing 
array geometry and constructing the electrical phase from the estimated 
geometric variable. Both tracking networks were realized with generic 
pairwise coupling modules, common in form to all coupling modes, and 
resulting in networks having a binary tree structure. 

Practical acquisition and ambiguity controlling algorithms were devel- 
oped. To resolve stable ambiguous lock points and speed up acquisitions, 
a combination of restricted search and sequential acquisition was pro- 
posed. The pairwise coupled modular design was expanded to include the 
acquisition logic. 

A linearized analysis was used to evaluate the reduction in estimated 
phase noise, achieved through coupling, and the increased in transient 

decay time constants. A significant improvement in performance was 
observed if array distortion varied slowly, .relative to the dynamics of the 
carrier phase. The linearized analysis was verified with digital Monte-Carlo 
simulation for a small array (8 elements) and high pilot signai-to-noise 
ratio (SNR = 14 dB). 

Typical simulated antenna patterns were illustrated for large geometri- 
cally coupled arrays (64 elements) and compared to simulated uncoupled 
RDA antenna patterns for an uncoupled PLL SNR of 4 dB (0.61 rads’ 
phase variance). The comparison showed a significant coupled beamform- 
ing improvement. 
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In this dissertation the problem of finding two-dimensional binary 
arrays which possess optimal doubly aperiodic autocorrelation properties 
or aperiodic-periodic autocorrelation properties, is investigated. Optimal 
arrays with up to four rows and seven columns are generated by means of 
an exhaustive computer search. Novel shortcuts are implemented in the 
search program, including special storage techniques and backtracking, in 
order to reduce CPU execution time. Gold and Kasami codes of length 
seven and fifteen respectively are implemented to generate four-by-seven 
and four-by-fifteen arrays having optimal aperiodic-periodic autocorrela- 
tion. 


