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Channe ls with  Block Interference 
ROBERT J. McELIECE, SENIOR MEMBER, IEEE, AND WAYNE E. STARK, MEMBER, IEEE 

Abstract-A new class of channel models with memory is presented in 
order to study various kinds of interference phenomena. It is shown, among 
other things, that when all other parameters are held fixed, channel 
capacity C is an increasing function of the memory length, while the cutoff 
rate R, generally is a decreasing function. Calculations with various 
explicit coding schemes indicate that C is better than R o as a performance 
measure for these channel models. As a partial resolution of this C versus 
R c paradox, the conjecture is offered that R c is more properly a measure 
of coding delay rather than of coding complexity. 

I. INTRODUCTION AND SUMMARY 

R EAL communicat ion channels are often p lagued by 
noise whose severity is time-dependent,  and  yet most 

research in information theory deals with channels without 
memory. As a  result, an  engineer who must design a  
practical coded communicat ion system may find little gui- 
dance in the information theory literature. In this paper  we 
attempt to partially remedy this situation by studying a  
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new class of channel  mode ls with memory. These channels, 
which we call block interference (BI) channels, are simple 
enough  to be  mathematically tractible and  yet complex 
enough  to reflect many of the difficulties caused by chan- 
nel memory in practice. 

Example: Consider the two memoryless binary symmet- 
ric channels (BSC) in F ig. 1. 

Channel  A, (in Greek, channel  = 6icwuhol) is a  noiseless 
BSC, and  Ai,* is a  useless BSC with crossover probability t. 
Let S be  a  random variable with Pr {S = 0} = 
1  - 6, Pr { S = l/2} = 6. Then  for any integer m  & 1, we 
define the BI channel  Am as follows. When  a  sequence of 
binary digits is to be  sent over AM, each block of m  
consecutive digits is in fact sent over one  of the two 
component  channels. The  random variable S determines 
which component  channel  is used to transmit a  given 
m-block. It follows that this interference channel  is char- 
acterized by occasional severe error bursts of length m . 
This very simple example is in many ways typical of the 
whole family of BI channels. In particular, it illustrates the 
important assumptions that makes our channel  mode ls 
mathematically tractible: the noise severity must remain 
constant in blocks of m  consecutive transmitted symbols 
but is independent from block to block. This assumption is 
very restrictive, and  certainly many real channels do  not 
have constant memory. Still, our mode ls do  match certain 
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I l/2 present R, would be  the average of the R,‘s of the compo- 

I I o><, 
l/2 nent channels. However, we show that it is 2-Ro rather 

than R, that behaves this way. One  consequence of this is 
A0 A l/2 that R, is a  decreasing function of channel  memory. This is 

Fig. 1. Component  channels for a  simple interference channel.  also true for BI channels without side information; for 
these channels we have the paradoxical situation that as m  

real channels very well. For instance: 

Slow frequency-hopped spread-spectrum systems 
subject to jamming, fading, or mu ltiple-access inter- 
ference suffer from phased bursts of interference of 
fixed duration [4], [13], [17]. (We named our channels 
with this application in m ind.) 

In optical communicat ion systems using direct 
detection and  pulse-position modu lation, the ap- 
propriate channel  mode l is (with a  slight mod ification 
to include side information) the channel  of Example 
1 [91. 

In any concatenated coding system with a  memory-  
less inner channel  and  an  inner block code, the outer 
channel  is a  BI channel  in the sense of this paper. 

Furthermore, we believe that many of our results will 
remain true, at least qualitatively, for more sophisticated 
channel  mode ls. 

The  paper  is in seven sections. In Section II we give the 
general  definition of an  interference channel  and  several 
additional concrete examples. Roughly speaking, a  BI 
channel  is defined to be  a  stochastic m ixture of the m  th 
extensions of a  family of memoryless channels, called the 
component  channels. In Section II and  throughout the 
paper, we emphasize the difference between BI channels 
with and  without side information. By side information, we 
mean  information available to the receiver about the cur- 
rent state of the channel. In practice such side information 
is often provided by an  automatic gain control device; 
sometimes it is called soft decision information. In our 
mode ls, when side information is present, it is provided 
directly by the channel  and  tells the receiver which of the 
component  channels is currently active. (The BI channel  of 
Example 1, with side information, is equivalent to an  
erasure-burst channel, and  is the mode l used for the study 
of optical communicat ion in [7] and  [9].) 

In Section III we study the capacity of BI channels. We  
show that the capacity of a  BI channel  with side informa- 
tion is simply the average c of the capacities of the 
component  channels, independent of the memory length m . 
The  capacity without side information is more difficult to 
compute, but we show that it is in general  less than c, 
apparently increases with m , and  approaches c as m  
approaches infinity. 

Many researchers believe that in some respects the com- 
putational cutoff rate R, is more useful than capacity as an  
indicator of a  channel’s ability to transmit information. In 
Section IV we study R, for BI channels. G iven the results 

increases, C increases but R, decreases! 
In Section V we present numerical values for C and  R, 

for the interference channel  of Example 1, with e  = 0.1 and  
various values of m. We also present performance curves 
for several different combinations of coding and  interleav- 
ing for this channel. These performance curves appear  to 
indicate that C is better than R, as a  performance measure 
for block-interference channels. In Section VI we give a  
brief description of how a  fixed “ test pattern” can be  used 
to estimate the channel  state when n  is large and  side 
information is absent. This technique is one  practical way 
of exploiting the channel’s memory. 

In Section VII we attempt to draw general  conclusions 
from our work. F irst, we point out that since, with side 
information present, C is independent of m, the interleaved 
coding strategies often used in practice apparently suffer 
from no  theoretical disadvantage when compared to codes 
which deal more directly with burst errors. On  the other 
hand, when side information is not available, C increases 
with m  and  interleaving is a  much riskier bet. However, if 
m  is large enough,  the receiver can make a  reliable statisti- 
cal estimate of the noise severity even if the channel  does 
not provide side information. If this is done, interleaving 
may still be  the best available coding strategy. As for the C 
versus R, paradox, we suggest that, contrary to current 
folklore, R, may be  more properly an  inverse measure of 
coding delay rather than coding complexity. We  cannot 
rigorously defend this view, but it does render some other- 
wise confusing data (e.g., Table I) comprehensible. 

II. CHANNELMODELS 

In this section we shall define the class of channel  
mode ls we call block interference channels. In any given 
situation we shall in fact describe two slightly different 
channels. Both channels are characterized by a  random 
variable S and  a  positive integer m . The  random variable S 
describes the noise severity at a  given time, and  the integer 
m  measures the duration of a  given level of noise severity. 
In neither case does the transmitter know what the current 
noise severity is, but we shall distinguish the two cases 
where the receiver does or does not know the noise severity. 

We  start with a  collection {A,} of memoryless channels, 
each with the same discrete input alphabet A and  discrete 
output alphabet B. We  assume that the index parameter s 
lies in a  set Q  on  which a  probability distribution P has 
been  defined. Let S,, S,, S,, . . + be  a  sequence of indepen- 
dent identically distributed Q-valued random variables, the 
common distribution being that given by P. For each 
integer m 2 1  we now define the BI channels A”’ and  A”‘, 
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both channels having input alphabet A and output al- 
phabet B. 

When a sequence of letters x,,, xi, x2,. . . from A is 
transmitted over Am the k th block of m  consecutive letters, 
viz., [x(~-~)~, +k-l)m+lr* - *,xkm-l ] is in fact transmitted 
over one of the component channels A,; the random vari- 
able S, determines which component channel is used. We 
assume throughout that both sender and receiver know 
when these blocks begin and end, i.e., block synchroniza- 
tion is assumed. The receiver gets no direct information 
about which component channel is active at any given 
time. For this reason, we call Am the BI channel without side 
information. 

The channel A”’ is almost the same, the difference being 
that, together with each noisy block, the receiver is also 
given the index sk of the component channel used to 
transmit that block. We call A”’ the BI channel with side 
information. (For m  = 1, these channel models are the 
same as those considered by Wolfowitz [18, sec. 4.61. The 
channel A’- is a Wolfowitz compound channel of “Type I,” 
and A1 is of “Type III.“) 

Formally, the channel A”’ (without side information) can 
be viewed as. a traditional discrete memoryless channel 
(DMC) with input alphabet A”, output alphabet B”, the 
channel statistics being the P-mixture of the statistics of 
the m  th memoryless extensions { A7 } of the component 
channels. Similarly the channel A”’ (with side information) 
can be viewed as a memoryless channel with input al- 
phabet A” and output alphabet B” x a. Coding theorems 
for our channel models therefore follow directly from the 
standard coding theorems for memoryless channels, and so 
there is no need for proofs of coding theorems in this 
paper. 

We conclude this section with some concrete examples of 
interference channels. 

Example I: For each s E [0, 11, let A, be a binary sym- 
metric channel with crossover probability s, and let P be 
an arbitrary but fixed probability distribution on [0, 11. The 
interference channels A”’ and A”’ are then characterized by 
phased bursts of errors of varying severity. When Am is 
viewed as a DMC as suggested above, it becomes a 2”-ary 
channel with input and output alphabets (0, l}“. The 
probability that y = (yi, * * a,~,,,) is received, given that 
x = (Xl,. . ., x,) is the input, is given by 

p( ylx) = JI,1s’(l - s)mpk dP, (2.1) 

where k is the Hamming distance between the binary 
m-tuples x and y. The channel A”’ has the same input 
alphabet, but its output alphabet is the infinite alphabet 
(0, l}” X [O,l]. We now give two special cases of this 
rather general example. 

Example la: Here the distribution P is concentrated at 
the two points s = 0 and s = f . The channel A, is a 
noiseless BSC, and A1,2 is a useless BSC as shown in 
Fig. 1. 

If P{ S = 0} = 1 - e, P{ S = f} = e, this example is the 
same as that given in Section I, and the statistic (2.1) 

specializes to 

i 
1 - c(l - 2-m), 

P(Yl4 = ~. 2-” y = x; (2.2) 
> y # x. 

p( y,Olx) = 
i 

; - cy y = x; 
7 y # x. (2.3) 

p( y, 41x) = E .2-” all x, y. (2.4) 
In this special case A”’ is a 2”-ary symmetric channel 

with channel error probability ~(1 - 22”). In particular a’ 
is a BSC with crossover probability c/2. Notice also that 
here the channel A” is equivalent to a 2”-ary erasure 
channel, since, if the side information associated with a 
given b-bit block is s = 5, then that block is wholly unreli- 
able and may as well be erased, whereas if s = 0, then the 
block is guaranteed to be without error. In particular A1 is 
equivalent to a binary erasure channel with erasure proba- 
bility c. The channel Am occurs in practice in optical 
communication systems using direct detection and pulse 
position modulation [7], [9]. 

Example lb (Rayleigh Fading): Here we take P to be a 
continuous probability distribution on [0, i] with density 
given by 

p(s) = (w2” - s-l O<s<‘. 29 (2.5) 

where 01 is any positive real number. In practice this arises 
when binary FSK modulation is used on a slow Rayleigh 
fading channel with signal-to-noise ratio E/N, = 2/(u [19, 
ch. 71. 

Example 2 (Pulsed Jammer): Here the input alphabet A 
consists of only two letters, A = { - 1, + l}, and the output 
alphabet B is the real line. There are only two component 
channels, Aon and A,,,. Aon (“jammer on”) is an additive 
Gaussian noise channel with noise variance equal to u2. 
Aoff is a noiseless channel (“jammer off”), for which the 
output equals the input exactly. If P{ S = on} = p, Pr { S 
= off} = 1 - p this channel is equivalent to the pulsed 
jammer channel considered by Viterbi [17], where the 
average signal-to-noise ratio is E/N, = 1/(2pa2). Here 
side information is intrinsically available, since the recep- 
tion of + 1 indicates (with probability 1) that the jammer is 
off. and so Am = A”. 

III. CHANNEL CAPACITY 

In this section we will discuss the capacities of the 
channels A”’ and A”‘. However, in all of our proofs we will 
make the following compatibility assumption about the com- 
ponent channels { As } : 
Input distribution which achieves capacity is the 
same for each of the component channels A,. (3.1) 
For example, if the A, are all binary symmetric channels, 
(3.1) is satisfied, since a uniform input distribution achieves 
capacity for any BSC [12, th. 2.31. 

Let us denote the capacities of A”’ and A”‘, measured in 
bits per channel use, by C(m) and c(m), respectively. If 
we take the memoryless view described in Section II, the 
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calculation of these capacities is simply a  matter of maxi- 
m izing the appropriate mutual informations. For Am, the 
capacity is 

C(m) = i mpZ(X; Y), 

where X and  Y denote the m-dimensional random inputs 
and  outputs of Am. For zi”, the capacity is 

c(m) = k mpZ(X; Y, S), 

where S is the random variable describing the noise sever- 
ity. (We assume X and  S are independent.) Since Z(X; Y) 
G  Z(X; Y, S) [12, th. 1.41 it follows immediately that for 
all m , 

C(m) 6  c(m). (3.4) 
This result is intuitively obvious, since one  would not 
expect side information to degrade performance. 

We  shall consider c(m) in detail first, since its calcula- 
tion is the easier of the two. We  have 
z(x; Y, s) = z(x; s) + z(x; YIS) [6, eq. (2.5.4)] 

= z(x; YIS) (since X and  S are independent)  

= Z  X; Y’“‘) dP, /( (3.5) cl 
where Y(‘) denotes the output of the m th memoryless 
extension of the channel  A,, if X is the input. Since each A, 
is memoryless, we have [6, th. 4.2.11 

Z( X; Y(‘)) d  mC,, (34 
where C, denotes the capacity of A,, with equality if and  
only if the components of X are independent and  have a  
distribution that achieves capacity C,. It follows im- 
med iately from the compatability assumption (3.1) that 

c(m) = E{C,} P C, (3.7) 
i.e., the capacity with side information is the average of the 
individual capacities of the component  channels and  is 
independent of m . This result is not entirely new since the 
memoryless version of A”’ is a  channel  of a  type considered 
by Wo lfowitz [18, sec. 4.6, channel  type III] who gives a  
general  formula [18, eq. (4.6.11)] for the capacity. However, 
our compatability assumption (3.1) greatly simplifies the 
formula for the capacity, and  our block memory viewpoint 
allows us to draw a  new conclusion, viz., that cupaci~~ is 
independent of the burst length. 

Next, we return to the capacity without side information, 
C(m). It follows from (3.4) and  (3.7) that 

C(m) < C, m  = 1,2,3;**. (3.8) 
We  now claim that, at least when S has finite entropy or 
when the alphabets A and  B are both finite, 

lim  C(m) = C. (3.9) m+m 
To  prove (3.9) we note for any random variables X, Y, and  
2  (see, e.g., [20 lemmas 3.1, and  3.21). 

z( x; Y, z) < z( x; Y) + z( x, Y; z), (3.10) 

with equality if and  only if Y and  Z  are independent.  
Using (3.10), we have 

z(x; Y, s) - z(x, Y; s) 6  z(x; Y). (3.11) 

Our allegation (3.9) will now follow from the definitions 
(3.2) and  (3.3) provided we can show that 

)im $Z(X, Y; S) = 0. 

We  conjecture that (3.12) holds in general, but we do  not at 
present have a  general  proof. O f course, if S has finite 
entropy then Z(X, Y; S) = H(S) - H(S(X, Y) =G H(S), 
from which (3.12) follows immediately. 

If the alphabets A and  B are both finite, we can prove 
(3.12) as follows: let ]A] = a, IBI = b. Then  without loss of 
generality we suppose the set G  to consist of all possible 
memoryless channels connecting A and  B; i.e., all a  X b 
stochastic matrices { p(ylx): y E B, x E A}. Let X = 
(4,. . -> X,) and  Y = (Yi;.., Y,) be  observations of the 
input and  output of an  unknown one  of these channels, 
and  consider the statistical problem of estimating which 
channel  gave rise to the observation. Clearly a  sufficient 
statistic T  for this estimation is a  histogram describing the 
number  of times each of the pairs (x, y) E A x B occurs 
among  the m  observed pairs (X,, Y,). (See Ferguson [5, 
sec. 3.31.) This means  that S and  the pair (X, Y) are 
independent when condit ioned on  T, i.e., Z( S; X, Y IT) = 0. 
Hence, since (X, Y) -+ T  + S is a  Markov chain, ([6, eq. 
G’.3.18)1), 
Z(S; X, Y) = Z(S; X, Y, T) = Z(S; T) + Z(S; X, YIT) 

= Z(S; T). (3.13) 

Since there are ub  components in the histogram T, and  
each component  lies in the set (0, 1, . . . , m  }, there are at 
most (m + l)Oh possible histograms, and  so 

Z(S; T) < H(T) 6  ublog(m + 1). (3.14) 

(The exact value is , but we do  not need  this 
fact.) Thus, (3.14) we get 

log(m + 1) 
;Z(X,Y;S)<ub m  . 

Since a  and  b  are fixed, this proves (3.12) when A and  B 
are finite. 

Taken together, (3.8) and  (3.9) say that, while the lack of 
side information can definitely hurt performance, if the 
channel  memory is large then the penalty paid for the lack 
of side information is small. Again, on  reflection, this 
result is obvious. For if m  is very large, the sender could 
reserve a  certain small fraction of symbols in each trans- 
m itted block as a  known “test pattern,” and  the receiver 
could estimate the noise severity S on  the basis of the noisy 
test pattern. We  will have more to say about test patterns 
in Section VI. 

In Section V, below, we present numerical values for 
C(m) and  (? for the BI channel  of Example la. 
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IV. CUTOFF RATES 

In this section we will discuss the computational cutoff 
parameters R, of the burst interference channels A”’ and 
A”. However, as in Section III, we make a simplifying 
second compatibility assumption: 
Input distribution which achieves R, is the same for 
each of the component channels A,. (4.1) 
Again we note that this condition is satisfied for any set of 
binary symmetric channels, and indeed for any set of 
channels which are symmetric enough so that a uniform 
input distribution achieves R,. (In fact, (4.1) is satisfied for 
any set of binary input DMC’s, since the uniform input 
distribution achieves R, for all such channels [6, problem 
5.131.) 

We denote the cutoff parameters of Am and A”‘, mea- 
sured in bits per channel use, by R,(m) and R,(m), 
respectively. As in our calculations with capacity, we shall 
view our block interference channels as memoryless chan- 
nels over product alphabets. We now recall the definition 
of R, for a discrete memoryless channel. In Gallager’s 
notation [6, ch. 41, R, = suppE,(l, Q). Our definition, 
which follows, is equivalent to Gallager’s, but is motivated 
by Omura’s work [14] on Bhattachayya distance. See also 
[12, pp. 68-691. 

If x1 and x2 are two letters from the input alphabet of a 
given memoryless channel with input alphabet A and out- 
put alphabet B, we define 

A-5 x*1 = cP(Ylx,)1’2P(YIx2)1’2. (4.2) 

If X is a random variable taking values in the input 
alphabet A, and if Xi, X, are independent copies of X, we 
define 

J(X) = W(4~ x2)). 

The cutoff rate R, is then defined as 
(4.3) 

R,=sup{-log,J(X)}. 
X 

(4.4 

Stated another way, if X is an A-valued random variable, 
we have 

J(X) > 2-Ro, (4.5) 
with equality if and only if X achieves the supremum in 
(4.4). For the BI channel A”, since we are measuring on a 
per-channel-use basis, the corresponding definition is 

R,(m ) = i s;p { -log, J(X)}, 

where the supremum is over all random vectors over the 
alphabet A”. &(m) is defined similarly. As a measure of a 
channel’s information-carrying capabilities, R, is second 
only to capacity in importance. It is the largest number for 
which there is a linear error exponent, viz., a bound of the 
form P, %  2-“(Ro-R), relating the error probability of the 
best code of length n and rate R, which is true for all 
R < R,. It is the rate beyond which sequential decoding of 
convolutional codes becomes intractible [6], [19]. And fi- 

nally, it is widely believed to be the largest rate at which 
“practical” coding systems can be implemented (Massey 
[8], Viterbi [17]). 

In our calculations of R, for interference channels, we 
begin with &(l), the easiest case. We denote thej-function 
for zi’ by j; and the corresponding functions for the com- 
ponent channels {A,} by { j, }. The key result is the 
following 

J(Xl, X2) = Jq~Sbl> x2>>, (4.6) 

where the expectation is with respect to the probability 
distribution P on the parameter space &!. This can be 
proved as follows, provided the output alphabet B and the 
parameter space L? are finite (or countably infinite): 

Jbl, x2) = c \iP<Y, SlX,)P(Y, 4x2) 

0. s) 

= c P(SlXJP(Sl~2) c P(Yh S)P(Yh 4 * 
s Y 

From the independence assumption, p(slx) = p(s) so the 
above is 

CP(4c\lP(YlX,> S)P(YlX,~S) = ~{.k(x,x,)). 
s Y 

If now X has an input distribution on A that achieves 
R,(l), then 

2-&C’) = J(x) 

= JWGW (from (4.6)) 

2 E{2-RoJ}, (from (4.5)), (4.7) 
where R, s is the cutoff parameter for the component 
channel A’,. On the other hand, if X has an input distribu- 
tion that simultaneously achieves R, for each of the com- 
ponent channels (cf. assumption (4.1)), we have from (4.3) 
J(X) = E(J,(X)) = E(2-R~.~), and so by (4.4), 2-Ro(1) < 
E{ 2- Ro,s}. Comparing this to (4.7), we get our main result, 
viz., 

2-k’) = ~{2-Ro,s}, (4.8) 
or 

R,(l) = -log, E{2-Ro~s}. (4.9) 
This result should be compared to (3.7). We see then that 
the quantity 2-Ro, rather than R, itself, behaves in a 
manner similar to channel capacity for the channel Al. 

We now turn to the general case 3”’ of an interference 
channel with side information. If we denote the j-function 
for ilm  by IT”), and thej-functions for the m th memoryless 
extension of A, by j,‘“), (4.6) implies that for xi, x2 E A” 

j@‘)(.q, x2) = E{ jj”‘(xl, x2)}. (4.10) 

Thus the same argument that led to (4.7) gives 
2-“&W > E{~-@J?}, (4.11) 

where Rb”,, denotes the cutoff parameter for A’. From 
known results for parallel channels, (see [6, eq. (5.6.59) and 
exercise 5.30]), R, for A7 is equal to mR,, s, and is achieved 
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by an  input vector X = (Xl, X2; . .,X,) of independent countable D and  B: 
copies of the input X achieving R,, S. Thus (4.11) becomes 

Jh 4 

2-“&‘“’ > ~{2-“% .s}. (4.12) = CP(S)CP(Yl Xl, ~)1’2P(Ylx,, d’* 
s Y 

Furthermore if X = (Xl,. . . ,X,) consists of m  indepen- 
dent copies of the optimizing input X, we have from (4.6) (by (4.6). 
that J(X) = E{2TmRas }, and  this implies the inequality 
opposite to (4.11). Hence 

= c C(p(s)p(yl Xl, s)y2(P(s)P(YIx2, SW2 
Y s 

or 

2-“EoC”, = ~{2-‘%.s}, (4.13) 
l/2 

E,,(m)= -i log, E{2-mRo,s}. (4.14) . 
l/2 

CPb)P(YlX23 4 (Cauchy-Schwarz) 
s 

Here again our result is not exactly new, since both 
Bernstein [2] and  Viterbi [16] have obtained similar results 
for special kinds of BI channels. We  emphasize, however, 
that the explicit formula (4.14) holds only when side in- 
formation is present since only then can the BI channel  be  
decomposed into m  parallel channels. In Section III (3.7) 
we saw that the capacity c(m) of a  BI channel  with side 
information is equal  to the average c of the capacities of 
the component  channels. For the cutoff rate, (4.14) shows 
that the situation is more complicated. Since 2-” is convex 
U, Jensen’s inequality, applied to (4.14) gives the upper  
bound  

R,(m)< &A E(R,,,). (4.15) 

However, a  study of (4.14) for various special cases indi- 
cates that R,(m) is a  decreasing function of m . We  have 
no  proof of this in general, but for a  numerical example, 
see Table I in Section V, below. It is in any event easy to 
identify the lim iting value of EO( m): 

lim  R,(m) = Ro,inf, where 
m-m 

Ro,inf = ess.inf (R,,,}. (4.16) 

(See Appendix A.) In particular if there are only finitely 
many component  channels, each of which occurs with 
positive probability, we have 

lim  R,(m) = m inR,,,. 
m+cc s 

(4.17) 

We  find these results rather surprising, in view of the fact 
that capacity is a  nondecreasing function of m . 

We  turn next to the cutoff rate for the BI channel  
without side information. We  have no  explicit formula 
analogous to (4.14), only the expected bound  

R,,(m) < R,(m). (4.18) 

This result follows immediately from the following inequal- 
ity relating the j-function of the channels A” and  E”‘, 
denoted by jcm) and  ym): 

pyx1, x2) <jyxl, x2), (4.19) 

= cP(Ylxl)1’2P(Ylx2)“2  

(becausep(s) = p(slx,)) 
=j(x,, x2). 

The  proof of the more general  assertion (4.19) follows the 
same lines. 

It is likely, in view of (4.18) and  (4.14), that R,(m) is 
also a  decreasing function of m , and  calculations with 
special cases support this conjecture. However, we have no  
proof of this fact, and  except in the case where Ro,inf = 0, 
where we obviously have 

lim  R,(m)= 0, (4.20) 
in-03 

we do  not even know the lim iting value of R,(m). We  
would be  surprised, however, if the lim it turned out to be  
different from that of R,(m). 

In the next section, we present numerical results for the 
interference channel  of Example la. 

V. NUMERICAL RESULTS: A DISCUSSION OF 
INTERLEAVING 

In this section we shall illustrate our results by making a  
detailed study of the BI channel  of Example la, which was 
introduced in Section II. We  present first in Table I various 
values of C and  R, for E = 0.1 and  m  = 2k, k = 
0,1,2;.*, 10. We  note that both A0 and  A1,2 are symmet- 
ric and  so the compatibility assumptions (3.1) and  (4.1) are 
satisfied. Here are some further notes on  the calculations. 

R,(m), c(m): Since C, = 1, C1,2 = 0, we have, 
according to (3.11) 

C(m)=C= l-e, for all m . (5 -1) 

Similarly R,,, = 1, Ro,1,2 = 0, and  so by (4.14) 

Ro(m) = - i log, ((1 - e)22” + 6) 

log2 6 = - 7  + 0(2-9, m  -+ co. (5.2) 

which is a  consequence of the Cauchy-Schwarz inequality. R,(m) is a  decreasing function of m  and, in agreement 
The  following argument proves (4.19) for m  = 1  and  with (4.17), we have lim ,,,KO(m) = 0. 
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TABLE I 
NUMERICALVALUESOFR,(W~),R,(WZ),C(PZ),C(WI)FORA 

SPECIFIC BI CHANNEL 
- 

m  Ro Ro C c 

1 0.47805 0.86250 0.71360 0.9000 
2 0.47783 0.81074 0.74841 0.9000 
4 0.45193 0.66952 0.79622 0.9000 
8 0.35444 0.40901 0.84199 0.9000 

16 0.20552 0.20761 0.87069 0.9000 
32 0.10381 0.10381 0.88534 0.9000 
64 0.05191 0.05191 0.89267 0.9000 

128 0.02595 0.02595 0.89634 0.9000 
256 0.01298 0.01298 0.89817 0.9000 
512 0.00649 0.00649 0.89908 0.9000 

1024 0.00324 0.00324 0.89954 0.9000 

R,,(m), C(m): For purposes of computation, the chan- 
nel Am can be viewed as a DMC with input and output 
alphabets both equal to the set {O,l}m of binary m-tuples. 
The transition probabilities are given by (2.2). Since the 
channel is symmetric, capacity is achieved by a uniform 
input and a straightforward calculation yields 

C(m)=(l-e+e.2-“) 

=(1-+$+0(2-“‘), e#O,l. 

(5.3) 
Thus as predicted by (3.9), the capacity without side infor- 
mation does approach the capacity with side information, 
although the rate of convergence is rather slow. This 
0(1/m) convergence of C(m) to c is typical when the 
random variable S has finite (absolute) entropy as follows 
from the discussion following (3.12). When H(S) = cc, the 
rate of convergence is typically O(log m /m). 

The calculation of RO(m) is algebraically messy, but 
straightforward. Omitting the details, we have 

R,(m) = - k log2 (Jo), 

where 

J-y-++1 
0 2” 2 rn, 

and 

J = y. c + $(‘(’ + 2m(1 - E))1’2). (5.4) 

Asymptotically, 

R,(m) = - log, 6 m  + 0(2F’2), 

and of course (see (4.20)), 
lim  R,(m) = 0. 

m+m 
The values of C and R, for our channels only indicate 

possible rates for reliable communication. To design practi- 
cal systems for these channels, we must study the perfor- 

mance of explicit coding schemes. If we chose to view A”’ 
or p as DMC’s, the coding alphabet A” is very large and 
the prospects of devising practical codes using such a large 
alphabet are rather poor for large m . On the other hand, 
motivated by practical experience with real bursty chan- 
nels, we m ight try to communicate over Am or 3”’ by 
interleaving codes over the basic alphabet A. 

An interleaved coding strategy is one in which a finite- 
state device, called an interleaver, is inserted between the 
encoder and the channel. In the present content, its func- 
tion is to introduce varying delays between successive 
encoded symbols, so that no two letters in any codeword 
will reside in the same m-letter transmitted block. At the 
receiving end, there is a deinterleuver, between the channel 
and the decoder, that inverts the action of the interleaver 
and presents to the decoder (noisy versions of) the code- 
words in the order they were generated by the encoder. The 
interleavers/deinterleavers are inserted by the system de- 
signers so that they may ignore the channel memory,’ and 
code for the memoryless channels A1 or A’. Now according 
to (3.8) and (3.9) the capacity C(m) tends to increase with 
m , (see also Table I), and so one would predict interleaved 
coding strategies to be inferior, perhaps markedly so, if side 
information is absent, to strategies which deal more directly 
with the burst noise. On the other hand, according to (3.7), 
c(m) = C(l) for all m , so that, in the presence of side 
information, one would not predict a performance penalty 
if interleaving is employed. 

To test these predictions, we have evaluated the perfor- 
mance of several practical coding schemes on the channels 
Am and ii” of Example la, (see Fig. l), for various values of 
<, and displayed our results in Figs. 2 and 3. In these 
figures we have plotted the decoded bit error probability 
vertically, and “E/N,“, which is defined as lOlog,, l/e, 
horizontally. (This definition is motivated by the fact that 
in the presence of partial-band or pulsed jamming inter- 
ference, the worst-case jamming “duty factor” e is typically 
inversely proportional to E/N,, the signal-to-jamming noise 
ratio [13], [17]. It is also motivated by our desire to have 
performance curves of the same general shape as usually 
seen in the communications literature.) 

We have considered two general types of codes: 
Reed-Solomon (RS) codes, which correct burst errors di- 
rectly, and binary convolutional codes, which must be 
interleaved to correct bursts. 

First consider the Reed-Solomon codes. We have studied 
the performance of two such codes, both with rate ap- 
proximately i, a (31,15) RS code over the alphabet GF (25), 
and a (255,127) RS code over GF(28). The first of these 
codes can be used directly on either of the channels A5 or 
ii5, since each code symbol is from a 32-letter alphabet, and 
the second can be used on A8 or x8. If m  x= 10, the use of 

‘Of course the “interleaved” channel (from the input to the interleaver 
to the output of the deinterleaver) is not memoryless at all and in fact has 
exactly the same capacity as the original channel! However, since the 
users of the interleaved channel deliberately ignore the channel memory, 
in what follows we will treat the interleaved channel as if it were, in fact, 
the memoryless channel A’ or 8’. 
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I ,  I ,  ,  I ,  I ,  

(31,15) R-S code 
K =  7  convolutional code 

code 

’ ’ j ’ ’ 
IO 12  14  16  18  ICP~ 2  4  6  8  IO 12  14  16  18  

E/N,= IO log,, (I/E) E/N,= IO log,o(l/4 

Fig. 2. Error probability of Reed-Solomon codes (solid lines) and  con- 
volutional codes (dashed lines) on  the interference channel  of Example 
la (side information available). 

Fig. 3. Error probability of Reed-Solomon codes (solid lines) and  con- 
volutional codes (dashed lines) on  the interference channel  of Example 
la (side information not available). 

RS codes directly on  Am or ;I” becomes impractical. In F ig. performance, as expected, but the interleaved convolu- 
2, we have plotted (using solid lines) the performance of tional codes have suffered more than the RS codes. Now 
these two codes on  the BI channel  with side information, the (31,15) RS code is superior to both convolutional codes; 
and  in F ig. 3, the performance on  the channel  without side again, this supports our prediction, based on  the capacity 
information. (We used the techniques described in [l] to results of Section III, that interleaved strategies will be  
obtain these curves.) inferior if side information is absent. 

We  next consider the convolutional codes. We  have 
studied in detail two such, both of rate i, one  of constraint 
length 7  (Y = 6), and  one  of constraint length 9  (v = 8), as 
given in [4, table B-21. Since these codes are not designed to 
deal directly with bursts, if they are used on  A” or Am, we 
imagine them to be  interleaved to depth opt, which means  
that they are actually being used on  the channels A’ or a’. 
In F ig. 2, we have plotted (using dashed lines), the perfor- 
mance of these two codes on  a’, and  in F ig. 3, the 
performance on  A’. (We used the transfer function upper  
bounds described in [4] to obtain these curves. Experience 
shows that these bounds are quite tight in the range 
P, < 10P3, but cannot be  relied upon  for larger values of 
PC> 

Although the above example is of a  channel  mode l that 
is highly simplified, we believe that the quantitative conclu- 
sions drawn from this channel  are applicable to more 
sophisticated and  realistic channel  mode ls. 

VI. TEST PATTERNS 

What conclusions do  we draw from these figures? Con- 
sider first F ig. 2, where side information is present. We  
know from Section III that when side information is pre- 
sent, channel  capacity is independent of m , and  we have 
predicted that the interleaved convolutional codes would 
be  at no  disadvantage versus the RS codes. We  claim that 
F ig. 2  supports this prediction: the K = 7  convolutional 
code is about as good  as, and  the K = 9  code is better 
than, the (31,15) m  = 5  RS code. All three codes have rate 
4, and  in current hardware the complexity of all three is 
roughly comparable. The  larger RS code is superior to all 
three, but we attribute this more to the increased code 
complexity than to the somewhat increased memory (m = 8  
versus m  = 5). 

Before leaving the subject of interleaving we would like 
to describe a  mod ification which can be  used on  the 
channel  A”, and  which for large values of m , makes this 
channel  almost as good  as A”. The  idea is to attach to each 
transmitted packet a  fixed “test pattern,” and  on  the basis 
of the received version of the test pattern to make a  
statistical decision about which of the component  channels 
was used to transmit the packet. If the test pattern is of 
length say log m , then for large values of m  one  would 
expect this “noise estimate” to be  increasingly reliable, and  
yet the fraction of the transmitted letters devoted to the , 
test pattern is quite small. What  this means  is that, for 
large m , the channel  A” behaves as if the side information 
were available, and  so interleaving should not cause a  
severe degradat ion in performance. 

When  we move to F ig. 3, however, where side informa- 
tion is absent, but everything else is the same, the situation 
has changed significantly. All four codes now have worse 

To  illustrate this idea, we again use Example la, with 
now an  all-zeros test pattern of length t within each trans- 
m itted packet. If the received test pattern is not all zeros, 
the entire packet is erased; if it is all zeros, the packet is 
accepted as correct. What  this means  is that, after inter- 
leaving, the channel  A”’ becomes a  binary symmetric 
erasures-and-errors channel  with erasure probability p = 
~(2’ - 1)/2’, and  error probability q = ~2~‘. The  cutoff 
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TABLE II 
R o AND C FOR AN INTERFERENCE CHANNEL WITHOUT SIDE INFORMATION 

USING TEST PATTERN AND INTERLEAVING 

m  

1 
2 
4 
8 

16 
32 
64 

128 
256 
512 

1024 

&kptl ~Popl 
0.4781 [0] 0.7136 [0] 
0.4781 [O] 0.7136 [0] 
0.4781 [0] 0.7136 [0] 
0.4923 [l] 0.7136 [0] 
0.5622 [3] 0.7343 [l] 
0.6506 [5] 0.7781 [3] 
0.7260 [7] 0.8214 [4] 
0.7794 [9] 0.8519 [5] 
0.8138 [12] 0.8716 [6] 
0.8347 [14] 0.8837 [8] 
0.8469 [16] 0.8909 [9] 

TABLE III 
R o AND C FOR FIVE DIFFERENT COMBINATIONS OF SIDE INFORMATION 

AND INTERLEAVING, FOR h128 (EXAMPLE la, = 0.1) 
Option RI3 C 

No side information, no interleaving 0.0259 0.8963 
No side information, “normal” interleaving 0.4780 0.7136 
No side information, “smart” interleaving 0.7794 0.8519 

Side information, no interleaving 0.0259 0.9000 
Side information, interleaving 0.8625 0.9000 

rate for this channel is 

R,(P, 4) = 1 - l%(l + P + 2!q/q(l -P - q)), 
and so R, for the channel A” when depth (m - t) inter- 
leaving is employed together with this “noise detection” 
procedure is given by 

&Cm) = oyzm I- b % (p, 4). ( 1 (64 . . 
The maximization in (6.1) is over all possible test pattern 
lengths, and the factor (1 - t/m) reflects the rate loss due 
to the presence of the test pattern. 

Similarly the capacity of the above erasures-and-errors 
channel is 

C(P> 4) = (1 - PI0 - fb(q/(l - P>)L 
and so the capacity of A”, when this procedure is adopted, 
is 

C(m) = my 1 - b C(p, q). 
i 1 

Table II gives numerical values for these parameters for the 
same channels of Table I. In Table II it is seen that, for 
small values of m  (up to about m  = S), the optimal test 
pattern length is t = 0, i.e., no test pattern should be used. 
However, for larger m ’s, the test pattern does help, and 
indeed as m  --) 00, i?, appears to be, and in fact is, 
approaching the capacity 0.9000 of A”. If R, is in some 
sense a practical measure of the channel’s quality, this 
indicates that for large m , the “smart” interleaving idea of 
the previous section makes Am a very tractable channel for 
coding. 

To further illustrate our ideas, we conclude this section 
with a table (Table III), again using Example la, Q  = 0.1, 
and m  = 128, giving the values of R, and C for five 

different combinations of side information and interleav- 
ing. 

VII. CONCLUDING DISCUSSION 

For us, our most interesting result is the divergent behav- 
ior of C and R,. In the discussion that follows, we will use 
Example la to illustrate the point, but qualitatively similar 
results should hold for all BI channels. 

According to (5.2), the cutoff parameter for this particu- 
lar interference channel with side information decreases to 
0 as m  + co. Since c(m) is by (3.1) a constant indepen- 
dent of m  we have the peculiar situation that 

l im c(m) 
m+cc R,(m) = ** 

(7.1) 

We say peculiar because, both C and ,R, are believed to be 
measures of the channel’s quality, and yet as the burst 
length m  of our interference channel increases, these mea- 
sures diverge. For the BI channel without side information, 
the situation is if anything even more puzzling (see Table 
I). Here C(m) is a strictly increasing function of m , while 
R,,(m) is a strictly decreasing function of m . 

Of course the fact that channel memory tends to increase 
capacity is a well-known, if somewhat vague, folk theorem 
(see, e.g., Gallager [6, sec. 6.101). The fact that channel 
memory tends to decrease R, is less well-known, but has 
been noted before [3], [16], [17] with side information 
present. 

This issue is of more than academic interest, because 
depending on which figure of merit (C or R,) one prefers, 
one reaches totally different conclusions about the merits 
of interleaving. For example, Viterbi [17] cites the decrease 
of RO( m) with m  as evidence in favor of interleaving. Since 
his models have side information, we cannot quite dispute 
this conclusion. On the other hand, in Section V, we saw 
clear evidence that, when side information is not available, 
interleaving definitely causes performance degradation. 

How can one reconcile these apparently contradictory 
facts? We feel that if one takes the view that R, is an 
inverse measure of the coding dehy, rather than the com- 
plexity, required to achieve a given performance, the data 
become comprehensible. Suppose, for example, that one 
can achieve a given bit error probability and rate with 
delay D on the channel Ai. Then exactly the same perfor- 
mance can be achieved on A”, with delay D . m , by inter- 
leaving m  copies of the code used on ill. Thus interpreting 
R, as inverse measure of the needed delay we could predict 
Ro(m) > (l/m)&(l), and indeed the data in Table I 
satisfy this inequality. Indeed, according to (5.2) for Exam- 
ple la, 

Ro(m) - *, 

so we have 

k!$$ -f(c) * m , 

where 0 < f(r) < 3 is a function depending on z but not 
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m. Similar but computationally messier results for A”’ 
confirm these observations. We  thus conclude that C, not 
R,, is the better measure of a  BI channel’s quality, unless 
one  is under  severe constraints of coding delay or inter- 
leaver size. Perhaps future researchers will understand these 
issues better and  express themselves more articulately. 
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APPENDIX 

Proof of (4.16) 

We have, according to (4.13), 
mRo.. &‘. 

Let x0 denote the essential infimum of { R,, s}, and  suppose 
R = x0 (if there is no such value, an obvious modification is 
re:&ed). Then  for any z > 0  there is a neighborhood 3, of so 
with positive probability such that x0 Q R,, s  < x0 + z for s E G2, 
and Ro,, > x0 + f for s 4: ai. Then 

1 02- 
mRo,,&’ = + 

J J 0, a:’ 
The first integral is bounded above by P{ a,}2-““0 and below by 
p( Q2,}2-“‘h+‘). The second integral is bounded above by 
~-“‘(XO+‘). Hence 

2-m(xo+~) < 2-mRo’m’ < p{ Q;2,}2-w + 2-“‘“0+“. 

Taking logarithms and limits, we get 

x,=s lim R,(rn)~ lim R,(m)~x,+e. 
m+m m+cc 

Since c was arbitrary, this completes the proof. 
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