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Abstract--Let the random (stock market) vector X 2  0  be  drawn accord- 
ing to a  known distribution function F(x), x E R”. A log-optimal portfolio 
b* is any  portfolio b achieving maximal expected log return W* = 
sup,, E In b’X, where the supremum is over the simplex b 2 0, Cr, b, = 1. 
An algorithm is presented for finding b*. The algorithm consists of 
replacing the portfolio b by the expected portfolio b’, b; = E( b, X,/b’X), 
corresponding to the expected proport ion of holdings in each  stock after 
one  market period. The  improvement in W(b) after each  iteration is 
lower-bounded by the Kullback-Leibler information number  D( b’ll b) be- 
tween the current and  updated portfolios. Thus the algorithm monotonical ly 
improves the return W. An upper  bound  on  W* is given in terms of the 
current portfolio and  the gradient, and  the convergence of the algorithm is 
established. 

I. INTK~DUCTI~N 

L ET X, denote the random capital return from the 
investment of one  unit in the i th stock, i = 1,2, . . . , m. 

For example, if stock i is bought  for 20  and  sold for 30, 
then Xi = 1.5. The  stock vector X is a  nonnegat ive vector- 
valued random variable drawn according to a  known dis- 
tribution function F(x), x E R”‘. A portfolio 

b  = (61, b,, . . . , b,)‘, b,kO, xbi=l, 

is an  allocation of investment capital over the stocks X = 
(Xl, x2, * *. , X,)‘. The  expected log return W(b) and  the 
maximal expected log return W* are given by 

W(b) = Eln~rX=Jlnb’xdF(x), 

W* = rnbax W(b). (1.1) 

We wish to determine the portfolio 6* (unique if the 
support set of X is of full dimension) that maximizes the 
expected log return W(b). A discussion of the naturalness 
of this objective can be  found in the series of papers by 
W illiams [l], Kelly [2], Latane [3], Breiman [4], Thorp [5], 
[6], [7], Samuelson [8], Hakansson [9], [lo], Bell and  Cover 
[ll], [12], and  Arrow [13]. Briefly, money  compounds mu l- 
tiplicatively rather than additively, hence the naturalness of 
maximizing E In b’X instead of Eb’X. Also, under  b*, money 
grows exponentially to infinity at the highest possible rate 
and  achieves distant goals in least time  ([2], [4]). F inally, b* 
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is the heart of the game-theoretic solution of the two-per- 
son zero-sum game in which one  player desires to outper- 
form another in a  single investment with payoff 
Erp( biX/biX), where cp is any given nondecreasing func- 
tion ([ll], [12]). Thus b* has both long-run and  short-run 
optimality properties. 

The  problem of maximizing E In b’X can be  viewed as 
one  of maximizing a  concave function over the simplex 
B = {b E R”: b 2 0, Cb, = l}. Thus a  maximizing b* 
exists. Optimization algorithms abound  for problems of 
this kind. For example, the paper  by Z iemba [15] applies 
the Frank-Wolfe algorithm to the portfolio selection prob- 
lem; a  succession of one-dimensional slices of the simplex 
B are searched for c-optimal portfolios. Algorithms for 
special stock distributions are presented in Z iemba [16], 
where X is mu ltivariate normal, and  in Z iemba [17], where 
the X is discrete valued. See also Dexter, Yu, and  Z iemba 
P71. 

Special properties of the maximization suggest the use of 
an  algorithm specific to the problem. In particular, because 
of the logarithmic objective function, an  algorithm that 
takes mu ltiplicative rather than additive steps seems natu- 
ral. 

The  gradient of W(b), which we denote by a(b), is given 
by 

a(b) = EX/b’X = VW(b). (l-2) 
The Algorithm: Generate a  sequence of portfolio vectors 

b” E B, recursively according to 

by+’ = brai( I i = 1,2;.*, m, 

b” > 0. (1.3) 

The  spirit of this algorithm is very close to that exhibited 
in the algorithms of Arimoto [19], Blahut [20], and  Csiszk 
[21]. Their algorithms solve for channel  capacity and  the 
rate distortion function by mu ltiplicatively updating the 
probability mass function in much the same manner  as the 
portfolio vector is updated in (1.3). Also, Csiszar and  
Tusnady have investigated the convergence of the algo- 
rithm presented above and, in an  as yet unpubl ished work 
[22], will present an  alternate proof of its convergence. It 
should be  noted that when we ran this algorithm on  actual 
stock market data, we used a  variety of ad  hoc techniques 
to accelerate its convergence. Theorem 4  of Section V then 
became the primary tool for terminating the computation. 
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The algorithm multiplies the current portfolio vector b 
by the gradient, component by component. It has the 
following natural interpretation. Let b be the current allo- 
cation of resources across the stocks. The random vector X 
results in current holdings in the ith stock biXi and yields a 
total return b’X. Thus the new proportion of capital in the 
i th stock is given by biXi/b ‘X, and the expected propor- 
tion in the ith stock is 

b( = E(b,X,/b,X) = biai(b). 

This is the new portfolio induced by the algorithm. One 
replaces the portfolio b by the expected portfolio b’ induced 
by one play of the market X. Naturally one expects that 
the algorithm terminates at b such that b’ = b. This is 
proved in Theorem 3. 

Remark: The sequence {b”+‘} remains in the simplex, 
because 

xb;+’ = xb;q(b”) = zb;E( Xi/cbjnq) 

= E((~b;X,)/~b,!~.) = El = 1. (1.4) 

Example: Consider two stocks, X, and X,. Let X1 = 1 
represent cash. Let X, take on the values 2 and l/2 with 
equal probability. Set X = (X,, X,), and consider portfolios 
b = (b,, b2) E B. We calculate 

W* = Jj In (9/8); 

a2(b) = (5 - b&2(1 + b,)(2 - b2). 

Inspection of W* indicates that repeated independent in- 
vestments in X will yield capital growing to infinity ex- 
ponentially like (9/8) . n/2 This, despite the fact that either 
stock alone results in a median return stuck at 1 for any II. 
Writing the initial portfolio as 

b= ;++c 
i 1 

t 
, 

and the next iterate as 

we derive 

4’ = 8e/(9 - 4e2) = 8r/9 + O(c3). 
Thus, for this example, 6” + b* exponentially fast. 

The initial vector b” is chosen to be positive in each 
component. Otherwise b” would be confined to the 
boundary of the simplex. Let 

W, = W( b”) = E In b”‘X, 0.5) 
be the value (expected log return) of the it th iterate of the 
portfolio. Define 

W* = sup E In b’X. (1.6) 
b 

and let b* be any portfolio achieving W*. 

In the course of this paper, we shall show that W, is a 
monotonically nondecreasing sequence satisfying 

W 
by+’ 

n+l - W, 2 xb,!‘+‘ln k 2 0, (1.7) 
I 

and 
w, t w*. (1.8) 

II. MONOTONICITY 

We wish to prove that each step of the algorithm yields 
an improvement in the expected log return W. 

Denote the next portfolio iterate by b’, where 

b; = b,E( XJb’X), (2.1) 
and define the random variables 

q (6) = X/b’X, i = 1,2,-o. , m. (2.4 
Let, 

D(b’/b) = F biln(b;/bi), 
i=l 

(2.3) 

be the Kullback-Leibler information number (or di- 
vergence or relative entropy) between 6’ and b. See Kull- 
back [14] for extensive interpretations of this definition, 
We shall need the inequality 

D(b’lJb) 2 0, with equality if and only if b’ = 6, (2.4) 

a consequence of the strict concavity of the logarithm. 

Theorem 1 (Monotonicity): 

W( b’) - W(b) 2 D( 6’116) 2 0. (2.5) 
Proof: We have 

W(b’) - W(b) = Eln(~b;XJ~bi&) 

= Eln zb(y(b) 

= Eln xbi(Eq(b))Y;(b). 

Jensen’s inequality on the expectation works in the wrong 
direction for our needs. On the other hand, we note that 
the random variables biq( b) satisfy 

biq(b) 2 

f- bJ(b) = 
i=l 

Thus applying Jensen’s 
ables yields 

0, almost everywhere, 

CbiXi/Cbjxj = 1, 

almost everywhere. (2.6) 
inequality for these mixing vari- 

W(b’) - W(b) 2 Exb,Y;(b)ln Eq(b) 

= CbiEK(b)ln(E&(b))b,/bi 

= zblln(bJ/bi) 

= D(b’Jlb) 2 0, forallb E B. 
(2.7) 
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This proves the theorem. q  But C is compact. Thus C contains an  accumulation point 

Corollary : Under the algorithm b! = b&b), we have 
of { b” }, violating the construction C fl B = cp. Conse- 

0  
W( 6’) = W(b) if and  only if quently B is connected. 

bp; = bi, for all i, F inally, we shall need  continuity properties of the gradi- 

i.e., if and  only if (Y~ = 1, for i such that bi > 0. 
ent a(b). 

In addition to the desired inequality E In (S, + r/S,,) 2  0, 
Note that W* > - 00  implies that P(X = 0) = 0, and  

where S,, = b”‘X, we also have the following theorem. This 
thus that X/b% is well defined with probability one. We  

theorem will not be  required for the proof of convergence. 
shall consider the components q(b) as extended real val- 
ued  functions of b, possibly taking the value + co. We  

Theorem 2: Monotonicity of ratio observe that if W* < 00, then q(b) is finite for all b in the 

EtSn+,/Sn) 2  1. (2.8) 
interior of the simplex B. F inally, we note that a,(b) 2 0, 
for all b E B. 

Proof: By (2.1), (2.6), and  Jensen’s inequality, Lemma 2: Let - cc < W* < cc. Then  the components 
s of the gradient vector a(b) are continuous extended real- 

E + = E( zb;Xi)/( cb,x,) valued functions of b E B. 
“?I 

= E~b,(E~(b))~(b) = xbi(El$2 

2 (zb,Eq)’ = 1. 

Proof: Let 6, be any point in B and consider any 
sequence b, + 6,. Thus by continuity of X,/b’X, 

lim  Jim 4  
k-rw b;X b;X’ 

almost surely. (3.5) 

III. PRELIMINARY LEMMAS So by Fatou’s lemma, 

Let B denote the simplex {b E R”: bi 2  0, Cbi = l}. As 
before, let a(b) = v W( b), W* = sup,,,W(b). 

Recall the Kuhn-Tucker conditions for this maximiza- 
tion. (See [ll], [12].) A portfolio b achieves W* if and  only 
if 

ai = E- ’ I lim  inf q(b,). 
b;X k-m 

(3 -6) 

q(b) = 1, bi > 0 (3.1) 
a,(b) I 1, bi = 0. (3.2) 

We  designate these as the first and  second parts of the 
Kuhn-Tucker conditions. 

Definition: Let B denote the set of accumulation points 
of {b”}. 

Consequently, if a,(b,) = co, then b, is a  point of continu- 
ity of the extended real-valued function ai( b). 

We now show that b, is also a  point of continuity if 
ai < 00. If b, E B, b, + b,, then there exists an  in- 
teger k, such that bki 2  (i)boi, for k 2  k,, for i = 
1,2,. * * ) m. Thus for k 2 k,, 

X. X. -!-I--..-!- 
b’,X (f)b;X’ 

We recall that 6’ > 0  and  that by” = q(b”)bl. The  
following lemma is used prominently in the proof of W , + 
w*. 

But ai < co, so by dominated convergence 

%tb/c) --f %tbO)* (3.8) 

q  
Lemma 1: The  set of accumulation points B of {b” } is 

nonempty, compact, and  connected. 

Proof: Since b” E B, and B is compact, there must 
exist an  accumulation point, by the Bolzano-Weierstrass 
theorem. Thus B is nonempty. The  set of accumulation 
points of a  sequence is always closed. Since 8  is also a  
bounded subset of R”, B is compact. 

If 3  were not connected, the closedness of B implies that 
there is an  open  cutset separating two components of 8. 
This cutset contains a  compact subset C with a  nonempty 
interior. But the components of B must be  traversed in- 
finitely often. Thus C must be  crossed infinitely often. 
However, 

D(b”+‘\lb”) I W ,,, - W , + 0. (3.3) 
Thus we have convergence of the step sizes to zero: 

I/b”+’ - b”ll + 0. (3.4) 
Hence C is entered infinitely often by elements of {b” }. 

IV. CONVERGENCEOFALGORITHM 

Since we have shown that W(b”) is monotonically non-  
decreasing and  thus has a  lim it, it remains to be  shown that 
the lim it is W*. 

Theorem 3 (Convergence): If b” > 0, then 
W(b”)f W*. 

Moreover, if X has full dimension, then b” + b*. 

Proof: We shall say b is stable if b’ = b, i.e., if b 
satisfies the first of the Kuhn-Tucker conditions. The  
proof breaks into 2  parts: 

1) showing that any accumulation point b  of {b” } is 
stable, and  

2) showing that any lim it point b  satisfies the second 
Kuhn-Tucker condition. 



Parts 1) and 2) then imply that W(b) = W*, proving the 
theorem. 

Part 1: Define A(b”) = W(b”+‘) - W(b”). Now W(b”) 
is monotonically nondecreasing and therefore has a limit 
W,. So A(bn) + 0. Let b be any accumulation point of 
{b”}, and, let b”k be a subsequence converging to b. Ex- 
istence of b is guaranteed by the Bolzano-Weierstrass 
theorem. 
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Hence, by (4.3), (4.5), and Jensen’s inequality, 

W(b,) - W(b,) = Eln $$ 
2 

I In ~b,,a,(b,) = In c bliai(b2) 
i iEZ 

= In1 = 0, (4.6) 
with equality if and only if 

b;X 
- = 1, almost surely. 
b;X 

(4.7) 

Reversing the roles of 6, and 6, then yields 

Wtb,) - W(b,) I 0, (4.8) 
which together with (4.6) yields 

W(h) = W(4). (4.9) 

Now A(b) is a continuous extended real valued function 
of 6, by Lemma 2 and the continuity of W(b). Thus 
A(b”“) --) A(b). But A(bQ) + 0. Thus A(b) = 0. But by 
Theorem 1, A( 6) 2 I$!ln b;/& 2 0, with equality if and 
only if 81 = 6i. Thus b must be stable. 

Part 2: We can easily show that the second 
Kuhn-Tucker condition is satisfied if in fact b” has a limit 
b, because then, by continuity of a(b), we would have 

But 

a,(b”) --* ai@) = ~2~. (4.1) 

b; = byl&xi(bk), (4.2) 

which would diverge to cc if hi > 1. This contradiction to 
b” E B, leads us to conclude that ci I 1, for all i, thus 
establishing the second half of the Kuhn-Tucker condi- 
tions. 

Closer inspection of the above argument reveals that b, 
and 6, satisfy the Kuhn-Tucker conditions for face BI and 
thus that W is indeed maximal for this face. 

Since we have shown that equality holds in (4.6), it 
follows that (4.7) must hold. But from (4.4) and (4.7), 

The remainder of the argument will go roughly as fol- 
lows. We can argue that an accumulation point 8 of {b” } 
must maximize W(b) over the face of the simplex in which 
b lies. Now if X were of full dimension, then such a 
maximizing b would be unique for each face. But this set of 
possible accumulation points, one per face of B, cannot be 
connected unless it consists of a single point. The argument 
above would then apply, finishing the proof. However, if X 
is not of full dimension, then it is no longer true that the 
maximum of W(b) is uniquely attained. But, by projecting 
the portfolios b onto the linear subspace spanned by the 
support of X, uniqueness can be established for the projec- 
tions of the maximizing portfolios for each face. This 
proves that B projects into a single point, and again the 
argument above can be applied. 

8:X b;X 
- = - = 1, 
h;X b;X 

almost surely. (4.10) 

Thus 

We proceed directly to the general case. For each I G 
{1,2,.**, m }, let the face B, be defined by 

B,= {bEB:bi>O,iEI,bi=O,iEIC}. (4.3) 

(8, - b,)‘X = 0, almost surely. (4.11) 

But b, - b, E L, so, by the minimality of the dimension of 
L, we must have 8, = 8,. This is the desired result. All 
accumulation points of {b”} that fall in face B, have the 
same orthogonal projection onto L. 

At this point, we realize that each face BI of the simplex 
B generates at most one projected accumulation point in L. 
Moreover, U B, = B, and there are precisely 2” faces B, 
partitioning B. Thus there are at most 2” points in L 
corresponding to the projections of the accumulation points 
8 of { 6”). By Lemma 1, B is connected and hence its 
projection onto L must be connected. However, no finite 
nonempty set of points forms a connected set unless it 
consists of a single point. Thus B projects onto a single 
point in L, which we designate by 8,. 

We now observe that, for all b E B, 
We now show that all accumulation points of { 6” } in face 
B, have the same orthogonal projection onto the subspace 
spanned by the support set of X. 

Let L be the subspace of R” of least dimension satisfy- 
ing P(X E L) = 1. Let 8 denote the orthogonal projection 
of b onto L. Thus 

(b - $) ‘X = 0, almost surely. (4.4) 
Suppose now that b,, b, E B n B,. Thus, by the stabil- 

ity of accumulation points, we have 

q(b) = Es = Es = ai( (4.12) 

Thus ai = ai + ai( i = 1,2,. . . , m. C&se- 
quently, 

b,!’ = b;zfilai(bx) 

ai = ai = 1, for i E I. (4.5) 
= b;fic#), (4.13) 

I=1 
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diverges to infinity unless ACKNOWLEDGMENT 

pi I 1, for all i. (4.14) 

This establishes the second half of the Kuhn-Tucker con- 
ditions for b, and  thus for any accumulation point b  E B. 

We  have now shown that any accumulation point b  of 
{b” } satisfies both halves of the Kuhn-Tucker conditions 
and  is therefore optimal. Since W(b”) is nondecreasing, we 
have W(b”) -+ W*, as desired. q  

V. A SEQUENCE OF UPPER BOUNDS ON W* 

We now establish upper  bounds on  the error of ap- 
proximation of W( b”) ‘to W*. The  bound  is a  function of 
the portfolio 6 and not of the algorithm used to guess b. 

Theorem 4 (Upper Bound): For any b E B, 

W(b) I W* I W(b) + max In E-&. 
i 

(5.1) 

Consequently, the algorithm (1.3) yields 
w, I w* I w, + izlyf, ,JW). (5.2) 

Proof: The  lower bound  in (5.1) follows by the opti- 
ma lity of W*. Let S* = b*‘X and S(b) = b’X. The  upper  
bound  follows from application of Jensen’s inequality: 

Eln(S*/S(b)) I In E(S*/S(b)) 

= In zbTE( X/S(b)) 
i 

I In maxE( X/S(b)). 
i 

(5.3) 

Thus Eln S* I Eln S(b) + max,ln E(X,/S(b)), as de- 
sired. q  

Remark: Note that the Kuhn-Tucker conditions require 
that the term max In EXJS(b) be I 0  for W(b) = W*. 
Thus the upper  bound  converges to W* as n  -+ cc. 

CONCLUSION 

We have shown that if we start the algorithm with 
b” > 0, then W ,, t ?  W*. Moreover, if there is a  unique 
optimal portfolio b*, then b” + b*. The  effective computa- 
tion of good  portfolios is made  feasible by Theorem 4, 
which enables one  to stop the computation with an  c-opti- 
ma l portfolio as soon as In ai s E, i = 1,2, ’ . . , m. 

The  author would like to acknowledge the very helpful 
discussions with David G luss, Max Costa, and  David 
Larson concerning the proof of Theorem 3. 
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