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Corremondence 

A Note on the Prediction Error for Small Time Lags 
into the Future 

JAMES A. BUCKLEW, MEMBER, IEEE 

Abstract -Explicit expressions are derived for derivatives at zero lag of 
the mean-square prediction error for a class of random processes that 
includes those with rational power spectra. A simple random process not in 
the class is demonstrated. A sufficient condition for membership in the 
class is given. 

I. INTRODUCTION 

Finding the minimum variance linear predictor of a continu- 
ous-time, wide-sense-stationary random process is a classical 
problem in the electrical engineering and mathematics literature. 
Wiener [l] solved the problem of prediction given that the infinite 
past of the process is observed. Krein [2] solved the problem in 
principle for the much harder case of observing only a finite 
portion of the entire past. A difficulty is that the prediction 
formula is difficult to evaluate in practice. Rozanov [3] gives 
formulas for the rational power-spectrum case, but these still 
require solving complex differential equations to obtain certain 
constants. Alternatively, one can use the complex analysis ap- 
proach of Yaglom [4], which is similar in computational diffi- 
culty. Given that the predictors may be difficult to calculate, one 
may choose to resort to suboptimal ad hoc schemes. If so it is of 
crucial importance to be able to calculate the mean-square error 
performance of such a suboptimal predictor and compare it to 
the performance of the optimal one, 

Cuzick [5] gives a nice overview of the problem and derives an 
upper bound to the prediction error that approaches zero at the 
correct rate as the “lag” or time interval into the future ap- 
proaches zero. This bound depends on an unknown constant that 
hampers (as the author states) the practical utility of the results. 

An idea to be investigated here, for the small time-lag predic- 
tion of a continuous random process, is the use of Taylor series to 
extrapolate into the future from the last point observed. If only m 
mean-square derivatives of the random process are available, then 
the series is truncated after those terms. One would imagine that 
as the time lag goes to zero, this should be a very good estimator 
of the future. This reasoning turns out to be essentially correct 
for a large class of random processes. More interesting (perhaps 
unfortunately), this is an incorrect way of thinking about some 
random processes. In other words, Taylor series predictors can be 
very bad in comparison to optimal prediction even as the time lag 
approaches zero. 

We will give approximate expressions for the mean-squared 
prediction error for small extrapolations for a class of random 
processes that includes those with rational power spectra. Much 
of our intuition is based upon how filtering and prediction works 
for the rational case. As a further interesting sidelight, it is 
demonstrated that the predictors (and their error) can depart very 
widely from those that would be expected based upon a rational 
approximation. 
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Notation 
{x(t) - cc < - T I t < 0) An observation of a wide-sense- 

stationary nondeterministic zero- 
mean random process. 

,(A’( t) The kth mean-square derivative of 
x(t) (if it exists). 

h(r) The minimum mean-squared error 
predictor of X(T), T 2 0. 

;yw - % “(~V > p m.!!er(7). 
, The power spectrum of the ran- 

dom process x(t); 9-l{F’(A)} 
= R(t), the autocorrelation func- 
tion the random process where 
9{.} and g-l(.) denote the 
Fourier and inverse Fourier Trans- 
form operators, respectively. 

R(t) =f(t) .f(- t), where f(t) is a 
causal square integrable function 
that is guaranteed to exist by the 
Paley- Wiener theorem [6]. 

II. DEVELOPMENT 

Suppose F’(X) is rational and F’(X) f 0; then .@{ f( t)} is 
also rational. Then we have 

F’(X) = 

i A:( iX)j 
j=O 

P 
c Bpx) 

j=O 

where A; and B; are real, and /? 2 (Y + 1, and 

f A:(iX)j 

‘F{ f( t)} = j;O . 

c  B’qiX)’ 
j=O 

Let k  be such that /3 2 (Y + k + 1. Then the Laplace transform 
of the k th derivative of f(t) is given by 

(Sk) Iit A;( &)’ 
SF{ f’k’( t)} = j=O 

’ s .i 

i .(-) B’ 
j=O ’ 28 

By the Abelian theorem for Laplace transforms we have 

pk’(0) = sl-n/{ f’k’( t)} s 

= 0, P>a+k+l 

= 32.)“.‘, P=cr+k+l. 

However,  from [7, p. 5441 we have 

R’k’(O+) = 0, 2/3>2a+k+2 

2/3 = 201t k + 1. 
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Hence 

f(k)(0)* = 2Jp+u(()+)( 4+1, for/? - cr - 12 k. 

(1) 
A random process of the above type has exactly ,L? - (Y - 1 

derivatives. Therefore we can consider a suboptimal predictor 
jE(T), of X(T), 

8-a-l 7k 

-X(T) p c -X’k’(O). 
k=O k! 

We define 
- 
mse(7) P E((x(7) -X(T))*}. 

It is straightforward (but tedious) to verify that 

ack)mse( T) 

8Tk 
pp(()+)( -q(k+l)/*, 

7=0+ 2 

k 4 2(/3 - a) - 1. 

A well-known formula [6], [7] for the optimum prediction when 
T=mis 

me,(T) = ,?{(X(T) -g,(T))‘) =i’f’(t)dt. 

Again it is straightforward but tedious to verify that 

ak mSe, ( T) 

aTk 7=0+ 

k<2(/3-a)-1 
- 

a(k)M.Se(T) 
= 

aTk 7=0+ 

(We emphasize again that the above is zero unless k = 2(/3 - a) 
- 1). Hence, since z(r) represents the error of a suboptimal 
estimator that depends only upon the value of the random 
process and its derivatives at zero, we must have 

me(T) 
k!----- 

m%( T> 
2 k!----- 2 k! m%o(T) 

Tk Tk Tk ’ 

where k 5 2(p - a) - 1. Taking the limit as 7 + O+ we have the 
following theorem. 

Theorem 1: Suppose the random process x(t) has a rational 
power spectrum P’(X) such that F’(X) # 0, 

akmseT( T) 
= 

aTk 
-l)(k+1)/2, 

s=o+ 

k I 2(p - a) - 1, 

where R(T) = .%-‘{ F’(X)}. 

Remark 1: The above development proves the existence of the 
partial derivative and gives its value at T = O+. For all values of 
k smaller than 2( /3 - CX) - 1 the value is zero. 

Remark 2: A wide-sense-stationary random process has m 
mean-square continuous derivatives if and only if its autocorrela- 
tion function possesses 2m continuous derivatives at zero. From 
a direct construction using the Taylor series error expression one 
can show that if R(T) is continuously differentiable m times at 
the origin, then akWI.WT(T)/aT1(T = O+) = 0 for k = 0,l; . ., m. 
It is the k = m + 1 case that is of most concern. 

Remark 3: By the nature of the proof we see that for small 
prediction lags the simple Taylor series predictor performs nearly 
as well as the more complex Wiener predictor for processes with 
rational power spectra. 

We now look for a more general class of random processes that 
behave in the same manner. Since the rationals are dense in the 
class of all spectra we might hope that all random processes 
would behave like this. This is not the case, as shown by the 
following counterexample. 

Counterexample: Suppose F’( 1) = sin* (h/2)/1* and T/2 = 
N a positive integer. Then from [6] we have 

2N+2 
mse=( T) = 

8(2N + 1) ’ + 

(N+l-T)T 

4(2N + 1) ’ 

0 I 7 < 1/2 

amed T) 2N+2 N-t1 

aT ,=o+ = (2N + 1)s + (2N + 1)4 

N+l 

= (2N + 1)2 

Suppose we use X( 7) = R( 7)/R(O) x(0) (the best predictor based 
upon x(0)). Then since 

R(T) = 
1’ 

1 1 
4 - ;‘? fOrO<T<l, 

0, for 7 > 1 

112 

mse(T)=a_ i---T) 4 4 

l/4 

aWISe 1 
=- 

aT 7=0+ 2’ 

Remark 4: Obviously, these two expressions are unequal, with 
the optimal predictor error derivative strictly less than l/2 for all 
integer values of N and approaching l/4 as N approaches co. 

Remark 5: In contrast to the rational case, the partial deriva- 
tive of the error depends upon the length of the observation T we 
are given. 

If we impose some technical conditions, we can demonstrate an 
entire class of power spectra that share the desired property with 
the rational case. 

Theorem 2: Suppose f(t) has the representation 

f(t) =f(O) +J,ff’W da, 

where f’(a) is square integrable, i.e., f(t) is absolutely continu- 
ous and its derivative is a square integrable function. Then 
R’(O+) = -f2(0)/2. 

Proof: For T > 0 we have 

R(T) =Jmf(a)f(a - T)~CY 

-;-,,.)[f(., -~f’(a-s)+a, 

by absolute continuity off 

=/mf2(cx)da-/7/mf(a)f’(a-s)dads 

:{i;,,.)f’(““, dads. 

(The integration interchange is justified by invoking Tonelli’s 
theorem on ] f (a) f ‘( oL - s) ] to get integrability on cross measure; 
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then Fubini’s theorem allows interchange.) Now consider the last 
term divided by  T, i.e., 

by  Schwartz inequality 

1  
I- /“I( i’f ‘( a) da)1’2  ds  

T 0 

= ~T+ISC?m(T))1’2 = Km.se,( Ty;*oi 0. 

Therefore we may invoke the fundamental  theorem of the calcu- 
lus and  find (for T > 0) 

R’(T) =  -f*(T) -i”f(a)f’(a - T) dn  + O(T), 

where we have terms that are approaching zero as  T approaches 
zero by  the above  argument.  Utilizing the fact that f’ is square 
integrable, we may uniformly approximate it by  a  cont inuous 
function (alternatively use  Parseval’s theorem, since f, f’ E L2). 
This implies that we can take the limit as  T goes  to zero through 
positive values to obtain 

R’(O+) =  -f2(0) -Jo,f(a)f’(a) da  

f*(a) * 
=  -f*(O) - 2  

0 

= -f*(O) +!Yg = xp. 

The next to last line follows since 

~mlf(X)llfYx)ldx = ~mm~Tlf(x)llf’(x)ldx 

5  Ilf II Ilf ‘II = M  < cc’ 

This implies the existence of the limit 

:m_i7f(x)f’(x)dx=M’< co, 

because absolute summability implies summability. Therefore 
lim T-r m  f (T)* exists and  hence  must equal  zero. 

Remark 6: The  theorem statement cor responds to (1) with 
k =  0. W e  could obtain a  statement for arbitrary k by  making 
the same assumptions on  f ck-‘)( t) that we do  for f(t). Al though 
the proof is messier, it is essentially the same. 

Remark 7: The  counterexample fails the theorem require- 
ments since 

f(t) =;, Ortsl. 

W e  obtain f’(t) =  (- 1/2)S(t - l), and  this (general ized) de-  
rivative is not square integrable. 

Remark 8: One  can generate entire families of power  spectra 
that behave  as  the rational spectra do. For example, take f(t) =  0  
fort<Oandf(t)=min{l,e-(t- l)}fort>O.Thenf(t)= 
1  +  /if’(cx)dol. Then  f’(t) =  -e-(‘-l) for t > 1  and  f’(t) =  0  
for t I 1, which is square integrable. Then 

e-’ 
Rx(7)=‘2-7-~, o<T<l, 

a%(T) 1 f (OY = --= _- 
87 7=0 2  2  . 

Remark 9: If f E L2  and  f’ E L2, a  well-known property of 
convolut ions states that f. f’ is not only cont inuous but uni- 
formly cont inuous. This implies that the derivative of the auto- 
correlation function must exist at every point (see the proof of 
Theorem 2) and  be  cont inuous (except possibly at the origin). 
This condit ion would usually be  easier to check on  a  particular 
autocorrelation function than the condit ion f, f’ E L*. Our  
counterexample with the triangular autocorrelation fails this test. 

III. CONCLUSIONS 

This cor respondence concerns a  property of the prediction 
error for small lags. For the rational power  spectrum case a  
closed-form expression is der ived for the derivative with respect 
to the lag of the mean-square prediction error. It is shown that a  
large class of “nice” power  spectra behaves  like the ratio&s, but 
that there are also simple ones,  in particular the triangular 
autocorrelation function that do  not. For these nice random 
processes,  simple Taylor series-type predictors perform optimally 
well for small lags into the future. 

Whether  a  particular power  spectrum is nice or not remains an  
open  problem. A sufficient condition, in terms of smoothness 
attributes of the functions in the W iener spectral decomposit ion 
has  been  given, but its utility is limited due  to the difficulty of 
performing the decomposit ion and  verifying the condit ions. W e  
can say that if the autocorrelation function is not everywhere 
differentiable (except possibly at zero), then it will not satisfy our  
smoothness condit ions. 
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