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nBSTRACT f

8;pab111ty of Error-Trapping Techniqué
In Decod1nd‘Cyc11c Codes

Anader enyamin-Seeyar, Ph.D. - - ,
Concordia Universit)&, 1985 '

This thgéis is concerned with an "error-trapping" technique based '
on the pekﬁutatibn décoding concept for deco@ing pinary cyclic codes.
ﬁermut;tigi decoding, wheneve r applicable, is'eas%1y.imp1ementab1e.'
Here,~we invéstigate the capability of this decoding technique by esta-

blishing exact Tower bounds on the code iengthl n, of an (n:ktt) cyclic

~ code in order for it to be permutation decodable. ' These bounds are ob-

»

tained“by'using‘group (T,u) permutatibns. where (T)'is a grouﬁ of
cycﬂic‘ghifts and (U) is a sequence of squaring-(or‘square-rootiné) op-
éYation§won the received code erd. A*cheiwbrd is said to be one-step
(T,U) penmutation.decodabWe if h}] errors can.be trapped by usinj cyclic

shiffs' It is said to be i-step (T,U) permutatlon decodable if (i-1)

, 15 the maximum number of squar1ng permutations requ1red to trap all

errors In this.work , we present exact lower bounds on n for.

1) Two-step (T,U) permutation decodab1e binary gygljﬁ‘codes with t

be1ng odd or even valued, TQ‘EE step, (T,U) permutation decodable

' b1nary cyc11c .codes*with t odd-valued and t=2, and 3) some results

for the {n,k,t) cyclic codes which; in general, are either not permu-

tation decodable or can not be decoded with a certain. number of steps

‘. ‘
of permutation-are a1so obtained. -'The derivation of -these results

involves on]y the symbol positwons of the errors and, consequent]y, the

()

results are directly applicable to cyclic codes over GF(2.),- for m>1
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. CHAPTER 1 \
. INTRODUCTION TO CODING

1.1 Introduction o ‘\
| In'}ecent years tho subject of "erro?}confro! coding" has become
important in oonﬁunicaiioos and j“mputer téEhno]ogy. The overall ob-
jective is that of protecfing'digital data transmission and storage of r
digital 1nfonnotion against the errors that oocur du}ing transmission
‘through a communication channel. The possibility of achieving reliable ) ;

" transmission over a noisy channel was originally introduced by Shannon

in 1948 [1] The most %emarkab1e results proved by Shannon [2] -was to

demonstrate the existence of codes that achieve re11ab1e commun1cat1on
if and only if the information transmission rate is less than a quantity
called the "channel capacity". However, his results were oﬁ]y "exis-
tence" type.

Since the pub]icqt{aﬁ‘of'thesg results, a great.deal of effort has
been devoted to finding efficient and pracfica] encoding ano decodjng
schemes that penpit reliable communication at high da{a rates over
various types ‘of noisy channels as prom1sed by Shannon\s theory. ‘ThlS
in fact has recent]y been emphas1zed by J. Wolf~ [3} whére he states :
"Cod1ng is o]ay1o9 a more and more important role in he1p1ng us to
-achieve the promi’s:es.of‘Shannon and Wiener". ‘ i

. This chapter introduces the codiﬁg"prob]ems, describes the role of N
coding in communication and defines’the types ‘of codes @Iong Qitﬁ some
important fundamental concepts of cod1ng theory In Sectgons 1.4 and 1.5

'we give a descr1pt1on of cyc11c codes and some 1mportant cTasses of

cyclwc codes Flndal]y, an Sections-1.6 and 1.7, we- descr1be the tOplC

§
— ’ H

=
—



of our investigation and the plan of tHe thesis..

\
\

1.2 The Coding Problem

In a communication system as shown in Figure 1-1.,

I

that comes out of the decoder ‘should match

-

vF

)

.
.

r~ 1 ’
: : b ERROR- - d
C b MESSAGE SOURCE : - CONTROL = -
. \ - .
1 | source ENCODER | 1 ENCODER - MR S
1 ) . .
¥ I —_d AN - N } :
" / R -
SOURCE 1| MODULATOR | .!
: . |
. * o Al -:
COMMUNICATION | CHANNEL INOISE’ ;
———t— o ———
CHANNEL | : |
! ‘ :
1 )
; o
]
o e = e = e e em mm e e e e L ] [}
; ' : ERROR s L---
™. MESSAGE SOURCE :
. LN : - ———| CONTROL - g |
! : ‘e
e e e e e e — = — — — ) : s .
SINK ‘ .

the symbol that.entered

a,

—_—

"o

&

R )

LY

the encode

-

. Figure 1-1. A comhunication System

'
’

' \ .
r [4]. t;But in a practical system ‘. .



o m——

3

messages are first encoded in}o signals bgfore tran;mission. These
signals enter the chanﬁeluand are 1ike§y/20 be disturbed by’noise.

On %emoryleés channels, the noise affects each transmitted signal
ihdependent]y, while on channels with memory, the noise is not inde-
pendent from transmission to transmission. As a ‘consequence, transmis-
sion.errors tend to occur.in,élusters or bursts. Hence, transmission
errors occuring on memo}yless channels are called "random-errors"; and

on channelf with. memory are called "burst-errors". Some channels con-

tain a combination of both random and burst errors and are called com-'
4

pound channe]s.! Here, throughout the thesis we will be considering the

memoryless channel with random errors only [5,6].
-The channel output then enters the decoder which makes a decisien

@ 0 '
concerning which message was sent and then delivers this message to

destination. The cdding problem has two aspects: one, the performance

of the code i.e. the associated probability of error and two, the com- .

p]ex1ty of the decoder Ideal]y we wWould like to find good codes which
possess a decod1ng a1gorithm of moderate complexity [4-12].

There are two bas1c techniques for controlling. transmlss1on errors

in data communication systems; forward-error-control (FEC) schemes, and

automatic-repeat-request (ARQ) schemes. Hybrid FEC/ARQ schemes have
also been proposed [13;14].
"In an FEC communication system, an error-correcting code is used

for combating ‘transmission errors. The receiver detects the preSence

,of errors then automatically corrects them. On the other hand, in En

ARQ communication system, when the receiver detects the presence of

-

”_-:Apf\‘

o
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errors, it automatically requests for retransmission of the message

[13,15]. In this thésis we are, only concerned with FEC coding techni- .
ques: ' . ' K o
There are two fundamentally different classes o'f FEC codes; name-

‘1y "block codes" and "tree codes". Ti{e encoder for a block: code is a
memoryless device which breaks the continuous seqyé;m'é"of %'r;formation.‘-
s'ymboﬁ into k-symbol b]oc:ks. It then maps each k-r"syr;1bo‘1 block into F'
, an n-symbol block, called ~a "code word", wher'*e 'nis qreater than k.

If th’e codé is Tlinear, then k is referred to.as the dimension of the

2 , .
code, and n as its length. The rate of the code, R is defined

by . ¢

" R =k/n, (1.1)

In the case of a convolutional encoder, pﬁe’output \no-tup]e is
a function of the present ko-tuple input and the previgus v ko-tu
ples. Hence, the encoder has a memory order df v. The rate, R,

o' the tree code is defined as, . : Y

°

' The most important tree codes are those known as convolutional codes:

Convo]utional'cpdés‘are tree codes that satisfy certai‘n.additionﬂ . o

" linearity and time-invariance properties (linear tree codes).
For the purpose of_ this thesis, we restrict our attention to

At e s et

2
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'b1oc[( codes. The study of block codes has led to codes which have con-

siderably_ mathematical structure. In many cases this mathematjca]
structure can be explc;itegl to arrive at practi cal decoding a]gorithms._
The readérs interested in tree codes may find References }[6,7,]0,15]'
useful. |
A block code of length n and size M is a collection of M
distinc~t vectors, the code words, eac‘h vector having n elements be-
Tonging to some finite field GF(q), where q is a prime power [16- ' '
19].. The simplest and most widely used finite field i‘s the binary
field, q=2, consisting of the digits 0 and 1. Such codes are called
binary codes*. The céde rate R, 1s defined as , .
.R = 1o§qM /n, I \ | (1;.3)
since the code words are dis_tjnct, then 1 <M _<_qn, andso 0 <R< 1.

The block codes of practical 1mpor€5nce, introduced by $lepian

[19,20] in 1956, are called "group codes". These-codes are a general-

’

’ 1zat10n of the error-correcting codes of Hamnn ng [21]. The code words

of group codes were shown to correspond to the elements of a 5u1 tab]y
defined group [17,18]. Further, Elias [22] has shown that on the
binary symmetric chénnel, there exist group codes having a rate arbit-

rarily close to channel capacity with an arbitrarily smaﬂ)probabi]ity '.

of error. However, like ‘Shannon, Elais only gives an existance proof.

¢

EY

* [t is relatively easy to e_x'tend most of the results of binary codes

A

-

to the nopbinary (q >2) case. .

»
=

g
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A subclass of group codes are called linear coes. ~ A code is linear »~

if the code words are all the solutions to a set of r ‘homogeﬁeous
linear equations, called "generalized parity-check" equations. The

.coefficients of these equations are elements from -F = GF(q). Let
k = n-r then if the equations are linearly independént [15], M = qk; .
% d - *

R = k/n, and the code is termed an (n,k) "linear" code.
+ .

1]

Another class of block codes discovered by Nordstrom and-

Robinson'[23], which are not linear and are said to'be "nonlinear"
' b]ock‘codes. [t is interesting to note that in several cases it is
possible toaconstruct a non-1lihear block code with more code words
'than_ the best linear code with the same length. and m{‘n;'mum distance
[12,24]. A generalization by .Preparéta yielded a c.].ass —gf high-rate
nonlinear binary codes [25].

. wﬁene'yer the. information symbols and the pari't')f symbols can b/e

'_ sep'a}"ated as in Figure 1.2, we say that the

4
!
i REDUNDANT '
CHECKING PART  MESSAGE PART
Q - L : S Vo J . —
(n,k)-symbols - . k-symbols :

-~

+

Figu're 1-2. ;ystematic format of 4 blotk code word

~ .

[ Lt

encoding is sy.stemétic.. Hereafter we vh::]] be cons_idem"ng only (block)

3
"
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‘linear codes.

1.3 Notations and Definitions ,

' Cons*ider’a q-af'y 1inear block cer of length n, 1i.e. ,' a code
whose symbols come from the Gaioi; field 'F=‘GF(q) with q .dis;;ir:ct
symbols, g beir\g a prime power (qébv,'f’p?: prjme)> Each code word
represents an n-tub]e and hence a .vect:'or with n elements over
GF(q). Using the symbols of Fé one, forms all n-tuples, i.e., Fn, .
and ¢all these n-tuples words and :n‘ f:he W(:)‘r'd ]ength'. We shall
denote the set of all words by M and interpret tﬁ'is. as a n-dimen-
sional vector space over GF(:'q). A linear block code C 1is defined \

as a subspace of F". Such a code is 'ca.T_Tegd an {(n,k) linear blpck

code. .

. An important concept in th1"s study of block c,odgs is the distance
functi—on called "Hamming distance" [é]] betwéen two code words, which
by definition is the numbe;‘ of coordinate -pl}ices in which they differ.
Then, the minimum Hammi'ng distance of the code C, denoted by d, .is
the minimu;n pair-wise Hamnin? d%;—*;;nce bqt’vggen any two code words. - A
r.e1ated con)gept is the "Hamming weight'_‘ of a code ‘,word which is defined
as the number of ho}i-zero components in the code word. For‘any group
code, it-is easily shown that the ‘mirﬁmum distance i;"equa1 to the
minimum weight of J;he non-zero code words {any two code words differ
in at 1easvt d p]ace‘s)‘[ZS,Zéj., This property dbes not nécessarlﬂy
hold for non-group codes. ' '

‘The error-correcting ajld detecting capability of a given code is

7

¢ \
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determined by the minimum distance (or simply distance), A block code
}>df t or

with diﬁtancé d islcapabie of correcting all patfern
fewer errors if and'only if theydistance‘ d is at least 2t+1 (or
= L(d-])/ZJ*) Simi]arly, %t is'pqssible to detect all patterns of
) t+A “or fewer errors (a>t) if 2t+x<d [11,15].
We shall now examine two ways of descr1b1ng a linear block code
The f1rst is given by a kxn generator matrix. G which has as
its rows a set of basis vectorg of the linear subspace -C. The fow
space of G 1s the 1inear code C; anyvcode word is. a linear combiﬁa-
t1on -of ' the rows of G The rows of G are 11near11y 1ndependent
Any one-to-one* pairing of k- tup]es and code words can be used as”an
e?coding procedure, but the most natural app;oach is to use the fo]-;’
]owinéf \ | . o : | .

‘:"Eéi‘g ‘ ' ‘ : ©(1.4)

Qheré"jg the information word, 1s a k- tup]e of 1nformat1on symbols
to be encoded and ¢ is the corrgspond1ng code wprd. He now come to
the second description of a linear cédé Cﬁ(' ‘

| Le;: C be an (n,k) linear codé,with §enerator‘ma£rix G. C

being a subspace of F", it has an orthogonal complement (with respect

* x] denotgs the greatgst-jntegék«nqt greater than x.
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i

" to the usual- inner, product) Cl whrch is a subspace Jof"- Fn

sion n-k Natura]]y CL is also. a 11near code ca]]ed the dual of C.\

"

Let H ‘be a generator matr1x for GL, the, ﬁ;.1s a full rank (n—k)xn \

matrix and C consists of all netuples C such that

coul=0, - - T ).

[RY A S s

where“ﬁT is the transpose of H. "We say that C.is the null-space

v

of H and é vector for Cl- is ca]led\a parity check equation for the

code C. ﬂ;7iq called a parity check matrix for C. A ( k)xn matr1x
H s a parify éhéck matrix for C- if and only if H ' has fu&l rank

ﬁ-k and

" b -9 " !

. H . .§~4. P
Two Tlinear codes in [" ' are called equivalent if there ié\a,\ s

¢

. permutation of coordinates followed by é sca]ar mu]tiﬁ]ication on go-
ord1nates wh1ch transforms one code into the other. -That is: if
. (c], ;:l,icn) is the sequence of coord1nate functions of one code 1
:.aﬁd :(c%, ...,‘cé) that for the other, then the code; are equ1va1eﬂ
: brov{ded there is a permutation n of {1, ...,n} .and non-zero

“scalars aps -eeaap fnom”the ground field GF(q), suEh,thaf

¢

G-' . “,C_"(]) = C-l sreey (ln . CT_’(n) = Cn

of dxmen-.

/(_y"
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Implicit in Equation (1.7) is that the codes héve .the same dimension

and minipum distances [28].

¥

The pennutetions of* coordinate:places which send C into itself

(code words go into (possible different) code words) form the "automorp-

<

hism group" of : C, denoted by Aut -‘(.C): Auto (C) 1is a subgroup

d‘f the §ymnetric group S_ consisting of all'n! peﬁnutations of n

symbo]s . e ' ,' . .

The most 1mportant class of linear block codes is the- c]ass of

. cychc codes introduced by Prange [29] in 1957. A cyclic code is a

Tinear code' with the additwna] property that any- c_ychc permutatwn

of the symbols of "a code word is also a code word‘ Cyclic codes

"y

can be eff1c1ent1y encoded by means of simple feedback shift reglst-

‘ ers [30]. .Additional ‘properties of cyclic codes are given in the

“ro

n

s .
Ay

1.4 Cyclic Codes ,

N

.
.

following section.

~

It s perhaps a remarkable fact that most of the important block

-

EO"des found to date can be reformulated to be' cyclic codes or closely

related to cyclic cédes {for example certain nonlinear codes [25]).

Cy‘clic‘codesx are adequately described in the literature [4-12] and

" their description here will be brief. ‘An (n,k) Tlinear code C over

GF(q) is called cyclic if every cyclic permutation of the- symbols of

a code word is also a code word. To illustrate, if the n-tuple ('co,c],'f

..'..,'cn,_]) represents a code word, then the n-tuple

A
Y




CeN

‘ .
o 1"
SRR |
' + )
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'
¥

c' = (Fn-1’ Cob Cyreee

.

T\

’Cn-2) : o_bt.ajr\'ed' by shifting the coordjr’nat.eé .o-f' €

' cych"‘cal]y one place to thg right is also a code word. If the c]-','§ be-

“long to a finite field F=GF%1‘ q elements, an l(n,k) hy’ch‘c cod'el

" has % code words*.

In treating cyclic codes, it is convenient to identifj a code

with the code word ¢ is

a

£='(C 3 C].,..-,Cnr-

'
»

ot - xn']‘ , o (1.8)

-where the CieF‘ Th'us, each cdﬁde 'word‘correspond's to a polynomial of

”degree,"n—l or less. A cyclic shift of this code word ¢ is equiva-

lent to multiplication by x

and reducing exponerits modulo n(mod n)

1

However, reducing exponents. mod n is equivalent to reducing the poly-

nomial ‘mod (x"-1). From now on we do not distinguish between words of

length -n .and polynomials of degree <n ﬁé';]1;15,3]]. We ndté that if

7 ¢

» -

then

—

oy " c + a Y — a C(X) +,"02; . Y.(?<),

* This statement is also true of any

)

— C(x) and y +—r Y(x)'\_

' . , . v

0.9)

b

-

L]

(n,k) - 1inear code whose elements K

come from a finite field of gy elements. - .

i,

word with a code word bo]ynomia]. The code word polynomial a§spc1'ated L,

-
o A e . g

S

o b
—— G
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o cyclic codes.
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where o and azéGf(,q), and that a vector space of n-tuples is also,

a vector sbéce of polynomials, and conversely. 1S

We next ‘consider the important strugtural properties of (n,k).

H

1

"It can be shown that a cyclic code C 1{s an ideal in the ring,

"F[xJ/(x"-1), of polynomials. mod (x"-1) over GF(q) [18,32].

Every ideal is generated by a polynomial, ~g(x), which divides (x"-1). ,

We shall call g(x) the generator polynomial of the cyclic code. For

an (n,k) cyclic cddg C over GF(g), g{x) is the unique monic* ploy-

.nomial in .C "which has degree. - (n-k). Any cyclic code word C{x)e€C
" can be written uniquely as [15,18].

>

= (igHx +os 1k_']-xk']') - g(x) . (1.10)

where the. polynomial I(x) corresponds to the k  information syfnbo]é
(i, i],...,ik_])GLGF(‘q). : In addition, for a given g(x)#x-1, we Will .

¢

~ always take the block Tength ‘n of the corresponding cyclic code to
“be the least integer such that g(x):divides “ (x"-1) [18]**. - That is

.g(x)l(xn-]) “and g(x)((x -1), O<v<n. The quotient h(x)=(xnrl)/g(x) ‘

. . . )
! Q R ) .
: ~ ' : A

P

A polynomial is called monic if the coefficient of the-highest
power of 'x is 1. ~
| kK A ﬁecq’ssary and sufficient condition that ‘(‘xn-1) not to have any

factors of multiplicity greater than 1 over Gi:(q), is that :(n,q‘)=1'.

‘ .
N » ]
.
. ! /
. . .
.

N
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is called the check polynomial (recursion p‘o1ynomia1)v of the cyc.h'c

~code C. We note that the dimension of the cyclic code is equal to

-

the degree of the check-polynomiaT: The cyc]i'c code generated b);
h(x) is the dual of C, and is obtained by reversing the ordér
of the coordinates of the words in the cyclic code generated by h(x)
[15]. Many properties of the code C can be given from its duakl.
For example, the weight distribution (1'.e.=,~the number of code words
of weight 1, Ai’ for 9=0,1,...,n) of the code C can be cal-
culated from that of its dual [8]. - -

1.5 Some Important Classes of Cyclic Codes

Here, we briefly introduce the characteristics of some 1mportant
c]asses of cyclic codes or codes related to cyclic codes. Addi t1ona]
properties of these codés as well as the re]ationships with other clas-

ses of codes may be found in the foHowmg papers on c]ass1cal a]gebra1c )

-
- n

coding theory [4,8;9, 10, 15 ,18]. '
The most important class of v]_ir_ug_gr b16qk codés‘are the BCH ‘(BOSe-;
ChaudhuH-Hocquenghem) codes [33-34j. These codes were iptroduced by B ‘
.Bose and Chaudhuri and independently by Hocquenghem [35]. They became pro-
rmment when .Peterson r18] showed that they are cychc and 1ntroduced
“a decoding algorithm for them. These codes are cj/ch'c with coeffi cienfs
from any ﬁ'm‘t;e field F=GF(q) and have the following parameters:
Cons (Iqs-'l)/c, for s > 2 '
- in-k < 2-s-t, : . ‘ “ €1.11)

o

Cds o2t . T S



'fol]pﬁing parametér:. - .

wﬁere t is any integer and c is any diviéo; of (g°-1).

An important and popular subc]ass of the class of, BCH codes is
the c]ass of Reled- So]omon codes (3 18 31]. These are.BCH ‘codes in
which the block length divides the:mu]tipliga%ive order &f the finite
field GF(q), that is, s=c=1. These nonbinary code$ «defined over

GF(q) have the-.parameters:

n=g-1"  symbols
n-k=2.t symbols, ‘ . (1.12)

d=2-t+1 symbols.

Since d=n-k+1 for Reed-Solomon éodes, these codes are called Tmaxjhum

distgnce.separable". Typica11y, q=2m is selected. This means that

.the code provtﬁe§'correcti6n of 2™ -ary symbols and‘hencg ﬁu]tip]e-

burst errors. Moreover, these‘céde& are very useful in two-Tevel "con-

catenated” coding schemes [36]

!

\The class of ' quadrat1c res1due' (Qﬁ) codes is a'specia] subclass

~ ’

of the class of cyclic codes Wwhose' m1n1mum'distances typically compare

to those of BCH codes of comparébie lengths. The QR‘cbdes have the

-

. . . [N
’ N ¢ , ! , . - y

. n=d\'a prime, of the form 8utl, T i

¢

[8 ]8 26] . »\,- . v ,’ L R V\A,LA' [.:.

\ .

Ko (p+1)/2 L S (L13)
, v d 5 /_' . . .’ . . .—‘ .' ’A , " . ‘--,. ~ e )
Thls 1nequa11ty can be. strenqthened to d2-dﬁ1 >n, -for =] 'm6d 4

e
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‘ ‘Some other important codes that have received special attention

. R 3 N i
are the famous Hamming and Golay codes. These codes as well as Reed- °

.

Muller codes are equivalent to cyclic codes [8,19].

' ‘

=" .The binary Hamming“todes is the first class of linear codes de-

vised fo? error-correction [21]. For any posi;ive igteger m>3, there

.
i

‘ exists a Hamming code with the following parameters: L Cor
n=2"-1, ’ . : - ., ’ N
-k=2m~m;], C ‘ v N T
‘ ‘ oo . (1.14)
n-k=m, - i . . ’
‘ ' d=3  (t=1). : - o
N . , » . ? . - , \ A i
4 ~ .

Hamming codes correct all Eihé]e error pﬁtterns andﬁno oghers.

.

K Thi§ is a very ihfereséing s%ructure that mékesﬁphe\code1a'"perfgctf" '
) " .cqﬂe* [8]: Thus , Hémming‘QPd;stform a class bf s}ngle7err6rjcofrécf- N
- ing'Per%ecf codes. ~ . . L _ _— : ’ 11 ) o
o " The geﬁeraW Haﬁhing'codes (n=(qu])/(%-T},'k=n-m)"wi;h minimom. -
| .distance d=3 .codes over GF{q) \areypeyfgct sihg]e-efror—tor%gcting
eodes.' They are g]so cyé]ic if mr\and‘ (q-]) ;re primg (11]." - ]
Y | ' ’ | ‘: ' /‘ ’ k .‘ | lr ’

- ¢ ~

. F LA t-error-correcting code ovér GF(q) is called perfett if every .

\ -

' ' ‘code vector is at a distance of at most. t from a code word. -~ .
: ’ < - b ! - ' N
B [ \ -
’ . ~ . , .
_ ‘, . ’ ! ' . N -
- ~ 1 f + R e ) .
. AR ) : ' .
¥ v N - , ) ) - " - v N . . '(‘
N - \ ' , . : 3

& .

"
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Besipes the Hémmjhg codes, the only other non trivial binary*per- .

" d=7.  This

<

- " fect code is the (23,Y2) Golay code with winimunf. distance

code is the oth kngwn mh]tip1e—error-correcting bina?y perfectwcode

[N -

e

wh1chls capab]e,of correct1ng’any combination of 3 or fewer random

-

errors’ in a b]ock of" 23 b1ts Based on the following number theoretic

a
L3RS

fact

[(23)+< )+ (5 )+(23)]-2 , (A

-
. . a
.8
. 5
v o M
.

thé code is a perfect code (perfect codes are rare (8. fhe extendgd

.

3~

(24,12) Golay code with minimum distance d = 3. has been widely

4 -

. -
3
\

Hamm1ng and Golay. codes were discovered pr1or to BCH codes, but

1ater were shown te be equ1va1ent to BCH codes [18] ~ ;

s

T The above 11st is by no means exhaustive. +For example, we have
not mentloned codes based on the comb]nator1a1 conf1guratlons of finite

geometr1es, Goppa‘codes [;7-39], Quas1-Cyc11c.codes [40-43],to name a

)
!

' s .
T s .

few.
For-the sake of brevity, from now on we shald refer to a t-error-

N

. correcting (n,k) cyclic code, as an (Q,k,t) cycl]c code . -

. *ta
L) v N

a a

4 4.7 1 - . . . P .

~1:6 Advanées?in This-Work] 2 .

2
3

An thlS thes1s we.are concerned with the decod1ng of“cyc11c codes.’

PSS

The most ef?ect1ve and eas11y lmplementable decoding techn1que is the

:;‘ o error-trappIng technique.‘ Here, we 1nvest1gate the capability of error-

r'»‘ N .
. * ‘ P . . . . ; .

S ‘. N . [ .

. . K \ \"

used. ‘ © » )

r




cyclic codes. L e ’

-

trapping techniques, specially, based on the "'permut‘ation decoding" con-.
cept. To appreciate the simplicity of this form of decoder see for exam-
ple Figure 2-1 on page 34 of this thesis. ‘ »
Permutation. decoding can be implemented by a simple logic circuit.
S1'n_ce it has been used onl‘y with cyclic shift permutations, th_i,s' techni-
que was \in the_ past only applicable to Jow rate codes. &In this thesis
we show that by applying permutations other than cyclic shifting ‘this
decoder can b.e used for higher rate codes. More specifically we shall
obtain exact lower bounds on the biock length n in order for an (n,k,t)
cych’c‘ code‘to be per’mutation‘decodab]e using cyclic shifting and squar-
ing (all cyclic codes are invariant under thése type of pér‘mutations).

Finally, we present some general results for cyclic codes which

_ are not permutation decodable using cyclic shifting and'squaring.

Since the derivation of the results involves only the positions
h

of the errors, the results are app]icab]e not only to binary cyclic

codes over GF(2), but also to cyclic codes over GF(Zm),‘ for m>l.

14
-

s )
4

1.7 - Plan of the Thesis, - “p. Y \

This thesis is divided into six chapters and a very brief descrip-
tion- of these chapters now fol]ows .

In the pr'ekus sectwns we 1ntroduced "the coding problem as well

\

as the 1mportant role of codes m a commun1cat1g{1 system. We then gave

a brief review of techmques Fon contro 11}19 transmission errors.- Some_

notations and def1mt1ons usefuT for th1s work were glven in Sectmn

4

1.3.. F\na]]y,uw_e -defined cchM: code§ and some important classes of

]

1

£

PO PV S



Since our main thrust 1s on decod1ng, we dedicate Chapter 2 toa
review of decoding procedures avaﬂab]e We begin by defining the de-
coding procedure for cycﬁc codes. Then, we.introduce the error-trap-

ping technique as a variation of the Meggitt‘de'coder for cych'c codes.

In view offthis technique, we describe some important and related decgd-

Yo

LY . fd
ing schemes based on the concept of permutation decoding for cyclic codes.
"
Finally, from the 1mp1ementat1on point of v1ew we give a pract1ca] per-
mutation decoder in Section 2.5. . : b - .

In Chapter'3, we 1nvesttgate the capabih‘ty of permutation de cod-
ing by app]ymg 2 step pemutatmns to cyclic codes. ‘I*n this)'direcr'ti"on,
we estabhsh exact Tower bounds on the code- 1ength n; for the (n,k,t)
cyclic codes with t being odd or even valued in order for the code to
be 'two step permutation decndabfe. In Section 3.5 we presenp a summary

-3

of the results obtained in Chapter 3 and numericai‘res'u]ts(derived

S

there from. ' ) . o M

In Chapter 4, we p'rese‘nt the exact lower bounds on n, for the
tn,k,t) cyclic codes with odd-valued "t and to the case of even t=2,
which are 3-step permutation decodab]e. The improvements on the exact
Tower bpunds with Pespect to the results given in Chapter 3, are summa-
rh’zed in Section 4.4 and some numerical results based om the results
of this Chapter are presented. ' |

Cnapter S contains some ‘general resutts ‘based on certain cyclic | o
codes wh1ch are not permutation decodable using cychc sh1ft1ng and
squaring. The rbsults that we obtain in this chapter are summamzed s
in Section 5.3.

Finally, in Chapter 6, we summarize the results obtained in this

‘thesis and we make some remarks on the results and conclude the thesis



e
G
«
$ P
-
o N
-
-
.
. ,\
.
.
\ —
)
\ .
4
H
3
«
\
.
$
- -
-
. -
51
EY
.o, —
'
'
M
-
s
,
.
i)
-

twﬂv—w‘ B

with some suggestions fbrrfubthgr work .’

LN

The main Contributions of thé author

4

.

are in Chapter 3 to 5. In

these chapters we investigate the capability ef permutation decoding

fo} various steps of pefmutations that are introduced in Chapter 2. —

In passing it may be notéd that some of the results given:in

th%s thesis have been preseﬁted or will be published elsewhere [44-4§].
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C;i;\,PTER 2 3 : ’7

DECODING -TECHNIQUES FOR CYCLIC CODES

2.]’ introduction

Encoding of cyclic codes was described in Chapter 1. Since our

" main concern is with decoding, therefqre in this Chapter we review de-

coding procedures avaijab]é'fow"error-trapping technique and introduce

the concept of permutation decodable .cyclic codes.

-

~ Section 2.2 is on the general decoding procedures, while Section

M

2.3 describes some of the imporfént and related decoding techniques

based on the concept of error-trapping. In Section 2.4 we present a
comprehensive description of permutation decodable tyclic codes.

(.

Finé]]x, in,Séqtion 2.5 we presen% a permutation decoder which can be

-

realized as a simple logic circuit.

LA

2.2 Decoding Procedure

-

Let C(x)' be the transmitted codeword, E(x) be the channel poise.

1 . L
error pattem (EP), and R(x) be the received code’Worp where:

s ’ . 4

-
’
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and where Ci’?%‘ and ri- are elements of- GF(qS), .1;0,1,...,n?1.

)

The received word R(x), ﬁ% the decoder is: o Pt o o

R(x) = C(x) + E(x) . ‘ S (2

Voo

" A decoder.must process the received word so as to remove the error word

E(x), _the'informatioﬁ is then recovered from C(x).

“The basic step ‘of the ‘decoding procedure consists in computiﬁg

;hé‘"Syndrohe"{ S{x), according to the following operatfdn. From the
received work.defined in Equation (2.2) we get

BN
2 . v ) , -

~H =E-H . - | | (2.3)

Clx

where the product between ﬂT and any code word C(x) will give an
"all-zero" vector of dimension n-k. From Equation (2.3) the product
S Q.B . HT is called the érror syndrome and is independent of the

" transmitted code word C(x). The decoder must then produce an estimate
-é(x) of the E(x), in order to obtain an'estigate f(x) of the in-

~ formation polynomial.-

In the sequel we shall describe the decoding schemes which are

3

pertinent to our research problem. .

2.3 Sdmé Decoding Schemes for Cyclic Codes - . e

?

In the literature, based on the algebraic structuré ofﬂcyclic

U P Y
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codes, various dacoding schemes have been proposed; see for‘exadp]e
o ‘ A
\Refe)ences (8,9,10,15,18]. In general, there are two major categories

. of decoding techniques for the correction of errors of weight t or

;-

jlesé."The decoding techniques in the first category-are all based on
cerfain mathematical structureeMwhich are designed into the codes and
basitally involve solving sets of equations to determine the location
“and va]ues‘of the errdre. The decoding schemes of the second category,
while accomp11sh1ng the same goal, are based on simple structural aspects
of cyc11o qodes. They deternnne the correctable error patterns of the

e\elved word »n i more direct fashion.

: The most _prominent among the first category of decoding techn1ques
.1s the 1terat1on decoding a]gor1thm for BCH codes. [9,31,33,40]. Decod- -’

ing a rece1vediBCH code-‘word requires execution of three s ccessive

computational processes with all computations performed over the field

CE(di)f‘ These processes are syndrome calculation, solution of the "key
equation”, and Chien search [9,11,18]. The complexity, execution time,

and cost of this decoder and most of the first'category decoders, are in

' ;‘general much higher_ than those of the second category decoders 15,

18,32]. _

In this iheeis, we are more concerned with the second category of

decoding échemes._‘As will be seen, they are conceptually simple and

‘ quite easy to imp]ement.

" A typical decoder from the second category for any (n k: t) cyc11c
code of block length n, number of information pJaces k, and error- -
correcting capability t, is the Meggitt decoder [47]. for the correc-

tion of burst and random errors. From the 1mp1ementatwon aspect, the

Meggitt decoder is limited to codes for which n-k and t are small,



-
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« A practical variation of‘Meggift decoding is called "Error-Trapp- -

“ing" decoding [15,48]. A decoder bésed on this technique for an

(n,k,t) 'cyclic code can correct all crror vectors e of”weight t,
or ]ess; which contain d strfng of ac léast’ k consecutiVef;erbs. fn‘
such a decnder, if the weighf of tne sybdrome‘for cyclic code 1s at
most t, then the 1nfornatibn symbols (pos1t1ons) are correct (i.é.,

the errors are "trapped" in the par1ty check reg]on) ' Moreo?er, if the

.we1ght of the syndrome 1s greater than t,. then at least one informa-

tion symbo] is 1ncorrect [49] This decoding technique is most‘effec—
tive and it can be very simple, economlca] and quite easy to implement,
whenever app]1cab1e to the correctlon of random and burst errors. . -;”1
Since 1962, several ref1nements and genera11zat1ons of thTs 51mp1e-
decoding techn1que have been devised in an effort to extend, ‘the cap-_ \

ability and‘effect1veness'of the decoder to mu]t1pJe-error—correctlng

- cyclic codes [29.,49,50].

! In this sect1on we briefly present some of the most 1?90rtant
schemes whlch are of interest. ’

o In']962, Prange [29], introduced a class of algorithms for decod-
ing cyclic codes based on the use of information sets as a variation
offche\error-trapping fechnidué. In an '(n,k,t) code, an information
set 13 defined to be any set of & positfons‘in the code wode in which
the values cdn be specified independently. 'Thc remaining n-k positions
are referred to ds the parity set whose-elements are linear combinations'
of the contents of the informdiion set.

Information set~decddin§>algo}ithms are based on thc fact, that
if -there are no errors in the 1nformat10n set pos1t10ns then the re-

maining symbols in the- transm1tted code word can be reconstructed In

1
[
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[

may be described in thnee steps: first, select a collection of-infor-

“'ing an appropriate collection of inforMation éets However, all these

. code word. ‘As for the third step, the hypothesized error pattern is:

- 24 -

~aceordenee with:this property, the information set, decpding precedure

mation sets; ‘setond, re-encode each of these sets assuming‘that'the

symbols in.the information sets are free of errors; and third, cbmpare

-

“the résu]ting code words to the réceived sequence for final corrections.

For the first step, there already exist several methods for'select- a

-

methods. are ad hoc in nature. It is supposed that in the col]ect1on at

least one 1nformat1on set exists, where information set pos1t1ons are

%

free of errors. As for the second step, by .using th1s‘set,-produce a’ ‘ i

~

“ R _ i
obtained by comparing the resulting code word with the received sequence.

.This latter patte?n should be zero in the information set -positions arid

thus, should contain nonzero terms only in the remaining, or parity set,

positions. Thistimplies‘that_the portion of the error pattern contained

ot

in the panity set is, in fact:, identica1 fo the syndrome [10]. Such a

- parity set is said. to "cover” the error pattern, and a col]ectlon of all

the par1ty sets wh1ch cover a]] the error pattemns of a partvcu]ar code

is said to form a "coverlng”

In constructIng a cand1date code word, one- can elther re- encode the
se]ected ;nformatlon set us1ng the appropr1ate generator matrlx G, or ,'
one can simply compute a syndrome u51ng the appropr1ate parﬁty check |
matr1x H, to determine the error pattern [10 29 49]

' ,A notab]e decoder similar to the 1nformat10n set error-trapp1ng

'tethn1que has been given by Kasami [50]. He has shown that all the
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error patterns-can be correcied by choosing a set of polynomials
[Q.(x)]?c of degree k-1 or Tess, which are called "covering poly-\

nomigls". For any correctable erroy vector e of we1ght t or less,

t

. there is one po]ynem1a] Qj(x) in  this set ,qch that some cyglic per-

-

" mutation of - e agrees with. Qj(x& in’ k_ information positions.

Recently, Kasami's decoder has been further modi fied with the.view of

«

applying 1t ‘to non- b1nary cyclic codes [5}]

A]though these dec0d1ng techniques are rather simple in principle,

7

* " they may require the use of a large number of d1st1nct information sets

- h
.,0r covering patterns in order to correct the dominant’ error patterns

Th1s number,kfor codes w1th large code length m, and "t,~ can be

¢

prohibitively large. At the same time f]ndlng the coverlng pa%terns

4

for a specific code is not an easy prob]em [10]

N
[y

.
4

Another effect1ve decod1nq scheme be]onqwng to the second category ,

L

for certa1n classes of cyc11c codes is the ' maJorwty log1c" decod1ng [4,‘*

11,13,15]. Maqorlty ]oglc decod1ng is the 51mp1est form of "thresho]d .

decod1ng“ 5, 13,40].° For cyc11c codes, the maJor1ty log1c decoders

an a]ways be 1mp1emented as Megg1tt decoders, a s1mp]e logic c1ncu1try

~ that operates on a syndrome»to produce -a likely est1mate of “some f

selected error digits. " This decoding technique is appficable to both
block and convolutional codes Unfortunately, only & smél] class of,'

-

c¢odes can be decoded in this way, which have the necessary structura]

'character1st1cs [10, 11]
Here, we are going to' consider in detail a decoding technique
known as "permutation decoding" which is essentially an erroﬁ-trappﬁng

: technlque 1ntroduced by Prange [29] A ser{al decoder based on his

treatment was given by Mach]]Iams [49], who made use of code- - j C

N : '
AN ' .
. -
. . .

o el e Tt
- -
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preserving permutation sets’'to obtain k error-free positiods from

which the:rest of the ;odewdrd:céﬁ]d be Fgconstrucfed. Pgrmufation de-

S P . o 2 X o
. coding is best- suited to codes, which are invariant under a large group

B xtode, and o i x

’

of permutationsit9,18,47;49]:
~ f + ‘

" For every cyclic code’ ,C jin-the vector space- " of dimension n, -
‘,with symbols from the finite.field F=GF(q), whe#é. q fs the size -

- of the.field, there are. variéus'codé preéérving permutations In this

thesis we shall app]y the fo110w1ng grbup (T U) permutatlons

b O

1) "The group (T) periutations: .-

Nt e

5 R (addition mod n) '~";f. o (2.4)
v . v\’ ¥ u'."

v
-

where B j 0,1, 2 Seens n-], w stands for é_syhpd1 position* of the

R N o

ro. 3

-
-

™= I.(ﬁdentity)L:'q-+ w*n = w .
) : . I .

~

~Thus, a eyclic code in _Fn His a tode. which is invariant- under group
(T) permutations.’ These, permutat1ons correspond to a mapp1ng of the’
form: . X A\ T, o
o 1 (mod x"-1). (2.

' - .
v . .

EIN

* We identify the symbol positions by the numbers 0;1,...,n-1. This

,5notatipn is convenient for the.description of the permutations.

SO
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7 \
2) The group (U) permutations: . ." @
. i e , '
‘U tw>q -« (miltiplication mod n). - (2.6)
The group (U) permUtations'cqrréspond to the mapping:
. . 1 - n —_—
xJ (xJ)q (mod x -1)
for. § = 0,1,...,n-1 . - (27)

y

If 'q is relatively prime to n, the length of the code C, then the

mapping in Equatiaon (2.7) i§ an automorphism of F(x) (i.e., the ring

‘of po]yﬁemia1s in x over GF(q)}:and every ideal in F(x) s pre-

served by the mapping in Equation -(2.7). Thus, if we raise any code-

word to the boher g, then we get anopher code word of the same

4

weight, and the code is invariant under group (U) permutations.

From now on throughout the thesis: we sfa]] assume that the
cyclic codes are binary, i.e. that q=2 (This’analysis can:be extended
to non binary cyclic codes‘with' q>2 [29]). Thefeforg; n is‘;n odd
number (in order to_be primé to q=2). ‘in Equation (2.6), for nt'odd;

there exists a least integer v. Such.thai 2”=1 'mod n, and so we can

restrict to be between O and v-1 inclusively. -

Py

In fact, the g}oup (T) is generéfed by the cyclic-shift permuta-

tion T whose order is n. The group (U) is generafed by the

. squaring (the group (U) permutations contain the square-rooting per-

mutations which corresponds to the permutations with"i - -i in Equa-
Pl A /

Y

tion (2.6) or (2.7)) permutation " U whose order is v.

o R e e bt e o e

]



T -U:-q.T.y ) ": '. ‘(2.8)1'

. i ) s
f v N K

hence, we may represent every permutation 'in the group (T,U) in the form

ut.T®, with 0<g=<n-1, ijEY;T; Every power of U leaves the zero

~

position unchanged, and no pdwer of T (e§cept the identityi 1eaQes

iB ='Uh-Tll

"0" unchanged. Thus, U'T “ifand only if i=h mod v and

X

()

g=g mod n. 1t 'follows that the binary cyclic codes for n-odd are iﬁi

t

variant under the group (T,U) perﬁutations, and tHe group 1s\of order
n-v [49]. \ )

In addition’%ovthe abave pénnu;ations, there exist other éet&;éf
permutations for which certain codes”are a1soAinvariqnt. ,rér example,

I3

the extended .binary QR codes are invariant under the, doubly-transi-

~

’

tive-projective unimodular group. Also, Golay codes and extendéd p
Golay codes are preserved under the MatHieu grouﬁ [9552,53]f In thi§ ‘ O
connection, we may point out that the Golay code 9s pe;mutation decod;

able in the sense of the definition we have used in this work..

2.4 Permutatioq Decoding of Cyclic Codes i ,

let C be an (nfk,t) cyclic codé over GF(2). + The code i;‘;'
. 4 n A N ’ !
generated by g(x) = %T§} , wWhere n 'the:code length, isAQQd and \\Y\

¥

h(x), the parity check polynomial, has degree k. Given any k-bit
1nformation‘po1yn0miaf' I(x), the corrésponhiﬁg code‘po]ynquaf‘is

of thg form C(x).= I(x)-g(x).

~
\

Clearly, the group (T,U) permutations given in Equations (2:4)'

©

.o

o - R +



-and (2.6) correspond to ponnqhia] representations, and can be applied
. to bibafy‘cyélié code bo]ynpmia]s,vc(x)ec as follows:

\
’ . v .
Y . P

TB[C(g)] f'xsc(x).mod(xn+l), for 0 <8 < n-1,

- w
]

0

M0 - [C(x)] mod‘(x”ﬂ); for 0 <i < v-l,,- -
A .

‘ - . . -

Since‘every binary cyclic code is.preserved by this group of permuta-

tions, each of 'Te{c(x)ﬂ _and U]tc(k)] are code words if C(x)
is a code word.- That is, the new polynomials (xB~C(x) mod(x"+1))
i : , \
~and ([C(x)]2 ~mod(xn+1)) are simply C(x) with the location index

permuted by w -+ w+8, and w > 217w,' respectiveiy. Consequently if
1
B

¢(x)€C, then’ Ui-TB[C(Q)] = ([C(x)]2 X mod(xn+1»ec is also a code- .

vord. -~ ' - } '

Suppose R(x) = C(x) + E(x) s the received code word polynomial
where E(x ); the error.patfgrﬁ polynomials, is of‘weight t por less.
Dividing R(x) by g(x), we have R(x) = a(x)-g{(x) + S(x), where
S(x), a po]ynonﬁal of degree < n-k-1 is ca&]éd the syndrome of the

received word R(x). Since R(x)aé(x) = C(x) = I(x)-é(x), the
syndrome S(x) s also the remainder ;fter dividing E(x) by g(x).
Therefore, it can be shown that the syndromes of (xB~R(x) mod(x"+1))
and ([R(x)]
of (xB-E(x),mod(xﬁ+1)) and ([E(x)]21 mod(x *1)7 by g(x) respec-
tively.. Consequently; the¢;ypdrome‘of the penmuted,rece1ved word

i C -
5. (x) = (2 [R(0) 7 mod(x'+1)) mod g(x) 4 T

} o«
2 mod(x +1)) are equa] to the rema1nders of the d1v1510ns

- i

N e bt s eemeYmn e e o = e
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R

S. (§)= (xB-[E(x)]ZT moﬁ(th])3 mod éjx) >

8 . [Eix)JZ} mod y(x)-.. .

[N

: .Hecodihgkprdcédure.

. -

'Ne define “E{(x) to be a permutat1on decodable

CYC]IC sh1ft and squar1ng 1f there are va]ues of i

nft (x ) (xB [E(x ] 1 mod(x" +1)) has* degree n-k-1

1B

L (20

. we-;halﬁ use the Sig(x) in Equation (2.10) to develop the permutation \

4 "
[ - Y
' -

T, f

(PD) pattern by
and '8 such that

or less. That is, R

a]] the errors 1n the permuted E(x ) afe confined to the first n-k

| \parqty~check p051t10ns and Sie(x) = Eis(x)' ‘In this

- -8 271 n
; pattern 1s ( S ( )) mod(x #1). If these cond

B hold for every E ( ), such that the error E(x)

\5 <v. then wé say that’ the code C 1s “(s+1)- ste

connectlon we note that S ( )} has a weight t or
E (x) has a degnee n-k-=1 or less. This provides

way ef fiﬁding whether or not an error E(x) of a we
PD. B

Here, in the analysis of an (n,k,t) cyclic co

n-symbel error pattérn E(x) with weight t, by
v~ ° - v :' '

By B :
T+x, 1+x 2 rooax B

"'E(ﬁ)

* Observe that sihce g(x): divides X™+1 then the

X"+1. can be droSped, -

-

cdse, the err;r
itions on i and J
is PD with i=0,1,
p PD In thlS

lessifand only if

-the decoder with a

§

ight t or less is

de, we represent an- '

(2.1),

reduction modulo

R
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where 0<B,<8y< .4 < B, j<n=1 are,the error_positions. For simplicity -, *7%

¢

“of analysis’it .is -assumed that dne of the errors is fixed at the posi- -
‘v . s f ! -f

tion 0 (30=0). If the code is 1-stép PD, then E(x) must satisfy"

one of the fowﬂom'ring conditions:

4 B.] _>_k + ]" ' s I
or - “ '
. » — ' .
$Biay m B2k 1, for some “l<ixt-2, . (1-13?-)
or - .
© R —
{Bt_]f_n-k—%“ﬂ .

Each of these conditions imwigs_ that some, cyclic shift of tﬁe "patterﬁ

ast) n-k positions, and

hence the last (first) k positions become error-free.'A

J 0 fi-k-1 n-1
X X X ... XX X X ox X X X
- " - J M v~ yJ
n-k positions - L k positions

Hence, in general, a codle is s-step PO if for all error patterns
E(x) = 14x @ +...+ x/{r. there is an integer j , 0 < i <s, such

that B} = 2J- 8, mod m, % = 1,2,...,t-1 meet conditions (2.12)

It is clear thdt in the,naﬁslysis,' conditions (2.12) will be

3

vt A




=
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.
E

. are used in this work.

4
L

. - 32 v

used over and over again.
’ ‘ ! Yo ' » .

From the above, it can be seen that permutation decoding involves

only the positions of the errors. Therefore, the results that we obtain *~

in this work are app]icabié not .only to binary cyclic codes, but also
to cyclic codes over GF(ZW), for m>1. " For example, the (7,3,2) Reed-
Solomon code with Tt=2  ogver GF(23) is 1-§tep'Pb [46]. " ."

Next, we give a decoder based on the group (f:u)‘permutation that

\ ~

t

' 2.5 Permutation Decader

A decoder based on the pérmutation/decoding concept can bé prac-~
ticé11y<imp]emented. Consider an (n,k{t) binary cyclic code with
gederator polynomial \g(xji Suppose that we shift the received poly-

%:omia1 R(x), from higher-ordef—term-first, into an (n-k)-stage shift
register divis{on circuit to produce . pO(X) = R(x) mo& g(x}. As soon
as. the entiré R(x) has been shifted into the circuit, the weight of
oo(x)‘ in the register is tested by an° (n-k)-input _threshold gate
whose output is "1" when t or fewer pf its'inghts'are nonzero;
otherwise, it is "0". This,will imply that errors of E(x) are con-
fined to the first n-k check positions, or that some errors in E(x)

Tie in the Tast k poSitions,‘rgspectively. Then the degpding pro-

T ————

cedures can procéed as follows: ‘ /

If thé code is I-Step PD, tHen the errors of E(x) will be brought
to the first‘ n-k check positions with at most (n-k-1) qxe]ic shifts
(x), - ' ) )

of
°o

{

i e K ma e deam Sot
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" If the code js é;step Pb, and (xi'o (x) mod‘(xn+1f) mod .g(x) haé
weight > t, féf_'i=0;1, ce., Nek-1, the threshold gate output is 0
’ —Theﬁ po(x) through a wired squar1ng c1rcu1t is squared and the pro-
duced pg(x) mod (x"+1) polynomial, from higher—order-tenn-first, is
shifted intd® the division circuit. The weight of (xi-pg(x)‘mod-(xn+1))
mod g(x} polynomials are tested. We find the errors with at most

2(n-k-1) cyclic shifts of xi-po(x) mod g(x), and (x 0 (x) mod (xn+1»

L]

mod g(x).
In general, if the code is s-step PD] then at most S (n-k-l) .o
S..
cyclic shifts of o (). oo(x). .. (x) will comp]ete the - decoding

procedures. .
A3 an example, the implementation of a decoder for the'binarx

(31,15,3) BCH code generated by

9(x) = py(x).p;(x)-p4(x)-ps(x)"
el 2

xSy +x5)(1+x+x2 4+x5)

(1) (14x +x5)(1+x

]+x+x4+xa+x11+x12+x15+ 6 N

~L % .l' . N
" where pi(x) is the binary minimal polynomial of a], fﬁ=0,1,3,...}d-2
.5' '

and o is a primitive element of GF(2 x [46], is shown in Figure 2-1.
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code ]éngth n of‘ an’ ('n k,t) bmary cychc code C.- This is
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This permutation decoder, in addit;n' on to-the bir!a‘ry c_ycli(\:‘c‘odes
can be generalized to nonbinary codes over 6F(2") with some mOdi‘ficaf
tions. As an example consider the (31,15,8) Reed—éblomon code with
ninimum distance, d=17, over GF(2"), where m=5. The field GF(2°)
is formed by a primitive po]ynom1a] p(x) = 1+x2+x5 with o as the
primitive e1ement of the fle]d The generator po]ynom1a] .g(x) for :
this code is . |
9(x) = & (xra' ) = 9 -, x"’+g15x1,5 ot gyxtgy,

f

The -feedback muhi]p‘hers g ,g.| ees 916 ar‘e‘powers of | a . Each non-
binary element’ of GF(Z ) can be expressed as a 5-tuple over GF(2).
Therefore, the hardware 1mp1ementat1on of this nonbinary code will be

5- tnnes larger. Th1s 1mphes that to*accommodate each symbo] we re-
quire a 5- stage Shlft reglster‘. " For the division circuit part we requn‘e

addition and multiplication operatigns, in GF(% ), and for the sguaring cir-

cuit part, squam:ng opera'tions_»are needed. The§e operations must be
done on the field elements of’ GF(255 for tf\e selected minimal poly- '

nomial p(x), and they can. be impleménted éimi]ariy to those circuits -

given in Re ferences. [9,15]. - fHe' deéoding proéedures in this case wiltl

fo]'low the same arguments as for the b1nary case.

In add1t1on each cychc smft of patter'\s GF(2 ), will require

~
G

m- b1t Sh]ftS at a time. L ) ,

In Chapters to follow, we"wﬂ]:present .exact lower bounds orj the

)

achieved by applymg 2- step and 3»step group (T U) per‘mutatxons

. . ' .
[ ‘ ) h [ -
. ' ,
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-

Furthermore, some general results for cyclic codes which are not per- -

4

mutavtipn decodable* are also obtained.
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il ve _mg'an' that 'the consideration of ~S°B(x) R
,"( wﬂ.} not yie]d-(’gie@ode) JEEx).

';‘.*>_l~'!hen .we say the code {s not PD, for some  (s+1)-step. permutations,
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CHAPTER 3

2~STEP PERMUTATION DECODABLE ‘ -

CYCLIC CODES

3.1 Introduction

o In Chapter 2 we gave a brief review’ of several decoding techniques

&

of the error-trapping type available for cyclic codes. In that direction, ‘

the. concept of ’Eennugation decpding' technique and the pronedure of the
décoder were intrc;a’[i:éed. In this chapter our main goal is to derive

. exact bounds on n in order for an (n,k,t) cyclic code to be permutation
decodable '(PD). Therefore, we investi‘bate‘progressive]y the exact lower
bound on the code length n,'rfor the ‘ (n,k,t) PD cyclic-code ) to‘ be i’D
"u‘sing only the pe‘rmutation Ui-TB for i=0,1,...,s<v and 6=~0v,1,..'.,
'n-1, where v 1is the order of group ('U) permutations. :

In this chapter, we examine the capability of 2-step permutation
‘decoding for cyclic codes. In Section 3.2, for the purpose of com‘pari;- .
sion, we provide a-brief summary of the lower bounds previéusfy pre-"
sented in the literature. In Secti'on 3.3 we introduce some pre]imin-
ary notatxons and definitions in order to make the chap‘;er se1f-contain-
ed. Section 3.4 explores the exact Tower bounds on code length for
(n,k,t) 2-step PD cyclic -codes. In ~Sect1on 3.5 we given the results
for the ,godes which are ‘exceptions to tne bounds obtainen in the pne-r
vious section f.e. k=2_'an‘d-t=2. ’E.i\na_]]y, Sect‘ion 3.6 15 a sum;nary of

the results ‘derived in this 'cha"pte'r’and also presents numerical results. "

R T N
P

e
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"' " 3.2 Summary of Known:Results: =

’ . - KR o B . .
" Concerning _ﬁhe available results about the permutation decodability

: of cyclic code$ using the- group (T,U)'permu_t,a‘tic.)hs it is known that:

s

B » ‘ i
RN . Y '

~ A1) A binary (n‘,k,t) tyclic code -C is 1-step PD if and on(ly.
if o e

K1 : oL : "
H <, ’t“ ) . - ‘ . ':' . (3".])

that is, w1th Just cycdic’ sh1ft permutatwm [49] This 1mphes that

L3 -

aH s1ngle error-correcting cyclic oodes are 1- step PD o
In References [46,54 55],«the authors “habe mam]y e]aborated on the '
. permutation decodab1hty of ce,rtam 1=2 amd J érror-correcting cychc

.codes. In Reference [46] we have presented the foﬂowﬁg new result,

E
‘

. ‘2) The tmp]e error- COrrectmg (n k 3)‘ cychc codes with n odd,
and n.< 2(n k)+l or equi_valént]_y‘

r AR -
“
- . . . i

kK 1.1 * . \.
S owiztRe, s oo A

- - % "

‘are-PD*, if i mod 30. If nmod 3=0, the only error patterns not .

- ’
: PD are of the forp - Co
bl .
3 v s -~ B
\ R ‘ ¢ - ¥
[ : , ' - . \
o - . '
) ’— 1 ~ T ' - ‘
A . R . -
* »3 * -, . s, v,
. K When we say that an (n,k,t) cyclic code is PD, we mean that such a ,
>, ' code’wil] be.permutation decodable for some s(s+1)-step permutations,
' ' [} . , R ) s b 2 ) ! '
¢ " -, . ' with ‘.Ois,< \J.' a o . ..
, .
’v ;\ i . {‘ v
- P ' ¢
‘ ) £ =

s
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x| (14x ¥ X ) . ?or 0<i<ned. | Jl A “(3.3)

3) In Reference [56] it is shown thet doubi‘e‘-err‘or'corr‘ecting
cyclic codes with %«g— are 2-step (ﬂ) - Later on we shall obtain this
, ~. L
result; but in a manner different from that found in [56].

4) It can also be shown that the double-error correcting (n,k,2)

cyclic codes with . ' ' : - . '
. o ‘
kK .4 ] ’ Wy
ni5n (3.4) (
are PD.\

!

In References [56,57] further investigation has been .done;  the
main result’is the following: ‘ o
b

5) The (n,k,t) binary cyclic codes with t being even aﬁd rate

Koot - | (3.5)
S t-

o+
A

1 v

2 ‘ . oy
are 2-s'tep PD. This result with respect to Equation (3.1) for even t,
the lower bound ‘oh n will be decreased only by \‘g . Later on in
this ghapter, we present'a tighter lower bound which is exact and is as

tight as it can be. Also in References [56,57] the fol‘lowing conjecture

was made:

°

Id

6) The (n,k,t) binary cyclic codes with 't being even, t>4 and rate



i
rmu..«m.m -

< 40 -
' s ,
i 10k, 1 ’ S ey
CRITR t(3.6)
are 2-step PD. .
3.3 Notation 'and Definitions - o L .

| I ®,.52 et
Let an n-symbol error polynomial "E(x) = 1+§ T L,

. Qi;h wejght t, over GF(2), be répresentgd by a vegt@r e = {ei, i=0,1
,...» t=1) called the error pattern (EP) where 0.eq.e5...., .7, “are

* the error bbsitions J < e <‘e2 <.y g For simplicity jﬁ:anélysiS',
it is assumed that one of the errors is fixed at the zero position

. (e0=0). If thé\codé is not correctly decodable by successive cyclic
ishifts kthe group (T) permutations onJy), then E(x) must satisfy

the following conditions:

e <k,
&8 2k * |
€1 2 n-ks ' B ' (3.7)

for all i=1,2,..., t-2. : ,
Hence, there is no gap‘of length > k in the error pattern, and we“;ay
that the EP is not i-step PD. By the "gap-length" Gn’ in an EP we

mean the pumber of consecutive error-free co‘rdinate positions between

<any two consecutive error locations.

- The pattern associated with the result of permutation by: u' of

r




, . ' /
- 4} - o , /
Etxl) , > i.e., the pattern associated with :EiB(x) = (x‘B-l[E(.x)]Zi mod(xn+1)):,'
will be referred to as l"the EP in ~R1.~domain",~for any 1=0,1,...,5 < ~v,.3
and for all values of 8. It i§\desirab'1he'; if pos's1'~b1‘e, t.o have an EP
in an Ri-‘domain, having a minﬂnum i, \s;Jch‘ that there exisfs'qt 1‘east a
" gap of length | > k in the pattern. Th‘en, by definition, the pépter.n is
(1‘+])-step P,D.l Note that, s'ince the codes C, aret ﬁyc]ic,"we can .'cycl‘ic—
aHy' shi ft the. EP whenever desired. ‘ '
In this work we wi 1'1_ be concerned with the ;;arii:y of thel error”pat—
ter'n'ls for all R.-domains with i>1. SuppoSe‘ that ‘the EP-in Ri—dbmain is
not ;{‘1'+])-step‘ PD. Then, the 'colorresponding error Tocation in R.”—'

.domain - can be classified into two classes. Name]y, class 1 containing

the fixed-position (F) errors, class 2 containing the nonfixed-position
«

(NF) errors. The F and NF errors in R, domain' correspond to the

i+]

error positions in Ri‘-.domaiﬁ which are located before and after the [%j— '

th location in the pattém, respectively. Obviously, for n odd, the

W

.F and NF error positions. are evén and odd-valued, réspective])}. Here,
in figures and tables we present p1 ctorially F-as "0" and NF as "x"

pgsitions. For example, in Figure 3-1 we are cons1der1ng the error

polynomial E(x) = 1+x7+x]7 in Ro-domain for the (23,12,3) Golay

Y

code’, whi'ch is nof 1-step PD, and the corresponding EP in R]—dBmain is 3

not 2-step PD either.
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" We then distinghisﬁ four types of patterns; namely,//a’
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COORDlNATE PJ_ACES oF
! THE COD‘E

(R )- ob’m

cand o,

in’' any Ep of an R d0ma1n for 'i >1: The two pr1nc1pa1 patterns, -

p——

N -

+

name]y the a- type pattern ‘and the B- type pattern, correspond to any

pair of consecut1ve erroﬁ 10cat10ns 1n an EP,

N ’ >
i v

;.f1ned as: . . \

- 6w 1) aﬁtype'batte%ﬁ of the forms
) .;. , - ‘. \“‘..- ' K (0

': T 2) 3 type patterns of the forms. B

vy

1

[ {0 x). or (x

-

0), or (x « ,x),. =

0)..

These patterns are dé« -

The other two are comb1nat1ons of these two patterns, namé]y, the v- type

pattern and the g~ type pattern, cowrespond to any three and four conse-

cut1ve‘error 10cat1pns in an 5P,wrespect1ve1y

fined as:

These patterns are de-

v

¢

(R.i )- DOMAIN |




‘ 3) y-tybe pattern; the combination of two B-tyﬁe patterns is of
the form: - C

0 x 0),or(x 0 x

4)1 ‘o=tybe pattern, the combination of two «-type patterns, is of

" the form:

(0 «x X 0),or(x 0 0 «x).

-

The number of a-type, B- type, v-type, and g- type patterns in an EP

L

are dgnoted by Na, NB’ NY, and NO, respectively. In fact, in the

worst casé analysis, N= N

g EXAMPLE 3- le 7 ' . ' "

1

As an examp]e, consider the error po]ynom1a] E(x) in Ri-dohain,

—

i ;/1; for the (49,15,7) cyclic code as--

3 15, 20, 30, 37, .44

E(x) =14+ x7+x~ +#x™7 + x7 +x7" +x y e
a XY
. 8 a B o 8 "B B
- 0 x X 0. 0 X 0 ’
\_; oW 4 .
h M ‘ N N v J
ag o}

‘s is ‘depicted in this EP;1W{;h/reference to NOTE 3.3, there are N_=2

of a-type and Ng=5 of e-type patterns. In the same EP, there are

NY=2 of y-type and N ;2 of o-type pattefns.
) we note that there may be many other patterns in an EP. However,
in our ana]ysms in which we cons1der the worst cases, we will be only

.

cdncerned with these four patterns.




‘;the following important notes and Lemina 3.1.

»

~ NOTE k3.4 S R - ‘ - . \

b e g b

Finally, we proceed to give the main results and their p?oofs after

<

*

NOTE 3.1.

u - ’ . ¥

A11 the vafiables with¥subscripts "e™ or "o" are consjdered as even,

or odd-valued var{ables, respectively.

NOTE 3.2 o 7 . |
'i'If should be clear that Wheoﬁer or not a cyclic code exists for a
, giv;o‘rate is not pertinent in the derivaoioo of'the bounds on n:
| {“That is, when we say that an (n,k,t) code is (s+1)-step PD, we

mean that such a code is decodable with SD (x), S] (;),...,S (x);

8 S8

Arr *

| we do not' 1mp1y that such a code exists.

NOTE 3.3
The zero coordinaie p]acg, in the analysis of the EPs id all hi' P
domains, 13}, has a "double parity" feature. This can easi]y be
seen 1f wé consrder the errors -as bexng located around a ring .
where the 0 and n coordrnate p]aces co1nc1de with each other. For »
n odd, the-zero 10catwoo is considergd as an even-valued number ‘ ;
PR : .

(F) for the first gap, and it is considered as an odd-valued number
(NF) for the ltast gap in_the pattern.

> 1
.
S « s

According to NOTE 3.3, the' zevo 1ocation has a double parity fea-
tuoe and s cons{derod‘an odd-yalued number (NF) equal to n for

+ the last NF in R, 1—domain, i>0. Therefore, theszero location
and the last NF error positions correspond to the "end-gap" in

Rirdomain. We denote the end-gap in a domain as EG in the text. ' "

i
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)

NOTE 3.5

. .2 ' . .
*In this thesis, whenever we refer to a code we mean a binary cyclic-

code.

° y

LEMMA 3.1
For t odd (even)gthg number of u-type patterns N, in an EP is

even”(odd) , where the zero is being counted as an even-valued
»

number. <

Proof of Lemma 3.1

. The 12mma will be proven by mathe;atica1 {nddétion on t.
For t=1, obvio;s1y Nu=0. ‘
Furthermore; for t=2, N_=1, because it has been assumed that one
error is located at the zero coordinate place. Thisﬂerror will have a
* double pakity feature. Therefore, an additional error of either parity
(odd or even) wi]],produce one and only one'a;type pattern in compari-
' '

son with the zeto located error.: Thus, the lemma is true in this case.

Finally, let us assyme that for t=§, an odd number, NQ is even,

4

and for t=t+1, an even number, N_ is odd. Then, since eachhéddition-
Y ‘ ;

, -al errop in the pattern causes Na to increase.or decrease By uﬂity,
the parity of ’Na for'\t=r+] is different from that of *Na for t=1.
‘Thus, for odd‘ T, 1 is even, and Na is odd; and for even 1,. t¥1
‘is odd, and Nq‘ is even, This completes the proof of the lemma.

Now, by applying 2-step pennutation? we obtain the following exact

" lower bounds on the code length n.

®
3 fad

Mo

¢
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3.4 2-Step Permutation Decoding

We categorize the 2-step PD codes into two groups:

1) the codes with an odd-valued t.

11) the codes with an even-valued t,

as follows.

3.4.1. The Case of t odd - . / / _

The following theorem and its related corollaries present tight
lower bounds on n for the (n,k,to) 2-step’ PD codes,with k even or
-1 . -
odd.

Before going to the next theorem, the following corollary is given.

-

-

COROLLARY 3.1

-The proof  of Corollary 3.1 is a direct consequence of Equation (3.]).

‘THEQREM 3.1

t +
Y428, 2> 7? , and the

~ The (n,ke,to)_codes with n=to-(k ‘
(n,ko,to) codes with. n=toko+22, 2>1, are l-step PD.

e-]

The corresponding case where 1<< 7?» will be ‘considered in the

following Theorem. -

¢

The (n’kelto) codes C, with "=to(ke'?)+2£’ for 1<e< %? N =
.t,23 and k,>4, are 2-step PD. - .
‘ v
Proof of Theorem 3.1 .

This theorem will bé established by using the principle of contra-

diction. Suppose C 1is not 1-step or 2-step PD. Then, the’different

[,,/
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tynes of patterns y and o in\R]—domaing for any error pattern which

Nl

s not 1-step or 2-step PD, are, in the.worst case, as shown in Table

3-1. Note that the other tynes of.patterns will result in lower gap-

lengths (see Appendix).

TABLE 3-1 )

Gap-lengths associated with o- and y-types of patterns (with

)

0

-

gap-length < ke) in R,- and R,-domains

Type of | No. of | The type of patterns and| The corresponding gap-
Patterns | Patterns | gap-lengths in R]—domain lengths in Ro-domain
“f-ke'T>; j
—)‘ ‘4—
0 X 0
- , ' ko2
o No | rr +—————5?ke-1 — + i~‘2 + ke-]
, fx 0 0 _x
) "‘(k -1 ‘
) o =e
| <k -2—»]:— <k -2 lf-
[ . . - e '—?
’ : 0 0 _
v NY or —< Zke-3 —_— -+ irke-z
. - 5ke-2"+ i“ke_T‘_
' X 0 X
1 X 0 > < ke-Z (éentral-gap)
1st NF - Tast F__

\

"NOTE: The central-gap is referred to as the gap in Ro—domain which

corresponds to first NF and Jast F error positions in R1-domain.

P
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In Tables 3-1 the third column shows the type of batterns and the as-
sociated qap—fengths in R]-domain. Facﬁ'o-type pattern in R]—domain .
corresponds to two separate gaps in RO—domaihs., One of these ;orresponds
to the "internal" o-type pattern.(the pattern of the form (x x) in

the first _row or of the form (0; 0) in the second row), ah& it has a

, k -2
gap-length 9 i-l%——. The other gap corresponds to the "external"

- a-type pattern (the pattern of the form (0 0) in the first row or of

the.form (x x) in the second row), and it has a gaﬁjlength g < k1.
Thus, the *otal gap-lengths in Ro-domain is g]+g2 as shown in the

last column of the table. Each y-tyoe pattern in R]-domain corresponds
Fo a gap of length gY :_ke-z in Ro-domaiﬁ. Hence, the totai number:

of gaps is t which is

t = 2N +N + ] .. .
0 g Y . )

where 2N0 is the total number of gaps associated with o-type pat-

r

terns, NY is the tota)/number of gaps associated with ~vy-type pat-
terns, and the unity term signifies with central-gap which corresponds

to the first NF and the Tast F error positidns of the EP in Rl-domain.

The central-gap in column 3 can be considered to be gcfke-l. Here, we

- have assumed that by cyclic shits (whenever desired) of the EP, the

central-gap g in Ro-domain is made _ike-Z. This is possible if

n<k+t. This is indeed the case presently under consideration, other-

wise the codes will be 1-step PD.

Thus, in Rb-domain, by using Table 3-1, the;ﬁfﬁ]owing relation-

]

ship can be obtained:
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to t N (aqta,) + Na & +9.x tolke=1) + 26,

or )

\ No(ke"l) < ) - for 2 _>_ 1. ' (3.7)

[f the LHS of Equéfion (3.7) is required to be nonnegatijve (kei"'
. and N,>0), then. i i3 required to be non-positive. However, this lat- -
ter requirement is in contradiction with 2>1.,

Q.E.D.

The fo'Hovﬁng two corollaries are concerned with the (n,k,t) codeés

which are not 1-step or 2-step PD.

COROLLARY 3.2

. =]
The (n’ko’to)_ codes with 'n,=to'ko are not 2-step PD: .

y o«

COROLLARY 3.3

If-the (n,k,t) code is not 2-step PD, then the (n',k,t) code with

n' =n-2¢, 21 is not 2-step PD. -
'\

L

The proofs of Corollaries 3.2 and 3.3 are not given here since

these corollaries are special cases of The‘orems 5.2 and-5.3, respective-

ly, which will be givén in Chapter 5.

t

According to Theorem 3.1 and Corollaries 3.1, 3.2, and 3.3, the

bounds on n, for 2-step PD codes witﬁ t -odd, are established.

3.4.2 the Case of t Even

The following Theorems 3.2 to 3.4 specify the exact lower bounds .




.JHEQREM 3.2

on n, for 2-step PD (n,k,te) codes, with k odd or even. TFirst, -con-

sider the codes with odd k.

/ :
.
. .
N B
f
;

: = 9
The (n’ko’te) codes with n = ko(te-])+2£, for 1 < ez s ko—>-3’

_te_>_4', are 2-step PD.

Proof of Theorem 3.2

7 .
According to \CoroHary 3.1, the (n,ko,t0 = te-l) codes with . :

n=t0-k0+21, 2>1, are l-step PD. Here, we first prove that the (n,ko,to=
te-]) codes have at least. two gaps of length > k0 in Ro—o’r‘ R]-domain.
Then, by addi’n\g an extra error te = toﬂ to the EPs, these.pat‘:terns
remain 2-step PD.

We proceed to prove this theoren.) by using the principle of contra- -
diction. —

Consider the EPs of weight to = té-] with exactly one gap of
1erjgth > ko, and referred to them as “Ao-'g}ap", in Ro—domain, and as
“A']-gap", in eromain.. Then assume tﬁat: |

LR P 2k'o“-» for i=0,1 (3.8) .
Otherwise, if either of the gaps AO or. A, were 1,2'(0’ then by in-
troducing an additional error to the patterns in each of these gaps,

as pictorially shown in Figure 3-2, . "

e et oL P i ¥ SOt M b 7 4o
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N =
(! - .

P 6, o,

4 A hY ' A Y
[ e N
_ o

' Y 5>~ ADDED ERROR
No- or ArGAP. ' o :

Figure 3-2.  The additionaT error in eithér A5, or Ai— gap

the resulting two gaps §, and 6'2 should satisfy

Syt 8+ 122K,
or o '

. . \
6] + 62 2- ZkO-J'. ‘.

-

-
«

This will imply that 5] o‘r" 62 1,k0, in which case the EPs are de-

codable, Therefore, the ‘asslumed_l\o- and A]-gaps should be éuch that

ko< & <2k -1, for i=0,]1 . (3.9)

v
- \

The different types of pattern in R]-domain and their corresponding

gép-]engths in Ro-doghain for any EP which does not have a gap-length

.
. .
A

[

b




6_?"

> ko’ except for

E7rab1'e 3-2.

A

0
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and A, are, in the worst case, as shown in

TABLE 3.2

Gap-lengths associated with a- and g-types of pat‘terné (with
’ <

gap lengths < ko) in RO— and R]—domains.

Type of T No. of The type of patterns and | The corresponding gap-
Patterns | Patterns | gap-length in R]—domain lengths in Ro—domain
0 0

, ko-3
a N, < k0-2 — M
X X N
X X 0
B NB k-1 — = kgl
L) 3 .
X
[}
aorB | ko € 0y = 2k0-1 kg < Ay _<_2k0—.1

_ Noté that Na and NB sare respectively’ the numbers of ao-type and 8-

*

type patterns in R]-domain, without considering the type of the pattern

’

associated with the A]:gap in the EP. Note further that the B-type

- patterns do not correspond to a snecific gap in RO-dOmain. Thus, for

the worst case analysis, each a-type pattern in Ry-domain corresponds

to a gap-length 9y <

-

0

5 and the g-type patterns in R1-domain corres-

ponds to a total of Né = to-Nu-l gaps in Ro-domain each of which is




S e T

of length q f_,ko—l where the minus unity term in N!

8

signifies the

Ag-9ap. Therefore, from Table 3-2, the estimation of A,-9ap in

Ro—domain is given by
to ¥ Naga ¥ NBgB T A2 tokto 2,

or
N
u L
Ay 2 5 (k#1) + (k,-1) + 24,

From Equation (3.10), if Nutg 2, then

A0_>_2ko+22 >2k0,

which contradicts Equation (3.9). Thus,.

Depending on the pattern associated with the A]—gap, if it is of °

has to be less than 2.

.

type «, then for t odd Na is even (Lemma 3.1), and there should

be another gap of type o in R]-doméin; and if it.ig of type B, then

Na should be zero. We investigate these two possibilities through the

5

following two lemmas: -

LEMMA 3.2

«The pattern associated with the gap A is not of type «.

~ <

LEMMA 3.3 -

The pattern associated with the gap Ay is not of type 8.

Proof of Lemma 3.2

From Equations_(3.9) and (3.10) we have,




fa 3k0-] .
2k -1 > Mg2—5— + 28, for 2> (3.11)

-

We can assume that by cyclic shifts, if necessary, on the EP, thevangap
~ 1s the First gap in Ro-domain. Thus, the corresponding gap iﬁ R1—domafn’“
is referred to as the "F-F region", which.is shown pictorially in A

Figure 3-3 (The F-F region is 3ﬁ3k0+4z).

Figure 3-3. The graphical correspondence between both R

O-and

R1~domains.
The A]—gép should occur in the F-F region. Otherwise, the ad-
ditional egror te=t0+1 {f positioned in either AO- oraA]-gap, will
‘Ue a decodable EP by one or the other of these gaps. There must not be
more than three NF iypes of error positioned in the F-F region. Otherwise,
N“ > 2 which is not admissible. Morcover, since the A]-qap is sup-
posed to be in phe F-F region (it has a-type pattern by assumption),

there must be more than one NF error positioned ¥h the region.

Suppose, there are only two NF errors iﬁ the F-F region. This will

R 4
‘.
“
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imply that there two NF errors are the errors associated with the A-9ap,
and that there should be another o-type paftern in the region outside
the F-F in the EP.

Then, in the worst case, only two cases need to be investigated namely:

Case i
Let the a-type pattern outside the F-F region be of the form (x x)

so that the last error position is an NF and that the last F in R]-domain

t -1
* corresnonds to the (—%——)-th error in RO-domain. Thus , the second
Fand the second NF error positions in the F-F region correspond to the
t +3 '

second and, the g )-th error po;jtions in Ro—domain (denoted by X °
and Y, respectively in Figure 3-3). In this case, call the NF-F gap
in the F-F region as the "b-gap". Then, we can estimate the length of
this gap in connection with the corresponding error locations in RO-

domain, as follows;’
b =2X - (2Y-n) - 1,
and an upperbound for ¥ is

t,-l g _ !

Therefore,

) t0-1 to+1
b 12(/\0+1) - [2(/\0 t (ko-l) * )‘- (to-kof:ez)] -1

= ko128 > K , for 231 I (3.12)
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v

fhis implies that, in addition to the Ay-g9ap, there is another gap

b > k0 , which is a contradiction.

—_———

¢

Case i1
Now, let the a-type pattern outside the F-F region be of the form

(0 0). Then, the last error position in R]-domain will be an error of

+
toH

2

Rg-domain. Therefore, the first NF in the F-F region corresponds to the
+3 . . ‘

( °2 }-th error in the Ro-domain. Furthermore, it is assumed that the

type F. Thus, this error will correspond to the ( )-th error in the

fifst gap is not 3_k0 (otherwise the EP is decodable in R]-domain).

t +3 .
Therefore, the ( g )-th (i.e. the g, +]) error in the Ro-domain
- 0 A
should be: 2
2 e n<k_ ,
to+1 -0
2 .
or .
ntk
. e h
t0+1 2
2

‘ Substituting for e vie get:

t0+1

:OY‘




Hence, the end-gap is EG(n,e ) = n-e >k , and hence the EP is
‘ t0-1 . to-l-— 0
decodable in the Ro-domain, which is again a contradiction.

Suhpose that there are three NF types of errors in the F-F region.
In this case, one gap'qf NF-NF should be A]-gap (otherwise Na > 2).
Thus, in the region outside the F-F region, the error positions should

be .an alternation of NF and F, such that the last error in the R]-domain
_ t -1 .
is an error of type F corresponding to the (—%?—J-th error position in the .

Ro-domain. 1Therefore, if we calculate the end-gap in R}-domain, we get

o t0+5 t0—3
EG(n,2 eto“) > bkt 20-2[2k <) 45— (k-1) + 5= - ]

2

kb-1+22', for' 2 > 1,

which is a contradiction. This concludes Lemma 3.2 which entails that

h]-gap cannot be of a<type pattem.

Proof of Lemma 3.3

From Equations (3.9) and (3.10) we Haye:
Mg 2 kg - 1+ 20>k o : (%.13)

Accord%ng to the arguments given in Lemﬁa 3.2, there should be only one
_error of thé type NF in the F-F region. If was assumed that the Al-gap,
being of type 8, is located in the F-F region, consequeﬁf]y, Na = 0,'
i.e. the last error in:the R]-domain is an error of typé”F which corres-

.t , :
ponds to the (—%—»)—th error position in Ro-doamin. Thus, in the F-F

et 3h e te
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-

-~

But _substituting for Y and Ay from Lemma. 3.2 and Equation (3. 13),

i
respect1ve]y, we Obtaln

| L2(neY) = ty- kgt kg = 2 - 20 * 4% 5.(t°-1) . ko' (3.15)
Then, from Equations (3.14) and (3.15).we get .
G (FNF) 2 n = (£,-1) ¢ Kyl = ko1 + 220> K- e (3.16)

-

{

This ghows t@at both the F-NF-and NF-F gaps afe greater than ko’ whicﬁ
clearly is a contradiction. Thus, the ° ]-gap_/cannot be of type

8, and this completes the proof of Lemma 3 3. 7

These two lemmas contradict the above ppss1b1}1t1es and hence lead

to Theorem 3.2 . ) ' \\\\;1 !
: ° \6 Q.E.D.

Kl A
. . ~J 7

Now we proceed to cénsider<£he codes with &veﬁ* k. . <.

4]

- 58 - . , EJ
. ' ‘,,_}
reglon, the second F-type and NF-type errors correspond to the second -
and the (Egii) th error positions ifn the Ro—doma1n, which are denoted by
X and Y, respectively, and which are shown in-Figure 373. ‘Sim%]arly,
iit was shown that the b-gap in Equation (3.12) is grea;er than ko
(ihat is the NF—f gap >'ko).c;
Now, in calculating the first gap-length in the F-F reﬁion, the i
F-NF gap should, in the worst case, be: ' | . f
Y - L v
6, (F-NF) = n-2(n-Y) 2 | T (3a)
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THEOREM 3.3 o o
L The (n.ky,t,) codes with n = (ky-1)(t,-1) + 2,0 kg 2 4, t_ >4,

are not 2-step PD.
[
Proof of Theorem 3.3: .

a ’

té which does not have any gap of length > ke in R0~ or R1-doma1‘n.

Consider, in Ro-domain, the error vector {ei, i=0,1,..., te-]}: '

“& -
&g =.0, : _1
- L. L . te ‘
{e;) Tei = 1(ke,']) =1, for 1d <, )
. . ) ‘,
: e; = 1(ke-]) sefor == < < t-1 (3.17)

. The g¢éps between any consecutive error position pairs in Equation (3.17)

B are obtained as : .
: Gyleg.eq) = k-3, 3 ,
Lo . ‘ ot
L . ﬁ Gl(ei.ﬂ,ei) = kg2, for 1 < ite"]= except foﬂi = —29 -1,
¢, . R ,
; L/Gg_(et v ) = kgt). r . (3.18)
A - e « e « - ! N
. _f "2_ - ] H - .
. R : .
i /'/ « The end-gap is bbtained as EG(n,et _])‘= n-e, _]-1 = 1. Thus, from
. e e -
, ) / ,  Equation (3.18) we can qor'wclude that the Pattern is not l-step PD. The
‘g\ . oo
o corresponding R]-domain error vector {e;-‘} becomes, ./
: :" — !' ‘ t -
) . . . ) : . T .
1 . b ¥ 1]

! © e ) ot .
It is sufficient to prove the théorem to find an error vector of weight

S

s 2o e



N e

g o % "

lej) = < &upp 7 205,
\eZi'ﬂ = 2

(i+

N )

= 2 (i) (k-1) - 2,4
o - = (2i)(k-1) - 2.

£ I i
2) -

From equation (3.19), the gaps ‘between. any consecutive error position

pairs in R]p-doma.in are:

4

Gg(e% :eé) = k.e"43

q Sl i) = o2

, LEG(n,eie_]) = 3.

v

Thus, the pattern is-not 2-s

L - ¢

Before, introducing thé next theorem, the following coroMary is given.

. COROLLARY 3.4

_ The _("’ke’te) codes with n = (te'-l)‘(ke-l) + 2(zf12

are 1-step PD.

- - btk -4
The case where 1<i<

]

THEOREM 3.4

14

The (n,k_,t ) codes with n = {t -'I)‘(k -1) +2(241),
et -a. & e “ N
; : ‘ e
t, > 4, 1525_—9—?—T—~, are 2-step PD. \ ’
- L ¢« &
l o ¢ : . .
R A
3 ‘: N 1‘

%or 1 <1 ite-],

-

K

A

VIV

tep PD either.

°

<

)
t
0 N R,
(3.19)
)
&‘)Q
Q.€.D.

L 8>

totke-4 .
2

"

The proof of Corollary 3.4 is a direct corisequé’nce of Equqt%on' (3.1).

will be considered in Theorem 3.4. = -

for ké’ >4,

3

R IRt R P

PSR VS N




Proof of Theorem 3.4:

This Theorem wi'H be established b); using the-princinle of contra-
Action Let us cons1der the y- and g-types of patterns in R] domam
and the1r corresponqu gap-lengths 1n R0 domam, as glven “in Table 3..1

It is assumed that these patterns are not ]J-step or 2 step PD, im-
p] ing that there is no ga -length >k Then, in the worst ca,se-, re]a--

tionshins similar to those given in _Theorem 3.1 can be obtained as

Tty = NN, | | | : .. |

~and o ) ,

.

N(77g) +0, + 9 ¥t 2 (5 0G,2) 1 20).

From- these two we have o ‘ _ - '. .
L S a0
o S TR TETRA S | |

) . ) «

From Equation (3.20), we conclude that N » ‘for 2 > 1, can not be:
gneater than unity and w1th reference to Lemnd 3.1 for even t, No-_Na

can only be ap odd number. Consequently, Nc; =1 and the following

(SN

H

relationship-in R]-’domain should. hold

d

(N, = V(Zeg=1) + (£4-2) +-(ky 2)(,53) > (eg-T){keo1) + 20181),

or . “ ' ' ‘ ) - , N P

2 12(1“"])’ i ~ . ’ , . " -
A : oo ' . -
i - B . N o
This contrad]tts of the assumption that n>1 Hence* the proof of Theorem
. . ’; ‘.N-/
3.4 is comp]eted - «. cos S )4

P g ©eED.
The foﬂomng corollaries are applied in estabhshmg the bounds on n.

COROLLARY 3.5

a . ) ’ ’ ‘-
The ("’ko'te) codes with "=ko.(te'].)" end the ("'ke"te) codes

with n = '(te-Y)(ke-LL are not 2-step PD.




~
B

COROLLARY 3.6.1 . | .

1"

The (n,ke.te) codes w1th‘\n 3/4 ke-te, ke'te ¥ 0Omod 8, arenot

2-step PD.

%

4 ; ’ ‘
COROLLARY 3.6.2 \\\ ) . .

The (n,ke,to) codes with n = 3/4 kef(to—]), ke'(?o']) £ 0 mod 8,

are not 2-step PD. , —

»

\ : ' COROLLARY 3.6.3

? ~

3/4 tg-(k <1}, ty-(k -1) # O mod 8,

]

The (n,ko,te) codes with n

\ ‘ . are not 2-step PD. ' o ' ~ i
v -

The proofs of Corollaries 3.5, 3.6.1, 3.6.2, and 3.6.3 are not .
given here sincé these corollaries are special cases of Corollary 5.2,\\
Theorem 5.3, and Corollary 5.3 which will be given in Chapter 5.

@ i So far, we have obtained lower bounhs on n, both for odd and
. ’ .

for even values of t for 2-step PD codes. However, those which have

not been considered, are given in the following section as "special

«
’ -
. N

.
v * i

z . %, . . ;

. \ !

.

3.5 Special Cases , !

cases”.

3 ' .

Exceptions to the bounds given above are for the codes with k=2, or

G mrant am

with t=2. The following theorems are concerned with these cases.

’ ) 4 -" . i 4 —

’

THEOREM 3.5.1

3t -1 ‘ ‘ -

The’(n.k;id)Acodes with k=2 and n > ‘g for odd value t, o
.. are 2-step PD. = N . ’
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Proof Hf Theorem 3.5.1

Let gb\assume thqt the dbdes with n >

3t -1

qﬁe ne1ther 1-stép

or 2-step PD. In this case, the d1fferent types of Q] -domain patterns

TABLE 3-3

“and their correspondlng Ro-doma1n gap-lengths are g1ven in Table 3-3:

J/

éap-lengths associated with a- and g-types of patterns (with gap-

lengths <2) in R

EE 4

Ou-

and R]-domains

1

Type of No. of
Patterns | Patterns

: [
The type of patterns and
gap-lengths in"R1-domain

The corresponding gap-
lengths in Ro-domain~

A T (N VU () (RO
o
. 0 X
8 N, [— 1 ] T o
y; X .
-t
: ) - ot
From Table 3-3, it is obvious that, for t-odd, < —5— . Hence, if
t -1 (3t ¢ ' 3t,-1
n> g + t 5 the codes will be 2- step PD. Ifx n < 2 s
by the following two lemmas, we prove that the codes are nét 2-step PD
k |
' \ | [
LEMMA 3.4 . ! \
- L3t -1 e
The (m,2,t } codes with n = — »(— even) are no} 2-step PD.
LEMMA 3.5 . ©
: 3to—3 t0-1
The (n,2,to) codes with n = ——5——-,(—?—— *odd) are not 2-step PD.
. ; 6
o 1]
~ " ~

’

s, e e (m = H




‘Proof of Lemma 3.4:

We take the following general EP:

r
& €y = 0,
o
‘ . t()-.| .
fej} =g ey =g %3, for 2°<i < ——, | (3.21) {
A
St T et0-1+2’ , -
| () (2=
' , R o
L‘ei =e; o3, for. 71 <t -1,

1 o r
! °

' in the Ro—domain. From Equation (3.21), the gaps- between any pair of con-
t

secutive error positions are of the length not greater than 1. The end-

J

’ gap is
' 1
3t - t -1 /
_ o -
EG(n,et )G 5 -35— -1=0 /
0 4
- , ' '
Therefore, the EP is not 1-step. Now, for the corresponding EP in the
R]-doma1n t?e {ei, i=0,1,..., t°-1} is L«
. — ” =" \ \\
€21 = &2; . Y
y . t0-5 ]
P , for 0<i < YR
(ei} =9esi = epiggt] ] (3.22)
. ' t, ‘
, Yei = e, , for > < to-l
¢ ~

13

e 27 g R
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{e}) in R]—domaih and {e;} in Ry-domain lies in the odd-valued error

positions only which are located before eé -1+ Such errors are shifted
0

L. 2

one position to the right, that is, the gaps of lengths 0 and 1 have
interchanbed to 1 and 0, respectively. Thus, t;§ pattern {ei} is not

2-step PD.‘ This completes the proof of Lemma 3.4.

The proof of Lemmas 3.5 for Theorem 3.5.1 is basically the same as

. 3t0-3 3-2'(te=t -1)
that of Corollary 3.6, since n = i 7 o
3t -1
From Lemmas 3.4 and 3.5, Theorem 3.5.1 is true. forn = —— and
3t -3 ' . ] L
§ n =, g , respectively. . Theg,féccording to Corollary 3.3; Theorem
! ‘ . 3t - o
ﬂ 3.5.1 is also true for n < g v
\\ L Lo )
i - punany — Q_E_ R ——

THEOREM 3.5.2 - | . e
T . 3t,
) \ The (n.k,te) codes with k = 2 and n>—= for even value t,

\

" Proof of Theorem 3.5.2:

are 2-step PD." ",

By-using Table 3-3 for the (n,2,t,) codes'with even t, it is

obvious thaf the number of the a-tybé batterns in EPs which are not

2-step PD, should satisfy

o

te
. N :—2- }
, Co 3t :
This implies that the codes with n > - are 2-step PD. For the codes
T3t ) ’

“with n g_—ig-, in the following two lemmas we prove that they are not

2-step PD:




LEMMA 3.6 ‘ , ‘

3t t

The (n,2,t.) codes, with n ==& ,"-& odd, are not PD.
e . 2 2

The proof of Lemmq 3.6 is contained in Corollary 3.6.1 for the

special case ke=2'

LEMMA 3.7

—

_ t-2 .t - ‘
The?(n,z,te) codes, with n = S s 7? even, are not 2-step PD. ’
Proof of Lemma 3.7:
) Consider the EP . ) ~ »
ep; = 3 t
O - H——for 0<1i < 75"
e e R
€541 3i+]
{ {es) = ¢
&y = ez ¢ ¢ .
' _e L.
'4 , for 4.”5.1:2 1
€447 = €52 y . . (3.23)

I 4

_ in'RO-dohain. From Equation (3.23),'it'can be found that all the con-

secutive errors have gap-lengths not greater than 1. The end-gap is 1

3te—2 ty ty t,
EG(n,eto_]) s == -3 F N 3 (-1 A== 0.

>

Therefore, the pattern {ei) is not 1-step PD. The correspoﬁding EP

.o

in R1-doma1n is ’ ) ‘




= —— —
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Rl STV

2 ( - | -~
U el =i, ;- for 0<i< 3 ‘j

-

i
{e%}k= 432(1_'_]) = 82j+3 ’ . ’,
»y for 1<i i?‘ 2.

' = !
(62543 = B2i47*3 |

In the pattern {e1'-} none of the dap—]engths are goreater than 1 ' (

(EG(n,e, _4) = 1), and thus the EP is not 2-step PD. This completes ;
0 « ‘

8

the proof of Lemma 3.7.

According to Corollary 3.3, the results of Lemma 3.6 and 3.7 are

3te
also true for n < -

Q.E.D.

The next result is the special case for codes with t = 2.

-

THEOREM 3.6
The (n,k,2) codes, with te=2 and n >%'5-', are 2-step PD.

. Proof of Theqrem 3.6:

Clearly, for n>2k the codes are 1-step. PD. Now, we prove that

for 2’2'i<n < 2k, the codes are 2-step PD.

Suppose an error pattern {eo =0, e, = x} which is not 1-step
PD, that is, o )
T ——

+ x<k and n-x=< k ¥ ~ . ¢
or equivalently i
I
(3.24)

» + n-k <x <k. T . '
KXz A
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If such an EP is assuméd not to be 2-step PD, then the torrésponding

.pattern in R]-domain should satisfy:

12x-n < k,

n-(2x-n) < k. : ' ' | (3.25)

From Equation (3.24) and (3.25), we obtain

3k

n<T. \ (3.26)

which contradicts the assumption.

Now, we prove that, if "Ai%é » then the codes are not 2-step PD.
For example, according to Equation (3.25), the EP (e, = 0, e = (%}},

where [x] denotes the smallest integer not less than x, is nat 1-

step PD for k‘>g§—. Furthermore, the corresponding EP 1in R]-domain

.

has the following forms .

first gap = 2-(-'3‘-] - 1< k-1,
last gap = n—2-f%] -1 < % - 1.

Thus, the pattern itself is not 2-step PD.

Q.E.D.

4
NOTE 3.6 Theorem 3.6 was given in Reference [56], and had been treated

differently there.
Next, we present the summary and numerical results of this

chapter.

L3

——r

S e S bbb
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3.6 Summary and Numericadl Results )

In this chapter we examined the capability of 2-step permutation

decoding in correcting errors of weight t ‘(or less), for the cases

to t being odd or even ofthe ‘(n,k,t) b'ihary c}ch’c codes ..

_The main results of analyzing the-capability of the decoder are

presented in Theorem 3.1 to 3.6 and their related lemmas and corollaries.

Exac’(; lower bounds on the code length n are estab1ished by applying
2-step permutations to the cyclic codes C. A summary of the results

obtained is given below.

3.5.1. Main Results

4
.

Thecrem 3.1 to 3.4 and their re]aiedfcorollarfes, establish the
exast lower bounds on n for both values of t b'eing odd or even with

two exceptions; for the case. t=2 and for the case k=2. The bounds

. for 2-step PD codes can be specified as follows. -

3.5.7a For t odd-valued (to)—

» 1) k odd-valued (r{,ko,to) codes:

n> ko toi > .
ii) k even-valued (n,ke,té) ‘codes : - .
n> to . (ke-]) . — |

e
.

R

i
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3.5.1b For t even-valued (tél

-

ii) k even-valued (n,ke,te) codes :

!

{

n > (te-T) . ko .

n > (te-l) . (ke-l) + 2.

v 3

N

1)k odd-valued (n?ko,te)'codes:

(3.29)

(3.30)

Exceptions to the bounds given above are for the codes with- t=2,

or with k=2. These cases are examingdnin Theorems -3.5. 1, 3.5.2, and

3.6.

3.6.2 Special Cases

'1) For t=2, (n,k,2) codes:

n>3-k/2.

For k=2, (n,2,t) codes:
i) t odd-valued

n'>l (3 . fO - ])/2‘

/

°

ii) t even-valued

(3.31) °

(3.32)

bt

b vt

PRV VAP
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We can restate the cases (i) and (ii) for the case k=2, as'if,

n>3 . t/2,. then the (n,2,t) codes is 2-step PD.

Next, numerical results, based upon the complete Tower bounds on n,

. for some values of t for 2-step PD, codes are given.

3.6.3 Numerical Results )

(3

Based on the results obtained in this chapter, we give four tables
3-4 to 3-7, for some specific numbers of correctable errors t0=5,9,
and te=6,10, as examples. The tables show the exact Tower bounds

on code length n, for a given information length k, for 2-step PD

codes.

In the next chapter, we derive similar results for codes which

are 3-step PD.

S e K b, S e

i

P VY

.
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‘ ‘ -T2

w

~ TABLE 3-4 ‘ e

2-Step PD ¢odes of length: n, éna t =5.

k= 2 4 6 8 10 12 14. 16

n X 17 27 37 . 47 57 67 77
The ‘ . > ,

Code’ 9 19 29 39 49 59 69 79
Length .
1 21 . M 51 61 1 8] ’

13 23 33 43 53 63 . 73 83 ,
5 25 35 45 .5 65 75 85

TABLE 3-5
2-Step PD codes- of length n, and t,=6.
k= .2 3 4 5 6 7.8 9 10 11 12 13 14 15
“n ' x 17 19 27 29 37 39 47 69 77
The
- Code 17 -- 21 .-- 31 -- 41 =- 71 -~
Length ! - ®
13 -- 23 -5 33 -2 43 -- 73 --
15 -- 25 -- 35 -- 45 -- 7% --
Note: In these tables, the occurence of an "x" gr a "--" in a place

means that no codes exist in that.place.

L4 DUPIRNVIRSY

- .
© -
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.




TABLE 3-6

¥ (% . 4 e \ \
0 2-Step PD’codes of length n, and t 0. 8
[ . /’,J, 'A::’ . oo ‘ ‘\“9\ ¢
¢ v 7 g K v - €
T k= 2 4 6 8 10 j2 14 ¢ -
n X 29, 47 65 83 101 119 137 »
' The £ | »
, Code X 31 4 67 8 103 121 139
r v Length. A , o
| , SO 3351 69 87 105 123 4
¢ g ‘
P , 17 35 5371 8 107° 125 143
. % . - - . oo A_"‘ L)
. 19 37 55 73 91 -109 127 U5 | i c
- oot : ' ' ¢
t s 121 39 57 75 93 M 129 ‘
- 23" 41 59 77 '95 413 131 149
L J/ .
. ’ - . N '
L 25 43 €1 797 97 115 133,151
* o 27 45 63 81 9 .117 135 153 .
N '* B -
. ‘ TABLE 3-7
’n y ‘ 'A LY s )
, ) {Z-Step PD codes. of length n, and t,=10.
‘ k= |2 3 4 BY6 7 8 910 41 12 13 14
\ .
N ! ~ ’ \"k‘t ] ) ’ .
m X 29 31 4% 49 65 67 83 85 101 103 119 121
of The .
: Code X - 33 --"51 -~ 69 *-- 87 -- 105 --.- 123
Length 19 .
NV A 35 - 58 - 71 89 - 107 .- 125
' | © g e 37 - b oo 73 - 91 - 109 - 127 .
s 1 ’ ' he 'C"' &
’ 21 == 39°-- 57 -- 75 -- 93 -- 11T -- 129
f ) % ‘ 5 . ) - s -
Tw © 23 - 41 -- 59 - 77 - 95 - 13 - 131,
N - . . / — . ] . ] .
‘ o 25 -- 43 6% 7? 97 -- V5 33
27 -- 457 -- 63 --VB1 -- 99 -- 17 -- {135
- s ° ‘ f/sh
. ", a ) 4 i . )
. . -~
i’*“",“‘“;““"(‘:"“"‘ e e = R e ® . ’q i A —
o‘ . f-" ' !

de At & R A v me
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3-STEP PERMUTATIONS IN DECODING e
{ - CYCLIC'CODES - o <

lntroductlon ‘ C

N

[

In?add1t10n to the resp]ts given in the prev1ous chapter for Z:F

W

PD codess the exact lJower bdunds can be’ improved by app]ying
. * . e

by applying 3- itep perfputations.’

f

., higher order permutation ffom the group (f,U).” In this chapter, we examine

the capabflil! of the permutation technique in décoding cyclic codes
4 .

L

e

Sect1on 4. 2 with respect to the definitions and notations .

, 1
b 0%9// ’
. giveW in Section 3.3, we develop the
. [ .

st 7

v'.T®, i=0,1,2, 8=0,1,...,n-1

results.for 3-step \emutat1 ons

to the codes w1th t .odd and

- " to the case of t=2. §ict1on 4.3 exam1nes the results fOr codes whtch

are except)on to the bounds g1ven in Sect1on 4, 2 Flna]]y, Sect10n 4.4

;summar1zes the results obta1ned in th1s chapter and preseﬂts some numer-

1qa1
? ‘ 'S

4.2

© case

4.2.1.

¥

the 1

even.

&’ <

.' ‘. ‘ ﬁ

o [

results.

3-Step Pemmutation Decoding -

Here, weextend the results to
: ¢ :
of double-error-correction.

The Case of t. %odd:

.o \
the codes with t odd, and.to the

U < S
:
.

+
-

)

b e {
The following théorems and corollaries specify the improvement of -

i1

ower bounds on n for the (n

o

-

0 -

. Before presenting Theorem 4.1,

4 14
,ke.to) 3-step PD codes with k.,

{

-

s

the following corollaries are given.

-

F o e st VY

L
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COROLLARY 4.1

foﬁz 1‘}_0, are not 3-step PD..

. Probf of Theorem 4.1:

- .
¢ The (n,k_.t ) codes with n=(k -1)-t . and the (n.k .t ) codes
e'’o . e o° 0’0

with .n=k0-t0. are not 3-step PD.
| | . :
COROLLARY 4.2 . ‘ ' ‘ %
{

If the (h.k,t) code is not53-§te’b PD, then the (n',k,t) codes,

with n'=n-42 for 1, are not 3-step PD.

The proof of Corollaries 4.1 and 4.2 are not given here since these

" Corollaikes are special cases of Theorems¥5.1 and 5.2, respectively

for s=3 which will be given in Chapter 5.

-
COROLLARY 4.3 . ' Y
AL - . t -]

are not 3-step PD.

The proof of Corollary 4.3, is contaired in Coro]léries 4.1' and

4.2, whick imply that the codes with n=(k, 1) 1t -2(2e41)=(k -3) -t -42",

i

. t -3 |
The correspondjng case where 0<2< '°2 “will be considered in

Jlheorems 4.7 and 4.2. N .

< .
Y 1

THEOREM 4.1
-3

'The (n,ke,to) codes w1th n-;(k -'l) t 2(22+1) o<z<——§—
»
\

—

k. > 2(2+2), -are 3-step PD, ¢

q
1

'

n

' ’ To prove this’ -Theorerr"», we use the prinéipl'e ‘of é‘bntradiction. Let

us assume that the ("’ke’td) codes with ‘h=(ke¢1§-t°-2(22+l)' are not.
' , ‘. .

/s

® o I .' e,
) . © ‘4 f ‘ , f/*

o et st . s .
- . IO B -

: . (v _ 0 ' <,
« The ("’ke’to) codes with n-(ke 1)tO 2(2241), 2> 5> k832(z+2),

*

-
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'» ' .
3-step PD. Moreover, let us assume that {ei. i=0,1,..., to-l} is a

pattern in the Ro-domain which is not 1-step, 2-step, or 3-step PD. Ac-

cording to‘the different types of patterns v, v in“the EPs given in y
Table 3-1, in the wzl)r.‘spcase, the 'foHowing-re]ationships should hold: -
_ N |
N+ N el / o ST

ty + N (9,‘+92) tN -9t 2 tolko-1) - 2(2e41).

From these two we have

v
4 v .
. »

(4.1)

=

R .
o] e 4 ’ —

in the Ry-domain.” Thus, from Equation (4.1) and Lemma 3.1, for odd t, ”

- . ‘ \ '
N =N c‘an‘ be obtained as ‘ . 3 _ ‘ o
' _ - ‘, '
. N, =0 3 for- kg > 4‘ " R \ )/\
SN Mg T2, for k caws , : S
¢ / . - ' ~ ' [8
A~ N 28, for ko< 2(242). ‘ . : . (4.2) .
) \ 4 - .

Note that codes with N_ > 4 < 2(2+2)) "do not satisfy. the &>

»

aséumptions of the theorem and are thus excluded from further consider-

-] . | -

at1on . Yy : . v p

We proceed t({ the cases N =0 and N =2, ' by considering the EPs

(for kg

in the R2 domam wi th respect to (w.r.t) the EPS in R1-and R0 -domains.
Let us denote the number of the a-type and the o- type pattems in the

EP in Ry- ~domain as N' and- N' respective'ly. Then, accq'ding to : ‘,.L"

7
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4

t » . <
x .

Equation (4.2) we can conclude that N, < 2. Thus. we have the follow-

ing two lemmas:

CLEMMA 4.

Suppose that N =0; then the corresponding pattern in Ry-domain

&

for N"J =0 or 2, will be 3-step PD.

LEMMA 4.2 ) . :

Suppose that N°=2. Then, the corresponding patterns ianZ-domain,
with N' =0 or 2, wm%\e 3-step PD. : .
o) i , . ,’;\
LR

Proof of Lemma 4.1

" We prové this lemma by wsdng the principle of contradiction.

The proof of the lemma will be ‘divided into the following two cases..

Case 4.1.1: N('j = 0. -

In this"case, if for '"=to'(ke']) -2(22+1) the pRitern is not de-
codable, then there should be a collection of gaps of lengths (ke-2-2j)
in Ry-domain, where 1<j<2a+] (for N0=I‘ja=0). Now, in the worst{ése
(i.e., when j=1),‘ ,tr;:estimatel fgr the total code length n, should
satisfy } . .

1 ~

2 ' )"

2B (k-a)+(t 2 PRIk 20+t > n = b (kgm1)-2(2e4)

or .

ty(ke=1) - 4031) 2 to-(kgo1) - 2(2891) (4.3)

in the Rz-domain,' which is contradicts & > 1.

N
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Case 4.1,2: N'=2 ' . .

e B B Qg
In this case. there should be two even-valued gaps of lengths
k -2
< 82 . or
5o E Lo

kg =4i+2 , for some i >0 . (4.8)

1]
i
¢
>

Iniaddition, in R]-domain, there should be a number x, of gaps of
L |

2

lengths (ke-2-2j) for j > 1. In the worst case (when j = 1), the

* following relationship, !

- ‘ k -2 7 % / :
Wk -4) +2- (-8 2. - /o
ty * X (ke'4) +2-( ) + (t0 2 2><)(ke 2) >n (4.5)

2

i

P
o

. should be satisfied in, Ry-domain: From‘ Equatifs (4.4) and (4.5), we
get the value for x as '

41-ke’-‘4 . Cs
X = 3 >0 . ) . | (4:6)

wpich is an odd number. For the corresponding EP in Rz—domain, the /

estimate for the.tctal code ﬂéngth n, is

K

. X Xy ‘

(t0-4)+2-[——2—]'(ké-4)+(4ke-6)f(to-2-r-z-]—ﬁ.)-(ke-Z) _>_n (4.7)
: l M M-keﬂl ' . ’ ¢
By substituting for 2.[5] = —5 in Equation (4.6), we get:
.. ’

' .t (K o) - o

to - (k,=1) - A0) 2ty (K 1) - 2(21). ‘

[P

A o e s e
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which is again a contraaiction. This completes the proof oﬁKLémma 4.1.

i . ’ L3
Proof of Lemma 4.2 '

2

This Lemma will be estab]is%ed through contradiction. Similar ‘

to the proof of Lemma 4.1 we cob&ider the following two cases.
. / ]

Case 4.2.1 N; =0:

In this case, let us assume that there exist an EP such that
N =2 and N'=0 which,kis not 3-step PD. Therefore, for such an EP,
‘ ° "4

in the worst case, the estimate for the code length n, as shown in

4 Figure 4.1, should satisfy

<2k6&] o, )

<2k -1
—e

in Rl-domain

&

in ézjdomain
* - - = -

Figure 4-1. A sketch representing the case of "N0=2 and N;=O
in the worst case, |

(gke-5)+(to—10)-(ke—%)+(t0-9) 1ftb'(ke"?) -2(2541),
or ' o .

k < 2244 \ .

. e — . . -




‘
—— ey

| - 80 -

in R,-domain for t > 11 (The ca'se‘ t, <11 s not possible).

The condition imEquation (4;8) does not satisfy the assumptions of
Theorem 4. 1.

Case 4.2.2: N(';g._
With reference to Figure 4-1, it can easily be seen that this case

» e

is a‘subcase of Case 4.2.1 and since Casé 4.2.1.s 3-step PD, Case 4.2.2

>

Tyt is obvious‘l'?/ 3-step PD. \ .
. "Thig Jeads to Lemma 4'.1,2. ‘ ‘;’
The proofs of Lemma 4.1 and™4.2 comp]etés the proof of Theorem 4.2.
: ! AT <' Q.E.D.
A t -3

¢

Now we consider the:case of ice=2(9,+2),0<z< \?2
’ T

, in the follow-

ing theorem.
t
l“ » . . .

g
¢
i

i
5

' THEOREM 4.2 | ~
‘ t -3 .
v _ 21).+ - ) S
' The (n,ke,%) codes with n=(k,-1) ty 2(22+1), O<p< 5 :and
? ke = 2(z+2,,)“, are not 3-step PO, ‘
I , Proof of Theorem 4.2

To prové this theorem, it is sufficient to find an EP which is not-

" 1-step, 2-step, or 3-step PD. Thus, let us consider the EP

& . ,
. ) »

-
§o

[y
\ 2
» *

-

v

e it




Y

a@
L -.a - )
. ’ e
eO =0 . 4 - ;
e, %2,
» ) . ] . ’ . to']
) e, = ei;]+(ég-])k ,» for 2 <ot
= - _& .
LR R RIS I ‘
2 2 _ .-
. ke+2 ! - »
e =e + (——')s ’
(} t0+3 to"’] 2 . ) - 1y
2 2 : . -
Y ‘ ‘ to+5 . 5
e; = ?i-]+(ke']) , for N 'i]\f to—], t)> 5
(4.9)

in R]-domain. From Equation (4.9) it can-be seén that none of the gap-

lengths is greater than (ke—Z). The end-gap js

L

ty-l kg kg2 t *5 UaL
EG(n,et _'l) =n - [‘2":( 2 " ])(ke_'])+ _2_" + —2_—"+ (tO - ? )(.ke' ‘14']
= K -2. s C :

e

M N N “ . . +
It is sufficient to prove that thisipattern does not have any gap of

]eng?ihuz_ke, 1n‘RO aﬁd R,-domains. o
First, we consider the corresponding EP in,RO-domain. The cor-.

~

)
respondence between the EPs in R]— and Ro-domains is given in Table
k - N 4 - .

k !P; ‘
ey’ : e ‘ , .
\\§-1 for (TT) odd, and in Table 4T2 for (7?) even, C
-}\ '
. I

s &

S
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For odd-valued

TABLE 4-1

k
_£
2 -

" Gap-lengths in Ro-domain associated with any two consecutive errors

with the same parity in R]-domafn. '

Thistances D in R]-domain

Corresponding gap-lengths iﬁ
Ro-domain

D(e],eo) = 2
D(ejyp087) = 2kg 2,

.

v 3k,
D{e L, o) =
to+1 t0-3 2
2 2
. ke
D(e 9? ) = =
t0+3 t0+'1 2
Z 2
(e e, 4) =2k
t0+5 t0 1 e
2 2
D(ei+2,e1) 2k -2,

'D(et ~],ez) = D (first NF, last F) =
.0 ' .
"'(eto-l'ez)

—

D(n,eto_z) = 258-2

15 <

-2

+ ]

¢

] . >
if t0 7

2

. et e - —— o o

=0

-
[ad
o
v
[Sa}
1
>
)
™~

n
>
'
D

A
—
A
(ad
1
w
‘e
1
~
'
~N

.ke—1 (central-gap)

ke—2 (end-gap) -

k4

::ki distances "D" are taken to be between any two consecutive errors
with the same parity *

B

-

“,

“\hen to=5, then the end-gap in Ro-domain will correspond td .Gz(n,e2)=

Gl(n,e£;_]) 2 2ke-1, ?qd is equal to 'ke-l.

P

L Y JCVWRNI. S
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Gap-~length in Ro-dom5§n associated with any two

-83 -~

For even-valued

the same parity+in R]-domain.
3

TABLE 4-2

<
[

-k

—2"-

4

consecutive errors with

Distances 1in R]-domain

Cor
in

responding gap-lengths
RO-domain

D(e]seo) =2
o t-o—s :
D(ei+21e]’) = Zke"z ]%‘i""‘z“‘“ :t0>5
ke .
D(e e, q) = >
to+1 t0 1 2
2 2
Dle, ...e. .) = 2k .
tF37t -3 e
2 2
+ 3
D(e e, L) = — ,  t>5,
to+5 to+] 9 0
2 T2 ,
t +3
Dle;,p.e;) = 2k -2,
D(e, _y.e,) =D (first\NF, last F) =

n-(e, _,-e,)
t0 172
2

\
[’)(n,net o) = 2k,-2

0 -0
5 §j§ﬁ0-3, to>7

1

H

—

ke-] (central-gap)

.
ke-Zﬂ(end-gap)

“d

!

T When t0=5, then the end-uap will correspond to Gc(n.n;). whore

-

e
to+5
2.

" is considered to be n.

In v
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From Tables 4-1 and 4-2, we can. conclude that the patte%n (éi]‘-
is not 1-step or 2-step PD. '
Second, we consider the EP cgrrespondjng to {e{} in R24domain
and denote it by {e%,‘1=0,1,..., td~1). From Equatibn (4.9) we obtain

s ‘- .
i i

r . o ) (:l“
e0 =ey* 0, “
- e} = 2e -n =1, . i
, 17 E
2
{es) =9 (4.10)
ez - Ze] 4, ~—
er = e, jt(k,-1) , 3 <ict -
L p2

Again, it can be seen that none of the gap-lengths in »Rz—domain

are greater than (ke-Z). The end—gap‘is

t6lne; 1), =0 LleD(tg-3) 0] - 0 = k2.

N
o

LN

Thus, the‘pattern ’ei} is not 3-step PD. X ] s Q.E.D.

The fb]]bwing corollary in estabiishing the bounds on n is

applied for codes with: k- even.

COROLLARY 4.4, |
The (n,ke,to) codes with 9=3/4 ke~(to-1), kgt 1) = 0 mod 8,

are not 3-step PD:

¥

" The proof of this corollary is not given here since it is an

~ %

* specidl case,of Corollary 5.4 which will be given in Chapter 5.

noe ¢ . - -
.

*

T el e
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Néxt, for the~casgfdfﬂ k being odd, we have the'following results. S
COROLLARY .4.5

The t(?iko,to) coifs with n = to.k0—2(22+1), kO = 2943 and

> % ,* are not 3-step PD.

The proof 6f Corollary 4.5 is conta%ned in those of Corollaries 4.1 and

4.2 which imply that the codes with n = ko-t0—2(2£+l) = (k0-2)-t0-4z', ;
for 2' > 0, are not 3-step PD. *

. t -3 .

The corresponding case where 0 < ¢ < g will be considered in .
Theorem 4. 3. o -
THEOREM 4.3 - '

The (n,ko,to) codes with n = to-ko-2(22+1), k0 = 2043, |

to-3 9 . 4

0 <2 <——, are3-step.-PD. » —_—
Proof of Theoreﬁ 4.3 \

Theorem 4.3 will be established throu@h contradiction. Let us
assume that the (n,ko,to) codes, with n = to-ko—2(2£+]) and . ;

ko = 2¢+3, are not 3-step PD.- Moreover, let us assume {ei} is an

_EP in Ro-domain which is not 1-step, 2-step or 3-step PD. wﬁth

reference to Equation (3.7), for the different types of patterns v,o
in the EPs given in Table 3-1, in the worst case the- following relation-
ship should hold:

+N + 1= e o - oL -
2N N st o R

No(ggtgy) +.Meg hog ot ty > tk o= 2(241).

> . o
'

.
4
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),, i
From these two we haye ) °
2(4g+] , ‘ o e :
Ny < ‘%{T}‘l ) ; - (4.17)
0’
k-3

. . : 0 » ‘ i -
in R]-doma1n. Here, 9y =55 9, " k —] and 9. =ako-2. Conse—\

-quently, from Equat1on (4 11) and Lemma 3.7, we Have N }3;2. _The re-

maining part of the proof is very similar to those of Lemma 4.1 and 4, 2

'and will be omitted. "’ . .

3

4

Q.e.D. - -

L 4

So far we have obtained the lower bounds on n for 3-step PD codes

L]

for odd t. Furthermore, irf connection Qith even values of t, we

only consider the case of te=2, as follows. . “
o b l . . , ;
4.2.2. The Case of t =2 . . Py ’

The following Theorems specify the improvement of the bound given

in Theorem 3.6 for double-error-correction.

THEOREM 4.4 )
The \(n,kb,te) codes with n =k _+ — for t, =2 and k> 3,

are 3-step PD.

B - "
e .- .

PrGof of Theorem 4.4

Aécording.to the proof of Theorem 3.6, in Equation (3.24) we Have

°

stated that an error pattern of weight t=2, such as Q}] = {eo .
]- X}, 1is not }-step PD if y ' ’
n-k < x < (4.1¥2)

LY
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e

/ N . ¢ , "0 N ! ¢ Ju * -~ . /t . . Y,
v ' . w ! ‘ . .

o “ N . . T i . R - . . . - ) . ‘
. . . \ N I N o IS v

, Y . . . v
; . . 87 Xg . ' .

t ' ﬂ‘, . ' . ' . T ’

- L4 - “ “\ ‘ : !

’

Accordingly, in Ehuatibi (3:25) the \{ei} pattern, i§,n6t)2—éteijD if

o - L4 )"V‘
| 2x-n < k . ;) ‘; . ] ] .
{ . : L Y . .
n=-(2x-n) <k . L o L » (6.13)
o N <%k -1
From Equations (4.12),.(4.13), and for the case'of n'= ~—g——-, L
for k>3 s we get. -
2n-k
0 , : 2
7 2x <k, .
' N
or E
k—l<x<k ‘ | 7
o 2—-"="0" L

this implies that
S RN

x =k, - T (a08)

"

That is, the only error pattern which is not 2-step PD is {ei} = {O,ko}
v ™ - . K

in  Ry-domain. Hence, the corresponding error pattern in R]-doméin is

"
&g =¢ =0 i —
(e} = < E ' ’ ~
» k1 — ,
) |ey = 2xen = 5— (4.15)

v ey e e
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S— 88 =
. e L’ [ .
\‘ " . y ." .
ey T ey = 0.
{ei} = .
eq = Zei = k0+1. (4.186)

THEOREM 4.5
’ e, o : _ 3k ' k
The (n,k,2) codés with te =2 and n=-0, 1<c< 5 s

are not 3-step PD.

Proof of Theorem 4.5

From Equations (4.12) -and (4.13) in Theorem 4.4, we can restate
thatn for an (n,k,2) code eith n = %; -2, 1<% < 53 there can

be an EP of weight f=2 such as {ei} = {eq=0, e]=x} for the case of

\\\

- 2n“k '
, \ﬂ"l" S X 5,‘ (4:17)

which is not 2-step PD. Let us assume

»

x=k-2>0, ° .o (4.18)
' ! L !

. B . »

in Ré-domain.“ Then, according to thation (4.17), the (e;} pattern
¢ ’

is not'2{step PD. Now, considerina the corresponding error pattern in

R,-domaifi, {e:},  vie have:

S

R

L

» - ({

......
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{es} = 4
. | qu = 2-(2x-n) ='k—2ﬂ > 0, , ' (4.19)
. o ,

where ei.= 2x-n = % - ¢ is the corresponding error Tocation of e=x

\ " in R]-domqin.\ From Equation (4.19) we have

first gap = k-22-1 < k,

> last gap = n-(k-22)-1 = %:+ -1 < k, I (4.20)
\ | .
in Rz-domain. Thus, the {ei} pattera=is not 3-step PD.
, ’;§////9f” ! = Q.E.D.

N /
{

In establishing the bounds on n, ?or the codes with even t. the

following corollaries may be applied. *

COROLLARY 4.6 : !

~The (n,ko,te) codes with n =.ko'(te'])’ and the (n,ke,te)

codes with n = (te-l)(ke-l), are not 3-step PD.

T © e b} A
N e,
- > 1]

. 4 \,,!/'
COROLLARY 4.7 ‘ 4

ith n=3 .t .(k - (k-
The (”’,ko’te)‘ codes with n =3 -t (kO 1), te ,(ko 1) # 0 mod ‘8
n

'te'ke’

il (D

and the (n’ke’te) codes with

s

te~ke £ 0 mod 8,

- are not 3-step PD.

- The proofs of Corollaries 4.6-and 4.7 are-notgivenhere since——
these coro11;ries are special‘éas%s of Corollary 5.2,.‘Theorem 5.3, and

) {

B v o A
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Corollary 5.3 which will be given Jin Chapter 5.

- The codes which have not been discussed so far, are considered in

the following section as "special cases".

/
Pl
4.3 Special Cases ,
—_— . (“ ? ) "T\
‘ The rlext results are for the codes with k = 2. -
I e . L : .. s °
THEQOREM 4.6 * . ' )
: IS i1t e - ;
) * The (n,k,to) codes, ‘with n = —— » 5 — even, and for k =2 '
are 3-step PD. \\\\\\\ 0
, T~ N ¢ o ' ’
.~ b 4
Proof of Theorem 4.6 A T
< . '. , \\\. ‘
According to the different types of patterns a,B in” the EP given
3t “] Y
. , in Table 3-3, the number of a-type patterns, for n = g . and k =2,
can, in the worst case, be obtained as ’
.
3t -1 « . .
NOl t t0 >0 =, . b
or ' . : /
. . to"] . . i i B
N, 25> . . . ' (4.21) : -t

in R]—domain. Here, each o-type gadp is of length 1. On the other ' A

" hand, if an EP is not decodable’ in a given domain, then there should at
, t -] ; .
most be a number of —9§—Q—Qgps cach of which is of lenqth 1. There- !

fore, in R]—domain,

T

N <2 T (4.22)

.
e
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From Equations (4.21) and (4.22), it can be concluded that
SR ) to—1 S ; ' , 2
NO. = —2'— . a' (423)

This imples that for Na as given in Equation (4.23), all the EPs
which are not 1-step or Z-Sfeb PD are of the form

*

.
=

=0’

e0~ i
{e,} =<e, .,y = €,.%1 , . t--3
i 2i+] 2i for 0 < i < g
ool = e, 42 -
j 2i+2 2i+1 °° .

in R]-domain, or are the cyclic shifts of this pattern.

Now, considering the EP corresponding to {ei] in Rz-domain, we

"have |
&
r
| 96 =eq = 0,
(e} =d8i4p = 20844 fa .
for 0 <4 < —g—-
f s ¢ - - .
'keéi+] = (2.8 ¢ +]) mod n, (4.24)

From Equation (4'24)”‘lt can be verified that

t -1
) _ af = : 0
eqj_] eaj_z, 3, .for 1<J < 7

This implies that the pattern {ei] and the cyclic shifts of {e.}

‘are decodable in R,-domain. ,

‘ 1 / ® 'Q.E.D.
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THEOREM 4.7 7 !
/ .‘. . . 3t0'3 \
) The (n,k,to) codes with n <'—— and
\‘\ PD:’ b . N
- e e
Proof of Theorem 4.7 ’ O

<

k'= 2, are not 3-step

g

.

v .
.

4 v . . e -
‘To prove this theorem, we consider the'fo"l]owing two lemmas and

one coroliary.

1 ‘ °

-

LEMMA 4.3 Y

"

The (n,2,to) .codes,vﬁtﬁ n

.

not 3-step PD. f '
' < ~"Z.
\ ! /“i 'Du'
W
LEMMA 4.4 R »

N b
S e S

S
. 3tg-7 3 e
The (n sz ’tO) codes N with n =: A Q

r

not 3-step PD. 3 éﬁ‘ 7 v
| NI
~Proof of Lemma 4.3 LN ,*.ﬁ%u{;uﬁ .
~

not 3-step PD.

‘In particular, consider the f;bjllo;ving' EP :

u.\‘

-9
0"

2

» ?0=0’ ’
- e]=2,‘ |
e1.=ei_1+'l, for 2 <156,
() =9 8i4q = 1432 .
for 1 <1 <«
®is5 = €ieatl |,
e, 4. =e ., for 1< <2
Lto 4+i t0-5+-1 v =
e = e +2 .,
to-] f;o-Z
a4

{

and t
)

omain *

, 0dd, and to>7, are

which is’

> 13,

(4.25)
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in Rz-domain. The pattem {ei} {n Equation (4.25) has no gap-lengghs

greater than unity. The end-qap is
. , \

. 3t0-5 to—9
EG(n,e ) = —— - [244+3 - ( )+2+2] - 1 =0
Olney 2 30 (5

-

(Y

-

Therefore, the EP. is not degodable. Thus, the corresponding EP in

R]-domain becomes

4

EO -0 . o
el =ei gt for 1 <i <4 ¢
) . ] * )
©i+3 = €442 0> ¢ -9
0 .
for 1 <1 < z and to > 13 ;
€144 T C2i+3" 1 ) S /
e, = e, 41, .
Bt * ©
2 2 ‘ . /
{e:) =¢ | e +2 - . ' /
- fr#3 Fy e ‘ . .
2 2 |
. I
et 45 7 & 43*h
4 <0
2 ) 2 ) ’ &
SRR B 'l | o
21+ s 21+ Vi * ¢ -9 f
Lfclr 1«1 < (2) and t > 13
® a5 T8t a3th ' “ .
2it ——  2ir T |
2 - (4.26)
i 1
e! =e! 4] !
(Bt -1 7 %t -2 v :




va

g ,

a9 ’\
Therefore, all the gap-lengths between any pair of consecutive errors
|
in {ej} are also < 1. The end-gap is’ :
R ; \1
|
© 3t -5 L ot9 L
Vadk F.G(n,et _1) ¥ — - [446 - ( q ) +6]-1= X <
0 ' . ! 4
. . : |
Thus, the-pggtern {e%} is not decodable. Finally,.tﬁe corresponding
. " hd E ] /_K
EP in Ro-domain can be obtained from ‘{e%} as given in Table 4-3.
. | { l
‘\\\ TABLE 4.3
“ Gap-lengths in Ro-domaig associated with any two consecutive errors with
the same parity in the R]-domain j
\ - o
. . ~s - Corresponding gap-lengths
Distances in R,-domgin . .
: ] mi\‘ in Ro-domajn
; . t0-9 !
D(e21.+4,521.”) = 4, for ]i'li——a— and t0_>J3 =]
D(e. ot 5® t _]) =4 =] \

. 0 . 0
argo Bt

D(e: .,z e, ) = 4 = ]
t¥5t -1 e
2 2
D(e, _p»8y) = D(first NF, Tast F) = | ‘ X = 0 (central-gap)
. o
n-(ey o-8y) |
_0 T _3=2 \
2
D(n,et _]) = 2 = 0 (end-gap)
4
0 " " ] ,
| K .
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t,-5 . .
From Table 4-3. a total of —— 9aps are of length 1, and the rest of
Co ' ‘ t <5 3t-5 °
the gaps are of the lenoth 0. resulting in n = t0 + ~%—- = ——%——

Thus. the pattefn (ei} is not decodable in Ro-domain, and it is not .

~

3-step PD. This completes the proof of Lemma 4.3.

Proof of Lemma 4.4 . ' .

To prove this lemma, we follow the same steps as in the proof of

Lemma 4.3. Here, we consider .the EP

-

o .

r =
{ € 0,
_ LS
- 91 - 2,
. e, = e; 1*1, , for 2<i <5,
P - W ‘
} 2i+4 2i+3 to'g
| ‘{ei} =9 L B for 1<i< > and t01]1,
. ®2i+s = C2ivg* 1 .
eto';‘:i‘ = et0-5+i+] , for 1<i <3, T (4.27)

M». o
in Ry,-domain. The pattern {e;} in Equation (4.27) has no gap-lengths

greater than unity. The end-gap’ is

3t -7 ty-9
E6(n,e, _{) = - (24443 (—)#3) - 1 = 0.
0

2

)

Therefore, the EP is not decodable. Hereafter, the derivation of the
gorrésponding EPs in R,- and Roidomains is the same as that in Lemma
4.3. Thus, it can easily be ve(ified that the resulting EPs in these

‘domains are not decodable. This completes the prpof of Lemma 4.4.

e e it . S e S n ¢
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COROLLARY 4.8 M Co
¢ 3t0-3 to-1 .
The (n,2,t0) codes, with n = — being odd; with
3t0—9 t -1 >

n=v—s—, —%—— being even ajd t, >9, are not 3-step PD.
3 ‘ .

Proof of Corollary 4.8

3t -3
According to Corollaries 4.1 and 4.4, ‘the codes with) n = 3 =
3-2-(t =t -1) 3t -9 3.2-(t =t -3
€ © , and those with n=—2—=— 80 ' 4% ot
& \ 2 4
3-step PD.
. 3t -5
Note that for the (n,2,to) codes; with n = é—g——_ and t =5;
3t -7 - 3t -9 °

with n=——g— and to=7; and with n

R

~—§—— and t0=9, one has
n=to. This is a special case of Theorem 5.1 for ko=l which will be

given in Chapter 5. . . ‘

Thus, the proof 6f Theroem 4.7 follows from Lemma 4.3 and Corol-
- 3t -3 t -1
laries 4.2 and 4.8 for the codes with n < g and —%~— being

even, and from Lemma 4.4 and.Corollaries 4.2 and 4.8 for the codes with
3t -3~ t -1 X
n<c —2-  and —— being odd. .

T2 2
Q.E.D,

A

4,4 Summary and Numerical Results

2

In this chapter we studied 3-step permutation decodable cyclic
codes. In this direction, the exact 10Qer bounds on thé code lepgth
n, of the (n,k,t) codes with t odd and the case of t=2 were
obtained. A combined summary and numerical results of this chaﬁter are|

given below.
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4.1.1 Main Results \
\

In edditionvto the improved bounds given in the previous chapter,
for 2-step PD codes, Theorem 4.1,4.3,4.6,4.7 assert that the following
codes with’t odd and k being odd or even to be 3-step PD. Theqfems 4.2
and 4.7 and Corollaries 4.1 to 4.8 assert tht the rest of the codes

remain under the same bounds given for 2-step PD.

' Lol
\4.4.1a. Foi t odd-valued (tol
i)  k odd-valued (n,ko,t0) codes :
n'sto-k, - 2(2.241), if k,=22+3, A
L} v
and 0 < 2 <,(t°-1)/2 . . . - (4.28)
i{) k even-valued (n,ke,to) codes:
) n= to-(ke—l) - 2(2.241) ‘if ke‘5 2.10+4,
and 0 < 2 < (t-1)/2. ) (4.29)

According to Theorem 4.4, the following doub]e-grror—correctfng'codes

are 3-step PD. l ,

4.4.1b For t=2 — '

: 'k odd-valued (rik ,2) codes:
' . © 0
| \1 \ ,

2— , Ffor k_> 3. | (4.30)

S B R st i

cat g o -
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is the case of t odd and k=2. Theorems 4\6 and.4.7 show the follow-

ind'code7 to be 3-step PD.

Y

4.4.1¢c jSpecial Case:

Foi

k=2, (n,2,tj codes:
. , ' S
‘. n}L(a-to-n/z. o, (4.31)
. S ¢ o .
Note that the above lower bounds on n are an improvement over
thé corresponding bounds for 2-step decodable codes.
4.4.3. Numerical Results
: | :
Based on the results obtained in this chapter, we give thre? Tables
4-4, 4-5 and 4-6, for some specific numbers of correctable errors
t0=5,9, and te=2 as examples. These tables show the exact lower s
bounds on code length n, for a given infonnationllength k, for 3-step
PD cdes.
a .
k : y
Fi ]




3-step PD codés of length n, and tofs

- 99 -

TABLE 4-4

! : 4

B
‘

16

k = 6 8 10 12 14 18 20 22 - - :
n X 13 X 19 X 29 39 49 59 69 79 89 99
the | 7 -- X -~ 23 33 43 53 63 73 83 98103 ) -
Lenath | 9 --17 -~ 27 37 47 57 67 77 87 97 107 . %
1M --21 -- 31 41 51 61 71 81 91101 1M ;
115 --35 - -~ 35.45 55 65 75 85 95 105 115 \;
' i
' 3 d
TABLE 4-5 :
3-step PD codes of length n, and t9;9
‘ k = 2 34 5.6 7 8 910 1214 % 18 - - - T f
n X 25 X 39 X 53 X 67 %x 85 103121 139 -
e, |.X == X == X -= X -- 71 89107125 143 ‘ |
tength |13 -- 29 -- 43 -- 57 -: 75. 98 111 129 147 ‘ L
15 - 31 -- 47 -- 61 -- 79 97 N513315) - : »
17 --33 -- 49 -- 65 -- 837101 119 137 155 ;
19 -- 35 -- 51 -- 69 -- 87 105 123 141 159 .
’ 21 --37 - 55 -- 73 -- 91 09 127 145 163 -
/ Vel
123 - 41 - 59 -- 77 .-~ 95 113 131 149 167 -
27 --45 - 63 -- 81 -- 135 153 171

89 117

T




. . —_— Lt } v :!
' -.100" - . - S
C . . 1
- j
g i
—_ H
. .
‘ .
. L4
g . g’j// -
T Y

\ R - ~ TABLE 4-6

3-Step RD codes of length n, and t_=2

Code |"== 9 = 15 -= 21 -= 27 -= 33 -- 139 *

: Length T -
‘ - - ‘ -
« .
N
.
. - :
PR Y [+] . N
° i
L] ! i
° 4
1
s » »
/ 1
{
i
. .
N
‘ ]
' i
i
3
o i
3 T
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CHAPTER 5
€ v -~
_ ‘ CERTAIN NOM- PERMUTATION DECODABLE
/ CYCLIC CODES
- #
5.1 Introduction - :

. This chapter deals ,With some general resu]ts based on certain
cyclic codes which are not PD. When we say an (‘n,k,t ©cyclic
code is not PD, it implies that.there will be at least one EP

which can not be permutafion decoded.

¢

The results of this'chapter are general and can be applied to all
group (T,U) permutations and they are used in-establishing the exact
1.ower bounds on the code length n, of an (n,k c'y‘c]i'c code. Sec-
tion 5.2 presents these results as "rcgertain non 3‘:12)\’cych'£; codes”. In

Section 5.3, we summarize the results °£hat are obtained in this Chapter.

5.2 Certain Non-PD Codes

. . ’ B -\ ) - .
Here, we give the following three general theorems and related

‘ cordl'lariesafor both vaalues of t beil'ng odd or e‘venl,k and also for both

values of k being odd or even.

7 THEOREM 5.1 |
; The A(‘n’,k »t ') icodes. wi th n=to-ko, are not'PD;
. 3 ) o ,

v
N

u Proof of Theorem 5.1: N C,

. ‘
" This theorem will be proven ‘by cons1der1ng two dlfferent EPs, of .
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’

r

weight t0 or less. which are not PD in any Rdeomain, >0

Specially. let us consider the EPs:

. U
{ei) = {ei = "ko’ for i=0,1,2, ""'to']}’ .
and ) . (5_])
\ {gig = Fei = 1-t0, for 1=0,1,2, ..., ko—l and ikoito}‘

in Ro—domain, for ‘n=to-kd. With referen&e to their definitions, thesé

. il

_two EPs, are not 1-step PD.

. Now, the EPs({eg} and {g%} in R]-domain, which correspond,

respectively, in Ro-domain, to the EPs = (ei} and {ei} are:

: ’ ’ . t -1

’ Vo= = o1 - 3 =
. / e Zei 21 ko . for 0<ix 5
,".{ei}_ ‘.' ) L
e, = 2e, mod n = Zeiwt0~k w

0

’
= (27-t ).K L i<t -
& to)/ko’ for =5 SSO]’_,

Y]
and
k0~1
1 = = .
€ Zsi L2 i to . 'for 0<i< 7
44 ¢y
' = o
e -
ros od h =.2¢.-t -k
_ €] 251 mod N =.2¢; Y%
P2kt (1
| for —§~?;g§ko-l acd kb:;o.
. c/""n ' .
I hw




o

L
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That is:
» “ ‘

~{ei = 1-ko,‘ for i=0,1, ,.... t0-1} = {ei} ,

.and ‘
{e! = 1.t , for i=0,1, ..., ko-l and kD :-to} = {ei}.

1 0

n

e

Thus, by squaring (higher power of group (U) permutations) the {e%}‘
and {e;} 'suqcessive]y; the resulting EPs do not differ from those
[

in Equation (5.1)*. Hence these patterns are not PD.

Q.E.D.

Theorem‘S.] leads to the following two corollaries:

_ COROLLARY 5.1

The (n’koito) codes with n=ro—k0 for 155ty and the codes

a

with n=60-tO for 60;30, ére not PD.

-

0 e : ’

COROLLARY 5.2

. The (n,ke,to) codes with n=§0-(ke-1),. the (n,ko,te) codes with

n=k0-(te—1), and the‘(n.ge,te) codes with n=(ke-1)(te-1), are

not PD.

Proof of Corollaries 5.1 and 5.2:

These Corollaries are a logical consequence of Theorem 5.1. This
is so because ifea (n,k,t) code is noe PD, then by replacing k with
k+1, or .t with t+1 (or both), the resulting code is obviously not

PD.

* This operation can be identified as idémpotent in literature. .

k]

Pt . - e . + P - R S

S < < o s e 3 ek
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THEOREM 5.2 ) ‘ | :

If the (n,k,t) code {s'nqt s-step PO for Some" s<v, then the

, _— (h‘,k;t) codes with n'=n-25"log for 2>1- are not s-step PD.
- . A {
¢

T

Proof of Theorem 5.2:

%Rgt {e?—z',

]

. -
i=0,1,...,t-1} be an EP in the R__,-cbmain of the

(n,k,t) code, which is not 1-, 2-,..., or s-sfep PD. Now, let u;‘

———— o ———

assume that {e?ﬂz:,' i=0,1,...., t-1} s an-EP in RS~2-domain for the
' s-1

. (n',k,t) code, with* n'=n-2 (i.e. 2=1) w.r.t. the pattern '{esi'"z}
»> g L) ‘ ' ’
defined by: A
$-2 _ . S-2 _
' %o € 0, \
s-2 _ _S-2 s-2_ n'=]

s-2, s-2 _ 52 n'-1  s-2 n-] '

(7%=, Q & " = e L for et < (b),

‘ ’ o : 55-2 = e§\-2 --25-2' for n-1 < es--2 < n-_ZS'-2 (c),

| ] i 2 1 i
E?-Z - e?-Z 25-] for" n_25'2 < e?—Z <n (d). :
N ~ ’ | (5.2)°
, - In Equation (5.2), (a),(b),(c), and (d) are used to specify the various {
' categories of “error positions associated with e?'z-vaﬂues An Roo-
o ~domain. From .Equation. (5.2), 'we can define a difference vector {{mi.'_z] a
m‘ RS_Z-domam as: 1 I
’ © ¢ ‘S‘?-Z =0 i e?-Z ip—él ’ ‘ , i
, 1537 - 4 5372 = 2577 it Bleet?cnost T
§e372 & 257! if n-257% < ‘e?"z <n, (5.3) .
- L ' , ‘
, - { X
z - |

—— e, s L s - N * * -
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which represents thJ difference between the errors {e?'zi and ‘(s?-z}

that is 55§'2.= E?-ﬁn” e
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|

b

5-2-

;0 for 9=0,1, .., te1,

_ - Thus, the relationship between the di fference vectors {de?'J},'

(associated with Rs_j-domain) and the differencé vectors (éci-J+]l,‘

(associated with Rs_j+]—domain), for 3<j<s and s>3, can be obtain- -

ed as:
4 —— v
5e>7Y =0
O-
. ' . 6c§-j+] ) ) .
{55?'3}’ =j 5€§‘J = _.72 R for odd-valued e?_3+](e?"3+lx
- —'+ ' i
- ges 3" sl s-j1
Sey " = —— for-even-valued ¢; (eX™7)
. :
(5.4)

Note that for odd-valued e?-J or e?’J we have:

Tog-i+ -3+
5-j s? J ]+n' 5-3 e? J-]+n T
€ R and A 7T s and thus
o 6{5~j+] )
S S S T

,' To prove the theorem, it should be shown that there will be no gap

increase in any [c?'J} w.r.t. {e?'J} in R__.-domain for 1<j<s.

s-]
This can be established using the following two lemmas :

LEMMA 5.1 .

The pattern {c?'z}f given in Equation (5.2} is not s-step PD if

there are no errors located in [e?'zl in the intervals (n'+1)/2
<P (n1)/2 and n>elTds 02 for i < tel,
R}

s
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‘We shall assume that the conditions of Lemma 5.1 are satisfied,
A N \

that is, by the use of proper cych"shifts. On the other har\\d,‘if ‘

these conditions are not satisfied, we have the following Temma)

LEMMA 5.2 ! )
) 4

The {515--2) defined( in 'Equation (5.2) is not PD even if the,\e are

§-2

errors located in {e i } in either or in both intervals

[P

Proofs of the foﬁowing ‘lemmas"are rather long. This is partly \

because there are many cases to be considered. \

* . N e

Proof of Lemma 5.1:

\

If the conditions of the lemma are satisfied, then {ei' }, given -

by Equation (5.2) reduces to

3 ¢ S !
S-Z _ 5'2 = [
CO - e(] 09
o
$-2, _( -2 _ $-2 52 _n'-1 '
e 73 —jc = e Nfor e ),,; 5 (a) »
§-2 s-2 5-2 n-1 ' 852
| ey~ = ey 2 for == <e’" <n (c)
Coo- o ﬁ " (5.5)

Now, we prove that (e57%) will not be decodable in R._,-domain.

This can be shown as follows:

-2

© (1) by assumption {e? } is not decodable;

(2) " in accordance with the definition of (e ™°} 1in Equation

(5.5), the distances between any two consecutive pairs of"

errors with the same parity (i.e., both F* or NF)‘frqm'

\-

C e




either category (a) or category (c) w.r. t. '{e?—zl are \ A

exactly .the same; and

(3) the distance between the last odd-valued (NF) and eyen-valued
'(F) error positions of category (a),.and the first NF and F
error positiéns from categroy (c) have reduced b&l 25'2 in
comparison\with the corresponding distances'of the err*or'

s-2

positions in {ei }. N

.t s e B

To be more specific, we derive the fo]]owmg gap re]atmnshlps between

- {e

f 2} and {es 12} in Rs-2 domain: ] 1‘ : ‘
D[LNFa(LIL‘a),F‘NFC_(FFC)'] = DLLNF?(LF®) ,INFE(FFS)] - 2572,
, T . {e?“_?i
< DLFNFA,LFCT = O[FNFA,LFC) - 2572, L
O I S
o(n’ 572 = eon,e D) - 25F) B 5
\ \ .

, where LNF (LF) and FNF (FF) denote the last. NF (F) and the first
NF (F) for a given category*, respectively. - It should be noted that

the gaps which have not been mc]uded in these expressions have ‘the

same lengths as those of their correspondmg gaps in {e? 2} It

shoula further be noted that there will be no interchange of error

v

* ° » » 3
Superscripts a, and ¢ show the error positions for categories

(a}, and (c) respectively.
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D U

5-2

s . 5.2 ' ‘ , ‘s .
posvt1ons-1n‘{si } wor.t. {ei }, sinceé all the error positions in

{c?-z] from categery (c) are. greater than [(n-1)/2] - 252 _ (n*-1)/2.

It shodld finally be noted that from'Equation (5.6), {eﬁ'z} is not de-
codable in R, ‘,-domain.

Now, let us consider the correspondjng patterns [in RS_]ﬁdomain

which are {e?'] = 2-e?'2 mod n}, and (ci-] =2 €?—2

i _mod nf}, for

i=0,1,2, ..., t-1. Then, from Equation (52?f we get:
e e e e —e . . ’ e

4
2 372= 2 372 ;
i i i

- {s?—]} = ﬁ 2 e§f2 de n' =

= ]
1] \
\ ‘ N
[ .
f

'
n
|y}

. N
1
N
]

—~

=

"1

~N
wr
1

—

e

nNo

n
nNy
42)

—~

. (5.7)

s-1

From Eqﬁation (59.7) we can conclude that in RS_]—domain, ‘(ci }

is exactly -the same as {e?']} which by assumption is not PO.
Now, consider {e?'J} and {e?_J] the corresponding patterns from

R to Ro-domains for 3<j<s. These patterns, and consequently the

s-j°

. difference vectors in| R _j-domains, can be obtained from Equation

5 H
(5.4). For s=2, RS_Z—domain is ‘Ro—domain, and thus the lemma is , %

proven for this case. .

For the case s>j = 3, 1in accordance with Equation (5.6), some of

the gaps in {c?-3} ave the same lengths as those in {e?'3}, wiﬁ% the, ‘
)

=

latter gaps corresponiding to consecutive error positions having the

same parity and with the same pategdry in {e?_z}_w.r.t. {e?'z}a In

<
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/ A
‘RS_3—domain, the gaps corresponding to the first expression in Equation

s-2

(5.6), will produce two gap-length decreasde, i.e., by an amount 2~ /2=

- ,5-3 . .
2 i, as do the gaps corresponding to the second expression. Moreover,

the end-gap in Rs_3-doﬁain, which corresponds’ to the last NF error

X c . TR .
-posttiop in R,_p-domain, can be obtained as:

CEA

o meate oS3 _; §-2 5-3
j tG(n,et_]) (2 - cgt_]) (5.8)

Thus, this end-gap is also reduced by an

aount 2 . This implies that all the elements of {65?-3}, for s=>3,
v

are of even vaiues. Therefore, the parity of {g?“3} remains the same,
s-2

e } .
is not PD, then {c?_3} cannot be decodable in RS_3—domain.

5-3,
!

and no gap-length increase occurs w.r.t. Hence, if '{ei

So far, we have, shown that some gap-length reductions in RS_Z-
domain are of the order ZS_Z, and that the gap-length reductions in

R._,-domain arelgf the order ZS—Z/Z = 2577, Proceeding in this way,

we can conclude that for tie case s>j»3, the gap—]enéth reductions

s-j+1

in each Rs_j—domain will b2 of the order 2 /2 = 2579 conse-

quently, the elements of the difference vector in each domain are of
_ even values, and there will be no exchangé of error positjons and no
change of parities in {e?-j} w.r.t. {e?”j} for 5>j>3.
it shou]g be pointed out that for éach reduced gap—]enéth in the
S_j+}?gomain, there will be two gap-length reductions of
‘the order ZS'j (two consecutive For NF error positions surround-

"present® R

ing the reduced gap by 2571 i the present domain) in the "previous”

Rs_j~domain; and that it is possible that some of the gap-lengtns are

reduced more than once. However, this does not imply that tifere will

— .

A e e e Ly G A =t T - -~y W . - - . " - .=
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be some exchange of error positions in the pattern.

In general, the end-gap in the previous Rs_j-domain corresponds.

to the last NF error position in the present R_ .
- o, s-j+1

-domain. Thus,
from Equation (5.8) we get: |

e S=Jy oo L 573 42 S-Jy _ (981 _ . s-]
EG(n et_]) n ¢ ] EG(n,et_.I) (2 Gct ])

where Gs?—‘] < 25-]. Then, for ‘sl>j33, none of {s?-‘]} will be PD in

any Rs_j—domam.

-~

Finally, if we consider s =.i > 3, then the pattern in R

J s-j

(= RO)-domain can be derivgd from the corresponding /pattern in - R]-do—
main. Note that {c}} has the same arrangement as {e}}, and both
these pe;tterns ha\’/e the same parity of error positions, but their

cﬁ fferences lie in some gap-length reductions of order 2 or multiples

of 2 only. Hence, the corresponding pattern {e?} in Ro—domain has the

same arrangement as {s?}. Note that in RO—domain the elements of

{ {6g?} are not necessarily of even values, and, based on {e}}, there

will be no increase of gap lengths.

Thus, in the pattemns {e?—‘]}, for 3<j<s, there will be no gap-
length increase w.r.t. {e?"]}. Hence, if {e?"‘]} is not decodable in

any R

s-j° then {ei-‘]} cannot be decodable in any Rs_j—domain, for

i=12,...,s.. This cpmp]'etes the proof‘of Lema 5.1.

'Proqf of Lemma 5.2

¥
Based on the structure of the error patterns given in Equation (5.2)
and the inclusign of errors in categories (b) and (d) in {E?-Z} and

(e?_z}{ it can easily be shown from.the proof of Lepma 5.1 that‘{ef-z}

SRR RPN




{“'W,. -
H

is not decodable. As we have shown in Equation (5.7) the corresponding

pattern {e?_1} in R ]—domain is such. that the error positions from

categories (a) and (c) of (c?_z} correspond exactly to those of {e?_l}

whiich are located before the code length n'. This is so begause in

R .-domain all the errors located in {e?-z} in the intervals

rs=1
(n'=1)/2 < e?_zf_(n-l)/Z and n-282 ¢e57% ¢ are; Ze?_2 mod n > n'.

. ‘

Thus, in R__,-domain, the errors in {e?_zl associated with categories

(b) and (d) give rise to some additional errors between the gaps pro-

duced by the errors associated with categories (a) and (c). Therefore,

the patterns {e?-]} will not be decodable in RS_]—domain.

Noy, we proceed to consider the gorresponding EPs in Rs_j-to
Ro-domains for /3§q§§. Note that for' s=2, RS_Z;domain is Ro-domain,
and thus the lemma is proven for this case. o

For the general case, consideriﬁg {e?'z}, in Equation (5.2) two

cases can occur:

[

i) If there are no interchange of error positions either from
category (c) to (b), or from category (d) to (c),
ii) If there is an interchange of error positions either.from

category (c) to (b), or category (d) to (c) (or both). We
/
investigate these fwo cases in R _;=domains for 3<j<s,

S-J
as follows:

Case i: v

In this case, all the errors in {e?‘z

}. associated with categories
(c) and (d) are greater than those of categories (b) and (¢), respec-
tively. Therefore, expressions similar to Equation (5.6) can be derived

(assuming that there are errors from both categoriés (b) and (d)) in
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. R572~doma1n as;
! :
- . 3

DLLNFP (LFP), FNFE(FFC)]= D[LNFP(LFb),FfiFC(FFC)] 22872

» 372 | (€572
i
DLLNFE(LFS) NFI(FFEY] = DILNFE(LES),NFA(rFY)] - 2572,
N . | , . i S"Z’ ) -2 A \ ]
< ] ‘ ){C.i. } f ,' ' '{e'i } |
pfFNF?,LFY] = prened,Lpdy —2S71, )
(.52 ose2, .
{e; ) | ‘ {ei 71,

ES 1. 5'2 = I 5‘2 : ) : ".

EG(n ’st-l)J' EG(n,et_]), ' 4 L (5.9)

/ . '
: . 8 . o .
» Note that the gaps which have not been included in these expres-
) ) N * ' : ' 1
sfons have the same lengths as those of their corresponding gaps in
At .
5-2

{ei 1.

"In accordance with the proof of Lemma 5.1, we first‘consider thé
case s>j>3. Then, from Bquation (5.4) and the first two expressions

in Equation (5.9), 1t can be seen that the corresponding gap-lengths

5-3

in RS_3~doma1n will be reduced by 2 The gap-]ength,in-tﬁe third -

expressions in Equation (5.9), which corresponds to the central-gap in.

R,_j-domain, will either remain the same.or will be reduced by 2573
if LFd does not exist, as in {e§'3}. The end-gap in"this domain

-

depends on whether the last NF errbr position is from category (c) or

{(d). Thué, by using Equatibhs (5.4) and (5.8) we have:

b B a0¥

S e ey s facw

R T




. - ]]3 _ . K3
f - : , i

r . . .
657322524 573 TV ¥ tast NF-is LNFC
t-1 : Y ’ -
d ’ | | ' (5.10) .
B e R PR R L1
L -

which shows that the end-gdp in {@§-3} "will be reduced by 2573 w.r.ti

{e§—3} for category (c), and it will remain-the same for category (d). .

5-3

; },. it has the

Hence, {e?—3} Has no gap-length increase w.r.t. {e

same parity as {e?'3}, and its gap-length reductiows w.r.t. [e§'3]
el . _are of the-order- 2272 Therefore; —tc3 "2} —is -not-decodable-in-- Re—zw -~ ——— -
domain. Now, proceeding in the same way és in Lemma 5.4, it can gasﬁ]& &

" be shown that the-elements of the difference'vgctoré associated with
: th? patterns fC?'j} in R._,=s R._s=s ...} and »R]~doﬁains are all
of even values; that the parities of the error positions remain the
same w.r.t. the patterns {e?-j);‘ and ;hat all the gap-lendth reduc- - ?
tio&s w.r.t. ,je?_j}" are of order 2579 or multiplies of 2573,
Clearly, there can be no gap-length increase in any of these domains.

- Finally, in RO-domain, for s=j>3, {c?} will have the same pat- ;
tern as £e?) with réduced gap-]engths‘on]y.

AN
' Case iiv
\ In this case, an interchange of errqg positions in {e?—z} w.r.t.
' 5-2

{e

;) in R_,-domain simply means that there is‘giiover1appiﬁg of two

or more adjacent gaps ‘from two adjacent categories. ngevef, this in-
* terchange of error positions will not produce any increase in the gap-
lengths. Two cases can be distinguished.when an error has exchanged

its position with that 6f’an8%ker error from a Previous category in

R _p-domain. We will consider these two cases«in the following.

o
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-
As the first case, consider that these two errors are not of the
S-2 5-2

same parity, and denote them by eF and enr - 'Moreover, denote by

?_._2 (e3 _) and e?_.+2 (efwi) the two errors which are immediately be-

fore and after the error efs_. -2 ( ), respectively, and which are q’

thg-sgme parity as e,s‘--2 (e ;F?‘) The errors e‘; 2, eS 2, and eS -2 produce
. . _ . ~ -2 S-2

two consecutive. gaps in R._s-domain, as do the errors eNF- + ONF »

s-2

and enFr The former two gaps and the latter two will not have any

over]appmg in RS_3-dqmain. Thus, in this domain the errors correspon-,

ding to ef,'z and e;,':z are arranged in, [e?-B

they are in {e?'z

} in the same order as

}. Therefore, {c?_B} will have the same properties

Jn R§_3—doma1’n as in case i, and the lemma can accordingly be proved

from R._5 to -Ry-domains.

As the second case, consider that the above two errors are of the

|
same parity, and denote them by eFl (eNFI) and e‘:‘_ZZ (e NFZ) Then .
the corresponding errors e;i( ;F?) and ers__? (e ;Fg) will also

interchange their positions in {e,i } w.r.t. {ei } in s 3~doma1n

Therefore, as in RS_Z-domain, there will be an overlapping of two or

" more adjacent gaps in Rs_‘3—domain. As mentioned in-the first case,

\

such an interchange of.error positions will not produce any increase
in‘the gap-]enéths. -

Now, considering the above two errors in RS_3-dqma1‘n, one can
distinguish between r;o sgbc]asses: 1_)“ when these two errors are not
of the same parity, and 2) when they are of the same parity. I'\s for
1), the problem under consideration in this domain reduces to that
considered in the first case. l\? for 2), considering the corresponding

4 s-4 , . L.
errqrs e (eNH) and 'eFQ (e NFZ) in RS_4-doma1n, the position of

“thése errors-in {Ci ] w.r.t. {e1: } will be interchanged, thus

AR et AR =
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producing an overlapping of two or more adJacent qaps” but not pro-

ducing any gap-length 1ncrease. Therefore, the prob1em is to f1nd an

5=
S

R j—doma1n, for 5<j<s, such that the parit1gs of ?Fl v(eNF%_ and

(eNFZ) are different.

s-2 5'2)

In-this way, by starting from the two errors 1 (eNFl and ;

(eNFZ)’ we can find an- Rs_j-domain such that the positfons‘gf

(eNFl) and e?zJ (e ;ﬁg) are of different paﬁ#ties; Thus; coNn-.

,s1der1ng e%ﬁz (eNF1) and eS -2 (ENFZ) we have the following three
parts: ) . : \ ¢

1) . if

(52 5-2) )

hFlens) - ey (efrg) = 2(26),

for O<A<25'5€i and 535, 'then the position of the two errors

s 3 ,.5-3
o3| (e

and their parities will become d1fferent w.r.t. {eS 3}. ‘Therefofe,

-3 . - . » e
NF1) and eF2 (eNFZ) in R 3.—domam will be 1nt§rch§qg¢d )

as for the first case, there two errors together with their "immediately

will produce two non-overlapping gaps in R 4demain. Thus ,

before" and "immediately after" errors which have the -same parities

. s-4
€r

i

s-4 -4 s-4, .
(eNFI) and eF2 (e NFZ) will be arranged in {ci } in the same order
" as they are in {e?-4}.
2) if T A -
) C | L
$-2, $=2\ _ out2 . . ‘ T

7 (eye) = ehp eprg) = 24, o

for 05}3 s-5 and s:ﬁ,: the position of the two errors . | 313 (e NFl)

ok

i
S e s (e PRI




they are in (e e

=116 -

i

3 :
and' e§23 (e NEZ) will be interghanged but their'parities will remain
the same w.r.t. {ei-s}.“ This process can go ahead at most up to
iRé 3 —doma{n. Ip thfs domainy the distancg between the tw6 ;rrors
S 3 v (eN;?'“) _and eF23 H (e;Fg'“) rgduces to that in part 1.’
$-5~u ;. S-5-u 5-5-u s-5?u)}

Thus, the corresponding errors ery (eNFl ) and er (eNFz

in RS_5 -domain ‘will be arranged 1n {e§'5—“} in the same order as

§-5- My, but they will produce no gap- 1engﬁﬁ 1ncrease

"A3) if

| <2y 52 k2 5-1
,é1 (epy) - efr () = 2712a) < 2570

I3

for: O<u<s-6, 1§)§25_5

a . :
-1, and s>6, then it can be shown (in accor-

dance with:parts 1 and 2) that the posjfion of the two errors e?}s'”

S-5-u s- 5 bose5ewy o . :
(eNF] ) and fr2 (eNFZ ) in )Rs-S-u domain will be rearranged
in {Q?'5-”} in.the same order as they are in {e?-S-ul‘

Thus, we have ‘shown that for both cases i and jis, From Rs_j-domain

td.'Ro-domain for .3z<j<s, . there will be no gap-length increase in-
{e?'Jﬂ W.r.t. \{e?'J}.“ This completes the proof of the. lemma.
Lemmas 5.7 and S.Zaeétab1ish Theorem 5.2 for the case i=1.

(n(z),k,t) codes with n(2)=nf-25'2

For the case. #=2, the
are ndt s-step PD, because the [(n',k,t) codes are not s-step PD as
for the casg 2=1. .

Sim??ar]y, for the case £=3, thév (n(3),k,t) codes with
n( )2 (2) S 2 are not s-step PD as for the cése 2=2. |

In this way, it can be shown that for >1, the (n(%);k,t) codes

with n(z) (z- ) 2572 are not s-step PD, because the z(n(z']),k,t)

R P o T

B ek
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codes are not s-step PD.

‘-

_EXAMPLE 5.1:

LY

Q.E.D.

As an examp]eito‘ilestrate Theorem 5.2, consider the case s=5.

Then;.éjnce.the (63,7,9) code is not 5-step PD (see Theorem 5.1), the

!(47,7,9) code is not S-stép PD either as shown in Figure 5-1. The pat-
. .

tern for the (63,7,9). code is {eij? = 7-i, for i=0,1, ..

., t-1 =8

" and 1§j553ﬂ' For the (47,7,9) codé; we construct all the patterns in

five different domains, Sfé?ting withA-R3-domain, as

-

(]
]
~
-
-

by dsing Equation (5.2). Thus, this examble correspond$ to Lemma 5.2.

for

for

for

for

24 -

3.

55

’"lA

" For the details of the patterns with thgir difference values.w.r.t.

,{ei}, see Figure 5-1.

&

3

-

°

.xkj .

a4 e

st 3.
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(l) "
, 0

1 | R'

°

o} Rgz

o

% i3
'l

.0 9

Additional Ereor

Legehd

‘Lower numbers: Error positions placed orderly (e?_‘}}.

 Figure 5-1. An illustrative example of the pattérn {ei) for the
(47,7,9) code which is not 5-step PD, derived from.

the pattern (e].‘}, for the '(63,7,9) code.

4

" The next general result is concerned with some other codes which.

.are not PD.»

THEOREM 5.3

The (n,ke,te) codes with n =

Sl

te-ke' ‘aﬁdv‘ke'te }JO mod 8, are
not PD.
L

4

.




Proof of Theorem 5.3

l: .‘

)

This theoreém is established by .considering two pairs of EPs, which

are not PD in any R.-domain, 1>0. Let us consider the EPs {e;} and

(ei}, for i=0,1, ..., te—1, in Ro—dpma1n, as:
. .
e =3 i » v
€25 "€i = 7 Ke'T -
ke ’ e
S Q84 T 8 o \ for 01157—-1,\ '
R \
B o “ ' y
©ie1 T 25 Y Ke (5.11)

\

From Equatidn?(S.i]) it is obvious that all the gaps are of lengths

§

not greaterwfhan (ke-l). The eﬁd-gap for both EPs are:
. ~ ' , ‘ 3 3te'ke R
EG(n,eté”]) = 3'ke te [ e ke] - 1= ke-l,
9 3 terke K ke
Eolnaey =gkt g -l -1 =g
~ ‘ ]

‘fhué, {ei}-'and ‘{ei] given in Equation (5.11) are not 1-step PD.

corresponding EPs in R1-domain, {ei] and {s%} become:
{ei} = ' for Oii'iz—e‘.-1

which is the same as {e). That is {e%}<=l{€i}‘ Similarly, -
. k 1

A 3

The
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, « t
for 0 Si S,

u
/\

{e%}

ke
o

'

f2i+1 T ©2i

That is (e%} = {eiY. Thus, the patterns {ei} aﬁd Y{ei} will inter—l
chénge with the corre;ponding pattérns {e%} and {é%}, in R]—domgin,
respectively. This interchange of patterns will also take place from -
R]- to Rz-doamins, and Qovon. Therefore, by using any higher group ;'
(U) permutations the patterns corresponding to fey) and  {e,} will
still remain not PD. '
Simiarly, let us consider the EPs, {e.} and. {e;) fp;l i=0,1,...,

5

k-1 rand k, < t,, 1n Ro-doma1n, as:

_3, .
eZi AT
- < | ke
'{ei}= . fbr«0_<_1_<_.—2- -1
oy
41 " %24 T2 0
and
" ( —3. )
Ez.i “E’te"]
. ke "
[Ei}=< ' ‘for Oiii"f°']’
€2i41 ~ €2i*te: :
\ s

T

o




e ——

- - ‘ , e

In this case too, the patterns {ei} and {ei} are not l-step PD and
they wilﬂ‘ihterchanqe with the corresponding pattérns from one domain

to the next higher domain. Thus, these patterns wfl] remain not PD.

[}

s Q.E.D.

From the proof of Theorem 5.3, phe following corollary is an imme-

idate consequence.

COROLLARY 5.4

3k
. . - e _ , i
The (n,ke,to) codes with n —if;(to 1), and the (n,ko,te)

1 :l_.-_e_.. - L. . - q
codes with n = — (k0 1) for ke(t0 1) or te (k0 1)¢ 0
mod 8, ‘respectively, are not PD.

«

Proof of Corollary 5.5:

\

This corollary is a logical consequence of Theorem 5.3. This is

so because if an (n,k,t) code is not PD, then by replacing k with

'k+1, -and t with t+] (or both), the resulting code is obviously not

’»

PD. ;-

5.3 Summary of the Results

In this chapter we obtained some general results based on certain
cyclic codes which are, in general, not PD. These results are used
in establishing the exact bounds given in previous two chapters and
also are applicable to all group (T,U) permutations.

Thearems 5.1 to 5.3 and their related corollaries assert the fol-

“lowing results for both even and odd values of t, and both even and

-
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oqd values of k. ' . .. ‘

. ‘ " In general, the following codes are not permutaiionjdecpdab1el

c I. . For any t| (odd or even), the codes (n,k,t)_:with ’

n=60~r0~,

where' sy<k, and 'k <t, are not PD,

II[‘ 'rf tﬁé} (n, ,t)‘ code.is not s-stép PD;

codes ‘with .
2 C ot =2 L) for

. .. are not s-step PD.’ PR _
L I11. . For any t (4ddor even), ;he/cdﬂes (nyk,t)  with

v N
v
t M . ’ o
. N .
and g * T 2 0 mod 8, are not PD. ;
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'CHAPTER 6
' . . , l W [
- CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK .
P s

n thfs chapter,.we summarize the resu?ts presented in the thesis.
Me then br;ef]y d1$cuss the results obtained and conc]ude the chapter

r w1th 5ugge§t1ons for further research.

1, Summarx tain\ 1 :

The ma1n empha51s in this thes1s has- been on ana]yz1ng the cap-

*

ability of error-trapp1ng decod1ng, specially, those which are, based on
the "permutat1on decodwng" concept In this respect, we have der1ved

‘ exact 1ower bounds/j:/}bé code length n, for given information length

) k, of the "multiple erro:;;orrect1ng" b1nary (n,k,t) cyclic codes by

app1ying cycl/p/f;d.
/

squaring (U) (or square root1ng) group (T,U) ?

H}

»

n Chapter 2 we discuesed the various decoding prddedures available

or decoding cyc}iﬁ'c des. We introduced,the error-trapping technique

ing schemes based on the concept of permutation decod-
ing for cycli€ codes.. ‘From the implementation point of view, we des-
cribed g-practical permutation decoder at the end of the chapter. .

In Chépter 3; we developed the“relationship that must exist, bet- ';
{ ' I R *
ween 1, k’,and t in order for a binary (n,k?t) cyclic code to be 2-step

+

) permutat1on decoda“]e " In th1s respect, we established the exact lower

- . N !

/! ' A 0 =3
' .

. : Liad < . &

¢
3

JQUICLIET 2% < - LR S RO N PN . s B 4
3 M s g, . s e v . . +
- . '
f 1
' [ %,
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bounds on code length n, for the .(n,k,t) cyclic codes with t

" being odd- or even valued.

In Chapter 4, we derived the exact Tower b0unds'on code length’n,.

- by app1yin§ 3-step permutations to the (n,k,f) cyclic codes with oqu

-valued t, and-to the case of even t=2.

"Result'l

Chapter 5 described certain classes of cyclic codes which are

nof permutation decodab]e.

fo]]dwing main results were 2btained:

The
- \ .

4

The Tower bounds on n, by applying 2-step permuiatiohs (for U‘-T33

for 4=0,1, a-d 8 =0,1, ..., n-=1) afe:

a) . For t odd-valued (to):

~

i)  k odd-valued ("’kd’to) codes:

n > ko . to . (é.])
ji) k even-valued (n,ke,to) codes; . 2
n ztd‘- (ke-l) . . (6.2)
o / ,
5) * For t even-valued (te):
i) .k odd-valued (n,ko,te),codes
n> (te-j)- ko . . (6.3)
“\ .
ii)"k even-valued (n,ke,te) codes ;
b (D) ke (6.4)
.

.
< ’ .

)
AT g BN ot Y108 M I & 91t . . .
L’_ o Rt : -~ R e e o R T TN 0 S PP S TOU ORI 7 U,

. b " -

PUpSEN

. ke T

o Wb 81 pocp Hi w2 e e

L/
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¢) Special-cases: .
1)  For t=2, (n,k,2j 'codes:a ‘, Cy
K] ¢ s ‘J I
. on>3.k/2 ¢ (6.5)
! - “, A ‘ Al s it
2)'. For k=2, (n,2,t) T !
i ' .o . g N
i) : . \ Y . : ‘
;’/ ' ]
(3-t -1)/2 e 6.6) .
v . / [ ' s N (
;o ’ % ’ = j
: “ter / R R I '
an resta e the cases {ﬂ') and (ii)- fo/zﬁé ¢ase k 2, as 1f o .
- t/2, then the, (n 2,t) code is 2- stép PD. A
Result 11" J e o
The extent of decodability /ofr,’3—s-tep PD codes’ (u’1 . 78 for ., .
. , /o ,n , . ' : . P
i=0,1,2; and B 0 1 ceey A-1) only for‘ t odd-valued codes. / Ty o
In addltmn to the 1mp Gved ‘Bounds given for72 step PD codes/, th ,
foHowmg codes are 3-st b PD. ) i
“‘v’ ‘ ) N . : / . '\. <y
Ja) T.he (n,k ,t ) codes: TR ‘ ; "
n = to-k0 - 2(&7vz+1),«- 1f k 9.+3 > C L
. . o . “"”‘i i >t ] 5
S " . and /o o< (B -1)72 .. CLT H
i . . . A 0 ) . .
\b) The (n ke n) codé: o Do o
i g t (k-1) - 2(2. 241) iF K> 2444, -
. '\ - T R - o
> ¢ . O i
1 . " .{:‘, . I3 ' -
. ‘ s 4
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and 0<e<(t-1)/2 ‘ " (6.9)
/ * : )

:

¢) Special cases: °

~
[}

1) - for k=2, (n,Z;to) codes :

. n> (Bt -1)/2 " , ; - (6.10) .
2)  for t=2, (n,k,2) codéé: i
k1
n = k0 f —7—T_’ for k0.>.3 ’

The rest of the codés are under thg'same bounds given for:2-step PD.

2

Result 111 * ;

i

. In general, the fo]]owfng,codes are got'permutation decodable :

/ e SN
/ 1) If the (n,k,t) codes is not’s-step PD, .then ‘the (n';k,t) codes

(i

n =021 a, for 21 . (6.11)

with Lo

2) for aﬁy‘ 1 (odd or even), the codes (n,k,t) with

where 6;1 k, and t <t, are not PD.

3) For any t :(odd or even), the codes (n,k,i) with

g - - e M o w1 et e e Sn——m e w R ke = N ste s
g Y Tt il A b e 4 .

3

+ ottt




- as -(te+ke-4). However, the lower bound for the"(n,ko,to) cyclic ‘,w

IR e

- . “
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PR—

4 where 6e i‘k, T < t; and _ 6e A Z 0 mod 8, "are not PD.

e S
§inée the derintion of these results‘involves only positions of . ;,

the e}rors, the results are applicabie not only to B}nary ;yclic codes .

over EF(Z), but alsé™to cyclic codes over GF(2™), for mo1.

6.2 Concluding Remarks

With r;gqrd to ‘the (n,k,t) cyc]ic.cbdes we have presented exact
lower bounds on the code length n, or equivé]ent]y the upper bounds
on the -code rafe k/n in order for the code to be PD. In‘this work, by
comparing the resu]ts.of 2-step and 3-step PD cogdes with tﬁose of 1-

step PD codes, we have proved the following facts:

*

PRPERP TP NI

1) For 2-step PD cyclic codes, the lower bounds on n for the
(n,kn}to) and the (n,ko,te) cyélic codes have been improved over those ,
of 1:stgp PD cbdes by as much as (te) and (ke)’ re%pective]y. Also, the

lower bound for the (n,ke,te)'cyc1ic codes has been improved bylas must

[NPURN

" codes has not been improved.

2) In the case of 2-step RD codes, if t odd is increased to

Q o . .
t+1, the lower bound on n increases only by 2. !

foe
>

As far as’'2-step PD codes are concerned it is better to.have codes |

with even t rather than odd t. _ ,///

P

3) For 3-step PD codes, the lower bounds on code length n for

the (n,ko,to) and the (n,ke;to) cyclic cpdeé have been improved by vA

as much as (2-t6:4) and (3-t0-4). respectively. -

i
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. Based on the results obtained in this,theﬁis dhdlthejabove mention-
ed facts. we g?ve'Tables 6-1to 6-4 for some specific numbers 2f cor-

. reétab]é errors to =5,9 and te = 6,10, as examples. These tab]és

show the improvements on the code dength n, by increasiqg the number of
steps of permutations from 1-step,to 3-step permutations.
From these tables.it can be seen that when codes with high*ﬁafe

are required, it would be suffictent to usé an (n,k,t) byi?jcscodg to

4

correct at most, say, tJ errors, where t] < t. It would then be a

great advantage tp decode such a code with a simple error-correcting
N i )
procedure. One such application ‘is in\ARQ Systems [14]. In this con-

\

nection, 1et:usﬁp@nsider Tables 3-4, BQS, 4-4, 4-5, 5-1, and 5-2 for
K . : )
the (n,k,t) cyclic codes with 't0=5 and to=9, which can be decoded
_\ .
simply, using Zigtep or 3-step permutations. From these tables one

can observe that if an (n,k,t) cyclic code with t=9 cannot be de-
coded by certain steps of permutations (Table 6-2), ¥t may be possiB]e
that this code fall within the bounds given -in Table 6+] for t]=5.

If this is sufficient as error correcting capability for the code,- ’
AN

_ ten the error-trapping technique based on the permutation concept can

be applied.
|
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TABLE 6-1

. I

The'exact lower bounds on the code lencth n,

AT BT T et oY

B T

_ | EXACT TOMER BOUNOS ON .n‘ .
K 1-Step PD Codes | 2-Step-PD:Codes |. 3-Step PD Codes
' 2 1 L9 7
-3 17, Y 13
4 21 17, 17
5° 27 27" 19
6 3N 27 .23
8 T 37! 29,
10 51° 47 39
¢ 12 61 57 L9,
14 71 67 59
16 81 o, 69
1
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" The exacf lower bounds on the code,length‘ﬁ}f~f
Co for.t =9 -

\

CEXACT LOWER BOUNDS ON n

1-Step PD Codes

" 2-Step PD Codes

3-Step PD pqdés

J9
29
.37,
47
55
65
73
83 .
91
109
127
45—

15—
29
29
47
47
65

. 66"
’83¢\-;

- L

‘9
137

13
25
29 -

;39

53 -
57
67
-
g5
103
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TABLE:

The exact lower bounds

for t
e

6-3

on the code 1'eﬁgth n,

=6.

N

,THE_EXACT LOWER BOUNDS ON n

1-Step PD Codes

2-Step PD Codgsu

13
S
.25
3
‘:'37"
e
\ g
e
61
67

v

y
]

mn:

7
. 19

27

-, ;2.9

Ed

49\

39

57

1 B achariicatiadr D e

. - g
13 79 \§7 -
T - 69
15 91 7
16 97 79 .
. | -
.
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TABLE 6-4

. The exact lower bounds on the code length n,
*for ’te=10.

PR R LR

e
. THE EXACT LOWER BOUNDS ON n
) ) K . . 1-Step PD Codes o 2-Step PB Codes
2 21 17
\ 3 . 3] 29
4 Y | 31 )
5 - | 51 S a7
6 61 . 49
7 R 65
8 8 67
) s 9 . . 83
| 10 101 85
1 meo © 101
12 121 . 103
13 131 119
W 12}
R ‘ 15 . 151 137
' 16 6] . 139
:
] -
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6.3 -Suggestions for Future Research . 3

~The permutation decodina concent in error-trapping technique for

deéoding cyclic codes can be studied further by considering the fol-

lowing:

0y

2)

(/
o b
By increasing the number of steps of the group (T,U) per-
mutations the Tower bounds on n improves, so that the capa-
bility of error-trapping technique can be extended to higher

_rate codes.

In addition to the group (T,U) permutations, there are other
sets of permutations for which certain cyclic codes are in-

: i
variant. For example, the extended binary QR codes are in-

variant under the Doubly-Transitive-Projective-Unimodular

group, and thus the error-trapping technique is applicable.

" At the present time, 1i£t1e theoretical progress has been

made on this problem.
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- types of patterns Table 3-1 to 3-3 have been obtained, resulting in the
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APPENDIX *

-

' COMMENT ON WORST. CASE ANALYSIS -
In Chabter 3,.we have int?oduced four different types of patterns
of an error pattern (EP), in’ Ri+]-domain, for i>0. From these four

derivations of the equations, for the worst case analysis. - S ‘

In addition to the four different types, of patterns, for the worst ////d

case analysis, one may think of’éome other kinds‘of patterns such as///
or ' .

denoted by é&-type, and any other/combination of error positions of

2

this type. This pattern can not be considered within the worst case

L

patterns. Take é§-type pattern in R]-domainxas an example in Table 3-1: :

it will correspond to three gaps in Ro-domain: two of .those gaps should

be of gap-lengths g]j;l%—— , and the third aap of length 92.1k9'1- So, °
it is clear that this tyoe of natterns in comparison with the types of

patterns given in Table 3-1 for the derivation of Equation (3.7) can-

not be considered as the worst case.
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