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ABSTRACT

The Arbitrarily Varying Channel (AVC) can be interpreted as
a model of a channel jammed by an intelligent and unpredictable
adversary. In this paper, we investigate the asymptotic reliability
of optimum random block codes on Gausstan Arbitrarily Varying
Channels (GAVCs). A GAVC is a discrete-time, memoryless Gaus-
sian channel with input power Py and noise power N,, which is
further corrupted by an additive “jamming signal”’. The statistics
of this signal are unknown and may be arbitrary, except that it is

subject to a power constraint, Pj.

We distinguish between two types of power constraints: peak
and average. For peak constraints on the input power and the jam-
ming power, we show that the GAVC has a (strong) cépécity. For
the remaining cases, in which the transmitter and/or the jammer
are subject to average power constraints, only \-capacities are
found. The asymptotic error probabilities suffered by optimal ran-

dom codes in these cases are determined. Our results suggest that
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if the jammer is subject only to an average power constraint, reli-

able communication is impossible at any positive code rate.

1. Introduction

Consider the following communications channel (cf. Figure 1). Once each
second, the transmitter chooses for transmission to the receiver an arbitrary real
number, say u; at time ¢, such that the sequence {s;} satisfies a power con-
straint, Py (to be made precise below). In transmission, this number is cor-
rupted in such a way that it is received as u; + n,f + s;. The elements of the
sequence {7,;} are independent, zero-mean Gaussian random variables, each hav-
ing variance Ne . The transmitter and the receiver have no knowledge of the
sequence {s; }, other than that it satisfles a certain power constraint, say P, (also
to be made precise below). The sequence {s; } may have arbitrary, time-varying,
possibly
non-Gaussian statistics. The goal of the transmitter and receiver is to construct
a coding system to reliably convey discrete source data over this channel, know-
ing only IV, , Py and P;.

We call the preceeding model a Gaussian Arbitrarily Varying Channel
(GAVC), since it is the continuous alphabet, Gaussian-noise-corrupted analog of
the discrete, memoryless, Arbitrarily Varying Channel (AVC), introduced by
Blackwell, Breiman and Thomasian [1] (see also Wolfowitz [2] , Csiszdr and
KBrner [3] ). The study of discrete, memoryless AVCs has generated a substantial

body of literature; much of this is summarized in [3], chapter 6.

By comparison, GAVCs have received considerably less attention. Blach-

man [4] , [5] , has obtained upper and lower bounds on the capacity of a GAVC
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(using the maximum probability of error concept) when the sequence {s;} is
allowed to be chosen with foreknowledge of the transmitter’s codeword. Basar
and Wu [6] have investigated the use of essentially the same channel, for a
different source transmission problem in which the source is a discrete-time,
memoryless Gaussian source and reliability is measured by mean-square -distor-
tion. Dobrushin (7] , and later, McEliece and Stark [8] , have studied what
might be called a Gaussian compound channel (cf. [2] , [3] ) which is similar to
the GAVC except that the {s; } is constrained to be a sequence of independent,

identically distributed random variables.

The practical significance of the GAVC is seen as follows. One may view the
sequence {s; } above as selected by an intelligent and unpredictable adversary,
namely the jamrﬁer, whose intent is to disrupt the transmission of the sequence
{u;} as much as possible. The jammer, like the transmitter, is subject to the
natural constraint of finite power, but is otherwise free to generate any signal he

chooses.

In this paper, we study four GAVCs corresponding to two different types of
power constraints (peak and average) on the transmitted cc;deword and on the
jamming sequence. Our main results are coding theorems, one for each pair of
constraints, characterizing the asymptotic reliability which can be achieved by
the use of optimum random codes on these channels. We say ‘‘asymptotic relia-
bility” rather than capacity because, as we shall find, these channels generally

have no capacity, per se.
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2. Definitions and Results

A codeword of length n for the GAVC is a sequence of n real numbers
selected by the transmitter, say u = (v, ..., u,). Similarly, a jamming
sequence bf length n, denoted by s=(s,,...,s,), is a sequence of n real
numbers selected by the jammer. These sequences may be thought of geometri-
cally as points in n-dimensional Euclidean space (R" ). With this interpretation,
the output of the GAVC corresponding to the codeword u and the jamming
sequence 8 is

*

y' = u+n/+s, (2.1)

where 7,” denotes an n-vector of independent, identically distributed (i.i.d.)

N (0, N,) random variables. t

An (n ,M) block code, C, , is a system }
Cn :{(uI!Dl)f"'l(uM9DJM)}’ (22)

where {u; }, are codewords of length n, and {D; } M | are disjoint (Borel) sub-
sets of R", called decoding sets. This code may be interpreted ‘as a means of
transmitting an integer message from theset {1, ..., M } to the receiver using
the GAVC. To send the number 1 < ¢ < M, the transmitter sends the code-
word u;. At the receiving end, if the received sequence y* lies in the set D, the

receiver infers (perhaps incorrectly) that the transmitted message was it

+ Throughout this paper, except where otherwise indicated, asterisks are used as super-
scripts to denote random variables, bold lower case letters indicate vectors (or vector-
valued mappings) in R™, and N( u, 0°) denotes a Gaussian distribution with mean x4 and
variance o%.

+ We extend this definition to non-integtral M as follows: By an (n, M) code we mean
an (n, M' ) code where M' is the smallest integer greater than or equal to M .
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otherwise, if y* is exterior to each decoding set, the receiver draws no conclusion

about the transmitted message.

We are interested in the problem of transmitting the output of a given infor-
mation source, generating R bits per second, over the GAVC with minimum
error probability (to be defined). The goal of the transmitter is to construct a
block coding system of length n which suffers an error probability no greater
than this minimum, regardless of the jamming sequence s. The goal of the jam-
mer is to inflict the largest possible error probability on any code chosen by the
transmitter by an appropriate choice of s. For the transmitter, a strategy to
accomplish this goal consists of an (n, 2"R) code; a strategy for the jammer is a

jamming sequence of length n.

We allow both transmitter and jammer the additional flexibility of being
able to choose their respective strategies randomly. Accordingly, we define an

(n ,M) random (block) code,

et ={ @i w0} 23)

to be an (n,M) code-valued random variable, which satisfies the obvious
measurability requirements. A (random) jamming sequence of length n, with the

obvious definition, will be denoted by s*.

Clearly, if no further restrictions are imposed on the random codes and jam-
ming sequences, the problem has an uninteresting solution. The error probability
of any fixed, positive rate, random code can be made arbitrarily close to cne by
letting s* be memoryless, zero-mean, Gaussian noise of arbitrarily large variance
(or power). In practice, however, there will be other restrictions which prevent

such trivial solutions. An interesting and natural restriction to investigate is that
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of placing some kind of power constraint on the codewords and the jamming
sequences. In this paper, we consider two types of power constraints: peak and
average. We say that C,’ satisfies a peak input power constraint (PI) if each code-
word lies on or within an n-dimensional sphere (n-sphere) of radius /nPp
almost surely (as.), ie., if for each 1<1: <M, the codeword

u;" = (v, ..., ;) satisfies
1 n 92
-~ Y it < Pr (as). (2.4)
7=l

This code satisfies an average input power constraint (Al) if the expected power

averaged over all codewords is at most Py, i.e., if
el L ﬁl} f} ui?t < Pr, (2.5)
nM 22 N

where E{ -} denotes mathematical expectation. We also define two similar
power constraints on the random jamming sequence, s*. We say that s* satisfies
a peak jammaing power constraint (PJ) if

52 < P; (as.), : (2.6)

1
n 1

Bast

and an average jamming power constraint (AJ) if

[
~3
~—

E{-l-is,-*’-’}gp,. (2.

n o=
Denote the collection of all random jamming sequences of length n which satisfy
PJ and AJ by S? and S}, respectively.

There are two input power constraints (PI or Al) and two jamming power
constraints (PJ or AJ), and so a total of four possible combinations of transmitter

and jammer power constraints to consider. We adopt a simple binary
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nomenclature to describe each case. In the sequel, when we speak of the GAVC
A|B, we mean the GAVC with input power constraint A(=PI or AI), and jam-

ming power constraint B(=PJ or AJ).

‘We now specify what is meant by the ‘‘error probability”’ of the code C,".
Given a code C,’ on the GAVC A|B and the jamming sequence s*, we can in
principle calculate the (maximum) probability of error:

MCHs*) = m Pr{ u;* *+9* D-~'}, 2.8
( n S ) lstaélw t + 1’6 8 e 3 ( )

n ¥
where D,” denotes R"- D, However, s*

is not known in advance to the
transmitter, and may in fact change from one block to the next in an unpredict-
able and arbitrary way, subject only to the power constraint B. The smallest
error probability guaranteed to be achievable by the code C,’ is the supremum of
(2.8) over all B-admissible s*; this we denote by X\ (C,"). Hereafter, when we

n

speak of the error probability of the code C,’ when B=PJ, we mean

\NPT(eH = sup N(Crs8%); (2.9)
s*c St

the error probability when B=AJ, which is denoted by >\AJ(C';), is identical to

‘

(2.9), except that the supremum is performed over S

We now ask: For a given source rate R and constraint pair A[B, what is the
smallest error probability, A% (C,"), which can be achieved by any (n,M ) random
code C, which satisfies constraint A, when M > 2" and n is large? Clearly
this e;ror probability depends on both the rate R and the constraints A[B.
Accordingly, we say that a pair, (R ,A\), where B > 0 and 0 < A < 1, is achiev-
able for the case A|B (achievable A|B) if for all ¢ > 0 there exists, for all n

sufficiently large, an (n ,M ) random code C, satisfying constraint A, so that

U
I
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logg M > n(R —¢) (2.10)

and

MN(ehH< x+e. (2.11)
Let R4 | p denote the set of all achievable pairs (R ,\) for the GAVC A|B.

Note that if a certain pair, (R ,\), is achievable A|B then all pairs (R ",\"),
such that R’ < R and N > X, are also achievable A|B. Consequently, R4 |3

must be of the form
RA,B={(R,>\)[O_<_RSCA|B(>\),O§>\<1} (2.12)

where C4 | p(\) is 2 monotone increasing function of X\. Thus, to characterize

R, | p it suffices to determine Cy4 | g(N).’

The function Cy | p(X\) is called the X-capacity of the channel (cf. Csiszar
and KB8rner (3] , and Wolfowitz [2] ). It can be interpreted as the largest rate of
transmission which can be achieved by a code with error probability no greater
than X, for large n. If C4 | p()\) is equal to a constant on 0 < A < 1,say Cy4 |p,
the latter is called the capacity of the channel; otherwise, if C4 | g(X\) is not con-
stant, we say that no capacity exists. f Most simple channel models which arise
in information theory have a capacity. In this paper, we will show that certain
GAVCs generally have no capacity; i.e., Cy |B(>‘) is not constant. This interest-

ing and somewhat surprising fact distinguishes GAVCs from discrete AVCs:

+ An alternative (eg. Csiszar and Kdrner [3] ) definition of capacity (which always exists)
is
CAIB == lim OA}B(X)

P

Our definition is that of Wolfowitz (2] .
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Blackwell, Breiman and Thomasian [1] have shown that the latter always possess

a (random coding) capacity.

Recall that our objective is to determine the minimum error probability
suffered by large blocklength random codes of rate R when used on the GAVC
A|B. Define this error probability by

M IB(R) = limsup inf N\B(C)), (2.13)

n
n —o00 C.

where the infimum is over all A-admissible (n,2"® ) random codes. It is easy to

see that the relationship between A\ | B (R ) and C, 1g(\)is
A\ IB(R) = min{0_<_)\_<_1 Cqiip(M) Z R ork=1 } . (2.14)

Although it clearly provides the same information about R4 g that C4 | p5()\)

does, A\ | B(R ) is often easier to interpret.

We now present four theorems which characterize Cy | g (\) for each pair of

constraints A|B, the proofs of which are provided in the next section. We first
consider the case in which both transmitter and jammer are constrained in peak
power, ie., the GAVC PI|PJ. This channel actually has a capacity which is given

by the following familiar formula.

Theorem 1: For the GAVC PI|PJ, a (random coding) capacity exists and is

given by

Pr

1
CerpsN) = Cpryps = 5 loge| 1+ 5~
“ 4

forall 0 < A< 1.

Remark: Blachman ([4] , pg. 53, eq. 10) states (without proof) a similar result.
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It is interesting to note that Cpy|p; is identical to the capacity formula of
the memoryless, Gaussian channel which would be fox"med if the jammer
transmitted a sequence of i.i.d. N(0,P;) random variables (eg. Wolfowitz [2] ,
Theorem 9.2.1). t 1 We conclude, for the GAVC PI|PJ, that an intelligent jam;
mer, regardless of how he distributes his power, can do no more harm (in the
sense of reducing the achievable region) than Gaussian noise of the same power.

We now change the jamming power constraint from PJ to AJ (i.e. GAVC
PIIAJ ) and ask whether the above conclusion is still valid. Since bounds on
average power are weaker than those on peak power, it is obvious that R p; | AJ is
a subset of Rpy | p;. However, as the next theorem demonstrates, this inclusion is
strict. In fact, we find, for this and all remaining cases in which either transmitter
or jammer or both are subject to average power constraints, that no capacity
ertsts, i.e., only A-capacities are found.

Theorem 2: For the GAVC with constraints PIJAJ the (random coding) M-

capacity is
1
Cprias(N) = 5 logy| 1+ ———5— (2.16)

forall 0 < A< 1.

Remark: Cpy 4y(0) is interpreted as 0.

+ It is also the formula obtained by Dobrushin (7] for the capacity of the Gaussian com-
pound channel.

1 Note that this Gaussian jamming sequence does not satisfy PJ. It is possible, however,
to construct a jamming sequence which does satisfy PJ, and which yields nearly the same
capacity (cf. proof of Theorem 2}.
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Observe that the expression for Cpr|4s()) is identical to that of Cpy | PJ
except that the jamming power appears boosted by a factor which is the recipro-
cal of the tolerable error probability, A\. Some insight into this formula can be
gained by stating the result in terms of the error probability suffered by codes of
rate R . Theorem 2 states that, for increasing n, optimal (n ,2"3) random codes

satisfying PI suffer an error probability which approaches

Y (1)
Pr—(afF-)N, T = P
\PIIAT(RY) = (2.17)
1, R > Cpp| 4s(1)

against an AJ-constrained jammer.

The function NP7 147(R ) is increasing, positive whenever R is positive, and
for small R becomes asymptotic to 21n2 R P;/Pr. The region Rp; 4y is
sketched in Figure 2. It is apparent that a code can achieve high reliability (i.e.
A\ (C*) = 0) only in the limit as R or P;/P; becomes vanishingly small. Evi-

dently, reliable communication s impossible at any positive source rate.

Wé now sketch the basic idea behind (2.17) (or equivalently, Theorem 2); a
detailed proof follows in section 3. Let C,’ be any Pl-admissible random code of
rate R . Suppose the jammer transmits only jamming sequences, s*, consisting
of 1.i.d. sequences of N (0, P*) random variables, where P* is a non-negative
random variable which satisfles EP * < P, so that s satisfies AJ. (Clearly, this
restriction can only increase the achievable region.) With this restriction, the
channel ““seen’ by the transmitter is a discrete-time, Gaussian channel with (unk-

nown) noise power N, + P*. According to the coding theorem and strong con-

verse for this channel (e.g. Wolfowitz [2] , Theorems 9.2.1-2), if
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P
R<-;-log2[1+ L ]

N, + P*

and n is large then M7/ (C,") = 0 is possible; however, if

Pr
R>%log2[1+ ]

N, + P*

then N7 (Cf) =~ 1 is certain. The jammer must therefore choose

to be guaranteed an appreciable error probability, and this power is sufficient to
yield an error probability of unity. Therefore, the best codes have error probabil-
ity which approximates the probability of this event

Pr

e ~Pr{P* oy e
(n) —(4R_1)

vl

Finally, the right-hand expression above takes on a maximum +value of

NPITAJ (R ) when P* is chosen so that

P _;
PT{P* ';:j___-z.:-—_Ne}=1_P7.{P# =O}=>\P[|AJ(R).
(4% -1) ;

It follows that A7 (C*) is not less than A7 A (R ) for large n .

Although we have allowedAthe jammer foreknowledge of the statistics of the
transmitter's random code when selecting a jamming sequence (cf. (2.9)), it turns
out that this knowledge is unnecessary. Remarkably, the jamming sequence
above does not depend on the detailed structure of the code, but only on the
blocklength n, the source rate R, and the parameters Py, P; and IV, . It is also
interesting that this jamming sequence is essentially a pulsed strategy (i.e. either

“off” or “on” with high peak power). Memoryless, pulsed jamming sequences
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have been shown to maximize the error probability of certain uncoded modula-
tion systems, such as BPSK (e.g. Omura et al [ 9] ). Theorem 2 shows that
pulsed jamming sequences with memory play a similar role for random block

codes on the GAVC.

We have seen from Theorem 2 that an average-power-limited jammer has a
tremendous advantage against a peak-power-limited transmitter; in fact, reliable
communication is impossible in this case. It is interesting to turn the tables and _
ask whether the transmitter might similarly gain by varying codeword power
against a peak-power-limited jammer, as in the case AI|PJ. The next theorem

show that little advantage will be gained.
Theorem 3: For the GAVC with constraints AI|PJ, the (random coding) X\-
capacity is

Pr/(1-X)

1
Carips(V) = 7 g | 1+ N. 1P,
(4

forall 0 < N < 1.

The corresponding achievable region is sketched in Figure1 3. We see that if a
high error probability can be tolerated, the allowable coding rate is much
improved; however, at low error probabilities C4s | ps(\) approaches Cpr | py,
and the improvements are negligible. As in the other cases, we can state the
result in terms of error probabilities: Optimal Al-admissible (n ,2"3) random

codes suffer an error probability which, for large n, approaches

0 R < Cypyps(0)

\AL | PT (R) = (2.19)

Pr R > Cu;yps(0).

b (48 1N, +P;)’
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Thus, the rates at which reliable communication can occur are the same as the
case PI|PJ. Clearly, codeword power variation offers little improvement to the

transmitter.

We now consider the GAVC AlI|AJ. As Theorem 3 shows, the additional
flexibility offered by the power constraint Al is relatively useless against a peak-
power-limited jammer. We now ask if the transmitter might at least reduce the
gain of the average-power-limited jammer compared with the GAVC PIJAJ. The
next theorem shows that some limited improvement is made.

Theorem 4: For the GAVC with constraints AI|AJ the (random coding) -

capacity, for N, >0, is given by

Lo [1+ Pr 0< )<
5 082 N, + Py ) = ;
Carjas W)= P2 (2.20a)
_log2[1+ (Tl—X)NC , oA, <A<
[4
where
\ P L 1) |
© T 2N, TR (
and in the case NV, = 0 by
2A\P
—;—logz[l-{— PT], 0<x< L
; >
Carjas(™) = P (2.20b)
L S — L<a<ct
210g2{1+2(1—>\)PJ )’ r =A<

Remark: The function {2.20a) tends continuously to (2.20b) as N, — 0.

The corresponding achievable region is sketched in Figure 4, with Cprpys,

Cpriag(A), and Curpy (\) included for comparison. Optimal (n 2" ) random
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codes

satisfying Al must then, as n grows large, suffer an error probability which

approaches
P, (4 - 1) R < CuiasOne)
2Py - (4" -1)N,) A
MIAT(R) = (2.21a)
Pr(-y) RS 0o O
_ , >
when N, > 0, and
Py (4% - 1) 1 Pr
, R < —1 1+ —
2P, —2°g2[+P,]
MTTAT (R = (2.21b)
Pr Pr
1- , R > —=1lo [1 + ——-]
2(4® —1)P, 52 P,

when N, = 0.

For R < Cyy IAJ()\C ), observe that the error probability is half of that of
GAVC PI|AJ; however, when B > Cyr 1 4s(\;) the probability of being correct
(=1-2(C)is (1 -2\,) of that in the case AI|PJ. Cus | 4s()) is therefore a
compromise between Cpr| 4y(X\) and Cyy | ps(N\). As in the case PI|AJ, the error
probability can be made small only by making R or P;/Pr small.

An intuitive justification of (2.21a) is given below (a rigorous proof is given
in section 3). Suppose, as before, the-jammer transmits only i.i.d. sequences of
N (0, Py) random variables, say s*, where P3 is a non-negative random vari-

able which satisfies EP5 < P;. The transmitter constructs a random code C in
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the following way: He first selects a random code 5,,' of rate R whose average

power is no greater than unity, i.e.
1 M n .
B{am L 5wt s
J=1l1==

and then, to form C,’, he multiplies each codeword in C. by \/P} ,where P} is
an independent non-negative random variable satisfying EP{ < Py. The perfor-
mance of this code against s* is a function of the signal-to-noise ratio

P{/(P3 + N, ). As in the earlier argurﬁent following Theorem 2, if

Pt
—_— > (4R -1)
Py + N,
then A\( C,%, 8*) can be small; however, if
Pt
—_— < (4R 1)
P; + N,

then it is certainly true that X\( C,, s )= 1. Therefore, for the best choice of

C.!, we have for large n
X(Cn‘,s*)%Pr{Pf<(4R—1)(P5+N;€)}. (2.22)

The optimum error probability thus depends only on the power distribution of
the transmitter and jammer. Naturally, the transmitter wants to minimize (2.22)
with an appropriate choice of P{, and the jammer wants to maximize it by an

effective choice of P . Therefore, an optimal code suffers the error probability

NI(CH ~  max min Pr{P{<(4R~1)(P2*+Ne)1‘,
PIEP!<P; PJEP;<P, |

It can be shown (cf. proof of Theorem 4) that the right-hand of this equation is
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equal to M 147 (R),

Finally, consider the coding problems which result from the imposition of
multiple constraints. Suppose our code must satisfy some constraint, say A , for
some constant Py , and another constraint A’ for some constant Py’ £ Pr.
Denote this joint constraint by AA’ . Similarly, one may define a double con-
straint, BB’ , on jamming vectors. It is easily checked that the achievable
regions for these more complex coding problems can be constructed from the

regions defined by Theorems 1-4 according to the following simple rules: t

RA|BB’ = RA|B URA|B’ y (223b)

or, in terms of A-capacities: -
Caar 1p(N)=min { Cg 1 g(\), Cqr 18(N) } (2.24a)
Caipp (\) =max { Cy 1 g(X\), Cqp (N)}. (2.24b)

3. The Proofs of Theorems 1-4:

For any input power constraint A, and jamming power constraint B, define

the region
RAIBE{(R)\) OSRSCA'A{B(X)70S>‘<1}7

where C’A i g (A) is the formula given in the theorem of Section 2 corresponding to

+ It is unknown whether the region R, 4+ | ggr can be similarly decomposed.
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the constraints A|B. Our goal in this section is to prove that
Ryip = Ry,

for each pair of constraints A|B. Each proof will consist of two parts: a forward
part
(a Ry3 D Rayp,

and a strong converse
(b) RAIB - RA|B .

At this point, it is convenient to present some definitions and results which
we will use in the proofs below. By the standard (n ,M) random code, we mean a

random code

o = {(vlt’Af),...,(vA},AA})}, (3.1)

constructed in the fol.owing way.

(1): The M random codewords, {v,", ..., v}, are a collection of
mutually independent, random n-vectors, each of which is uniformly
distributed on the n-sphere of radius v/n ; i.e., the probability that v*
lies within a certain region on the surface of this n -sphere is propor-

tional to the surface area (or equivalently, solid angle) of this region.

(2): The random decoding sets, {4;},.,, are defined by a strict

minimum Fuclidean distance rule, viz.,

*
A

Il

{ yER" | |y-—v,"| <|y-v.|, forall ki, 1<k <M } , (3.2)

where | - | denotes the usual Euclidean norm on R". In the event a
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tie occurs, the receiver draws no conclusion about the transmitted mes-

sage (and hence an error occurs).t

We make several observations concerning the random code, C’,f. First, the
codewords of C,’ are clearly Pl-admissible for Pp = 1; in fact, (2.4) is satisfied
with equality (with probability one). Second, since all codewords have equal
length (or power), each decoding set in (3.2) is a “flat-sided’ cone with vertex at
the origin. It follows that the sets {4;*}, are also minimum distance decoding
sets for every codeword set of the form { VP v,*, ..., VP v}, where P > 0.
Third, Shannon [10] has considered the use of this random code on the discrete-
time, additive Gaussian noise channel and has obtained the following result:

There exist functions, say X (R ,P ) and E (R ,P ), both positive so long as
1 1
R = —log, M < -2-log2( 1+ P ), (3.3)
n

such that §
Pr{ VP v+ n*€ A‘,-*} < K(R ,P)exp{ -nE (R ,P) } . (3.4)

holds for all 1 <1+ < M and n > 1, where, here and throﬁghout this section,

i

n* denotes a vector of i.i.d. N(0,1) random variables. Furthermore, X (R ,P ) and

E (R ,P) can be selected so that

+ We note that the decoding sets {A;}/4, may be suboptimal (in the minimax sense) de-
cision regions for the loss functions A7 (C,) and M/ (C,). For proving coding theorems
this will not matter: in the forward part of the proofs we can certainly bound the error
probability of the optimal decoders above by that obtained using suboptimal decoding
sets; in the converse part, we can bound the worst-case error probability below by that
obtained using (block) pulsed, Gaussian jamming signals, for which the sets, {A 3 M, are
a uniformly most powerful decision rule.

t We have presented Shannon’s result in a form which is different from the original state-
ment in {10l , but which is convenient for the proofs of the present section. Our form can
be obtained from Shannen’s “firm” upper bound in [10] by making the substitution indi-
cated in the footnote to page 16 of Gallager [11]| and simplifying the resulting bound.
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(a): K(-,P),-E(-,P) are increasing, and (3.5a)
(b): K(R, ),-E(R,-) are decreasing (3.5b)

for all R and P satisfying (3.3). Finally, é‘n* has the useful properties summar-

ized in the following lemma whose proof is contained in Appendix A.

Lemma 1: Let C.’ be the standard random code (3.1); let s be any n-vector,
and let | and [ be any pair of real numbers satisfying ! > [ > 0. Let w* be a
random variable which 'is uniformly distributed on the unit n -sphere, and which

is independent of the codewords {v,*, . . ., v,z }. Then

(a): Pr{ vi'+n+s € E{} = Pr{ vi'tn'+|s|w e A—f} ,

(b): Pr{vl'+ne*+fw* € }1—;} < Pr{ v+ Hlwt € A } :

Remark: Lemma 1, part (a) states that Pr { v,+n,+s € A[} depends only on
the magnitude of s, and not on its orientation; part (b) implies that it is a
increasing function of this magnitude.

A second useful lemma is given below; its proof is contained in Appendix B.

Lemma 2: Let { 7,7 },%2, be a sequence of i.l.d. random variables with common

marginal distribution N (0,1). Then for all 0 < ¢ < 1,

: 2
<e} < exp{—ne }
= = 12

'

n

Z ni*g -1

1 =1

(a): PT{A

n

for all n > ny(¢), where ny(e) is a bounded function of ¢ alone, and t

e Lsrrs gl > I*'9>1}>—1-
(b) Prl n,‘z::ln' _1] - Prlnl - 4y
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foralln > 1.

We also require an Arimoto-style strong converse (cf. [12] ) for the discrete-
time, additive Gaussian noise channel with peak input power constraint and the
average probability of error concept. A proof of the following result can be found

in {13] . Let

cl = {(ul*,Df),'..,(uA},DA})},

be any Pl-admissible (n ,M ) random code with Py = P. There exist functions,

say K' (R,P)and E' (R ,P), which are both positive whenever
1 1 .
R = =log, M > -é-logg( 1'+P), (3.6)
n
such that
1 M =
o 3 Pr{ u;"+ n* € D; } > 1-K' (R ,P)exp{ -nE' (R ,P) } (3.7)
1 =1

holds for all n > 1. (Note that any lower bound on the average error probability

is a fortiori a lower bound to the maximum probability of error.) Furthermore,

K' (R,P)and E' (R ,P) can be selected so that
(a): K' (-,P),-E' (-,P) areincreasing, and (3.82)
(b): K' (R, ),-E' (R, ) are decreasing (3.8b)

for all R and P which satisfy (3.6).

+ By the Central Limit Theorem, the left-most expression in Lemma 2(b) approximates
1/2 for large n .
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We now present a Lemma which forms the kernel of the strong converses to
Theorems 3 and 4. This Lemma is of independent interest because it gives a tight
lower bound on the average error probability of any code when used on a Gaus-

sian channel in terms of the code’s power distribution.

Define for any u = ( 2, . . ., u, ) € R" the quantity
1 & 2
P(u) = = ; u”, (3.9)

‘and for any random code C.*, let U*(C,) be the random variable which is uni-

formly distributed on the set { u,*, . . ., u,; } of codewords of C,.

Lemma 3: Let C,* be any (n, M) random code and J* be any non-negative
random variable which is independent of C,’. Then for all ¢ > 0 the following

holds:

Remarks: Observe that v, (¢) depends only on n, € and R, and is independent of
the random code and the jamming power. Also, for all € > 0, ~,(¢) — 0

exponentially.
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Proof of Lemma 3 To prove the lemma, fix € >0, and let

C, ={(uy, Dy),...,(upy, Dy)} be any realization of C,". Define the set
S[(C,,J) = { 1<i <M |Pu)< (48 -%_-1)N, +J) } (3.12)

and further define
NJ{Cy,J) = #5(C; 7). (3.13)

It is immediate that
E { NN } — M Pr{ PU*(CH) < (4R % _1)( N, + =J* )(};.14)

The average error probability of that subcode of C, which consists of those code-
words with indices in S,(C,,J) can be bounded below by the strong converse (cf.

(3.7)) for the Gaussian channel t

1

—_— PrI uf+n,+vVJn €D
Ne(cnvj) x'ES?C,‘,J) l ’ ) ‘

Cn* == Cn }

>1-K' (R,, 4" % -1 )exp { —nE' (R,,4%°% 1) } (3.15)

provided that

logo (| N(C,,J) )

i

R, > R - 2¢. (3.16)

n

In particular, the following holds for all Cp, J, ¢, and R: 1

t The quantity #A denotes the cardinality of the set A .
+ We interpret the left-hand expression in (3.15) as zero if N(C,,J) = 0.
1 rzegAd

ilA(I)E{O z €A .
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ux" + ne‘ + ‘/7 7’* € D.i* C'n‘r

c, |

Z 1-K' (Rn’4R_26_1)eXP{—nE’ (Rn’4R-2€—1)} ] 1{R,[R,ZR-—€}(R11)

> [ 1-B, (R, €) ) 1{R. IR.ZR—e}(Rn)r (3.17)

B,(R ,¢) = K' (R —6,43“2f~1)exp{—nE’(R—6,43‘25~1)}.

The last step above is a consequence of (3.16) and (3.8a). Using (3.17), we obtain

the desired lower bound to the average error probability of C, :

M —
]\i/[: 2 Pr{ u* + 1, + Vin*eD'| C/=C, }
t =1
>L v el vTeen|o=c, |
i eS{C,.J)

N(Cud) | |
M [ 1_Bn(R ’6)) 1{Rn|Rn2R—e}(Rn)

N (C "]) N (Cn 7J)
- 6 A/; - : M Bn ( R e ) 1{Rn le’ZR—G}(Rn)

N,(C,,J])
- ——57— Lig, | R, <k -}(Bn)

NE(G’R'J)_ n(R '6)_2-—716
- M
N(C,T)
=2 () (3.18)
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Averaging (3.18) over the distributions of C," and J* and using (3.14), we obtain

(3.10), completing the proof.

Proof of Theorem 1:

(@) Rprps D Rpr|py -
Let R, non-negative, be given and set M, = |_2"RJ. + Define a sequence of

(n,M, ) random codes, say {C, '}, in the following way:

¢ = { (i, AT (i A ) ] (3.19)
where u; = /Py v, , and {(v{5A{), -, (va,Ap, )} is the standard

(n, M, ) random code, defined in (3.1). It is easily verified that C, satisfies PI

for each n > 1. We further claim that if

R < Cpryps) (3.20)
then there is a positive sequence { v, },o; such that

ZNrenH <o, | (3.21)

and v, — 0 as n — +oo. Clearly, if true, this would imply. that any (R ,\) in

R p;  ps is achievable PI|PJ, and thus prove (a).

To establish this claim, suppose that (3.20) is true; let w® be an independent

random variable which is uniformly distributed on the unit n-sphere and define
o, (1) = Pr{ uf + )+ lw €A } (3.22)

for any real number [ > 0. (Clearly, o, () does not depend on i.) Let 8° be

+ | r] denotes the integer such that ¢ — 1 <'n <z.
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any jamming sequence which satisfies PJ, i.e. |8* | <  /nP;, with probability

one. The error probability incurred by s* can be bounded in the following way:

- (a) (¢) '
Pr{ u "+ n'+s" €4 } = Eo,(|s"]|) < o,(/nP;). (3.23)
The justification of these steps is as follows: (a) is a consequence of Lemma 1(a)
and the definition of w;% (b) results from PJ and Lemma 1(b). Taking the
supremum of (3.23) over all 1 < i < M and s* satisfying PJ, we obtain the

bound

XPJ(Cn*) S On (V nPJ) . (3'24)

It only remains to estimate the right-hand expression in (3.24); this is easily done
by relating it to the error probability for the ordinary Gaussian channel. Let

P;n* denote a vector of i.i.d. N (0,P;) random variables, and let f ( - ) denote
the probability density function of the random variable m* = /P, |9* | . It

is easy to show that

[e¢]
Pr { u,‘+ 1+ P n* Ef_f,~'} = [o,(1)f (L)l . (3.25)
5 _
Using Lemma 1(b) again, we find |
x0
J o) f (D) pr { u'+n’+P;n* eX,-*}
on(V/nPy) < np'oo < £3.26)
[ Pl im0
\/nPJ

We now invoke (3.4) (compare (3.20) and (3.3)) to bound the numerator of (3.26)

by

K (R ,P,)exp { - nE(R,P,) } (3.27)
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where

L 3.28
T N, + P, /b - ,('“)

for all & > 0. From Lemma 2(b), we know that the denominator of (3.26) is not

less than 1/4; therefore, combining (3.26) and (3.24), we conclude that
\PI(C) < 4 K(R,Py) exp { - nE(R,P)) } (3.29)

for all n > 1. The right-hand side tends to zero as n — 400, as desired. This

completes the proof of the forward part of Theorem 1.
(b): Rprips C Rprypy -
Let ¢ > 0, and suppose that R > Cp;|ps; + €. We claim that there exists a
positive sequence {, } 2, such that

NPI(C) > 1 -, (3.30)
is satsified for all Pl-admissible (n, M) random codes, C,’, where
R = (1/n)logy, M, and v, — 0as n — +co. Clearly, (b) follows from (3.30).

To prove the claim, fix € > 0 and take § > 0 small enough so that

Pr
1 +
N, + P;/(1+0)

1
Cprips < 3 log, < Cprypy + €< R, (331)

and let C;f = {(u;\D{),....,(upr,Dyy)} be any (n,M) random code satisfying PL
If the jamming sequence, s*, were i.i.d. N(0,P;/(1+ 6)) random variables

then by (3.7) we know that

max Pr | w'tn 4 VE LT O € D |

1< <%

> 1K' (RP ) esp] - nE' (R.P) |
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where P, is as defined in (3.28). Unfortunately, \/F;/(1 + 5)n* does not satisfy

PJ; therefore, we define a truncated noise process, 1,%6), as follows:

P,/0 + on*, 2" | < Vn(l+9)
7,(6) =" (3.33)
Inﬁ n*, |2 | 2 Vn(l+9),
n

so that 7,%(§) is clearly admissible under PJ. Now

P’{ w'+ '+ P [+ 80" €D }

= Pl ur e n+ VIO | (n* | < VATTD | x

Pl 1ot | < VAT

+ Pr{u,v*+ n, + VP; /(1 + &n' ln* | > v’n(1+5)}><

Pl 1071 > VAT |

< Pr{ u; + 0, + n,°6) € Dy’ } + Pr{ In* | >Vl +90) } . (3.34)

>From Lemma 2(a), the right-most expression in (3.34) is bounded above by
exp{ - n 8% /12 } for all n > n(6). Taking the maximum of (3.34) over all ¢ and

substituting (3.32), we conclude that

\NeH > max Pr{ uf + 0, + 7,6 € D’ } (3.35)
1<¢ <M
>1-K' (R,P,.s) exp{ - nE' (R,P,s) } —exp{ -Tn‘; - } :
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for all n > ny(6) and all § satisfying (3.31). The right-hand expression in (3.35)
tends to unity as n increases uniformly over all codes of rate R, which is the

desired result. This completes the proof of the strong converse to Theorem 1.

Proof of Theorem 2:

(a): Rpras DO Rprjay

We retain the notation and results of part (a) of the proof of Theorem 1. Let R,
non-negative, be given, set M, = [2"%], and let {C/},%2.,, be the sequence of
Pl-admissible (n,M, ) random codes introduced in (3.19). We claim that there

exists a positive sequence {v, } % so that
MI(CH < NHAN(RY 4+ 4, (3.36)
and v, — 0; this implies (a).
To prove (3.36), let s* be any jamming sequence which satisfies AJ and let X
be such that 0 < A < 1. As demonstrated in par. (a) of the proof of Theorem 1
(cf. (3.29)),if

Pr

Norpw | = G G
[4

R < })— log, [ I+
then foreach 1 <1 < M,

Pr{ u'+ 1, +s* €Ay

1 & n
‘T;}: SiQSPJ/X}

1==]
< 4 K(R,P,) exp{ _mE(R,P)) } , (3.38)

where P is defined in (3.28). Since s’ satisfies AJ, Chebysheff’s inequality (e.g.

[14] ) yields
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Pr{ 1 f} s*2 > P;/\ } <. (3.39)

n 1=1

Using (3.38) and (3.39), we can bound above the error probability incurred by
any s* satisfying AJ in the following way: For any X such that (3.37) holds, we

have
Pr{ u'+n'+s* €4’ }

= Pr{ u'+ 9 +s* €A’

3|~

I 0=

L% 57 < P/ } Pr{

s < Py/N }
=1

1

t

3|~

I =

+ Pr{ u’+ 9 +s* €A 552> P; /X } Pr{ -%z—

I D=

S"*Q > PJ/>\ }

t==1 t==]

<N+ 4K(R,PY) exp{ - nE(R,Py) } | (3.40)

Let {\,}2, be any positive sequence such that X, > X\’ l47(R) (so that

(3.37) holds) and X, — M7 | 47(R ) slowly enough so that

K(R ,Pxn)exp{ _nE (R Py.) } ~0. (3.41)

Clearly, such a sequence exists. Taking the supremum of (3.40) over all + and

AJ-admissible s* and substituting X\, , we then conclude that
MI(CH < N, +4K(R P, exp{ ~nE(R P, ) } (3.42)

The right-hand side of (3.42) tends to N/ l|A7(R) as n increases, proving (3.36)

and (a). This concludes the proof of the forward part of Theorem 2.

(b): Rprias C Rpriay -
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We now prove that there exists a positive sequence {v, },>°; so that v, — 0 as

n — oo and
MI(CH 2 NPTAT(RY -y, (3.43)

is satisfied for all Pl-admissible (n, M) random codes, where B = (1/n ) logy, M;
(b) follows from (3.43).

First, let X\ be such that 0 < X < 1. Suppose that a ‘“pulsed” jamming

sequence, say s, is defined to be

8 = JP;/NZ5y n* (3.44)

where n* is a n-vector of i.i.d N(0,1) random variables, and Z{ is a Bernoulli

random variable which is independent of n* and distributed as follows:
Pr{Z{ =1} =1-Pr{Z{ =0} =X. (3.45)
It is easy to verify that s," satisfies AJ forall0 < X < 1andalln > 1.

Suppose now that X is such hat

1 Pr
— log. — = A, 3.46
R > 5 log, [ 1+ AN ] PI|AJ(_) (3.46)

then the error probability of C, can be bounded below in the f'ollowing way:

(¢)
MI(CH > max Pr{ u;"+n + s8¢ }

T <P <M
=1 prl zi =1

()
> max Pr{u +n, +s8'€D/’

= \ max Pr{ u, "+ 70+ VP;/xn" € 1—)-,-*} ]

1< <M
(4) -
Zk[l—K’(R,Px)exp{—nE' (R,PX)} ), (3.47)
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where P is defined in (3.28). These steps are justified in the following way: (a)
is an immediate consequence of the definition of A4/ ( - ); (b) follows from the law

of total probability; (¢) follows from (3.44) and (3.45); and (d) is a consequence of
(3.46) and (3.7).

Let {\, }2_, be any positive sequence such that X, < M\714/(R) (so that

(3.46) is satisfied) and N, — N7 147 (R ) slowly enough so that
K' (R ,Pxn)exp{ _nE' (R,Py) } 0.

Substitution of \, into (3.47) yields

A (CF) > N, [ 1-K(R,Ay) exp{ _nE\(R Ay } ] . (3.48)

E)\P”’“(R)—'yn .

where {v, },_, has the desired properties. This completes the proof of the strong

converse to Theorem 2.

Proof of Theorem 3:

(a) Ryr1pr D Rarypr -
Let R, non-negative, be given and set M, = I_Q"RJ. For any 0 < X < 1,
o0

define a sequence of (n,M,) random codes, say {C,(X\)};%, in the following

way:

(3.49)

!
s *
——
>
——
il
ittt
—
£
A
Z
R
Lol 3
b
—
=
X»
——
>
ol
X«
S
N

where
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u(\) = /Pr/(1-N)Z {5 v, (3.50)

Z{. is a Bernoulli random variable independent of v,” such that

Pr{Z}, =1} =1-Pr{Z{, =0} =1-X, (3.51)

and C. = { (v A7), ..., (Vs Ay )} is the standard (n,M,) random
code, as in (3.1). It is easy to verify that C,(\) satisfies Al for all 0 < X\ < 1,
and all n. We further claim that there exist positive sequences {\, } >, and

{~, }2, such that
MNI(CING) S MR ) + 1, (3.52)
and ~y, — O ; this implies (a).

The proof of this claim is in the same spirit as the converse to Theorem 2, so
we will be brief. Let 8* be any PJ-admissible jamming signal, and suppose X is

such that
R < Cyryps(N). (3.53)

We can then bound the error probability above as follows:

P’{ u(\) + 0 +s* €47 }

= Pr{ u N\ + 0 +s" €A

Zf_)\ =0}PT{ Zf__)\ =0}

+PT{ u,‘(>\)+ne*+8*€/¥,* Z;._)\ :1}PT‘{ Z{_)\ :::1}

(a)

<\ + Pr{ VP ANV, + ) + st € 4 }

l

(bg) N+ 4 K(R,P™) exp { —nE (R ,P) | (3.54)
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where

P = %l%l . (3.55)

The justification of these steps is as follows: (a) results when (3.51) is substituted
into the preceeding equation, and the first conditional probability is bounded

above by one; (b) follows from (3.53), (3.29), and the fact that s* satisfies PJ.

’

Now let {X\,}s2, be any positive sequence such that X\, < A\’ |AJ(R)
N, = X\NT147(R) and

K (R ,P*")exp{ - nE (R ,P™) } —0.

Taking the supremum of (3.54) over all + and PJ-admissible s* and substituting

A, , we find that

MNPI(CHN ) €\, +4 K(R,P™) eXP{ - nE (R ,P™) } .

= MIPYRY+ 4, , (3.56)

where { v, }2_, has the desired properties. This completes the proof of the for-

ward part of Theorem 3.

(b):Rarpr CTRyryps -
We now prove that a positive sequence {~, },>2, exists, which depends only on

R, so that v, — 0 and

NPI(Cy) = NATIPT(RY -y, (3.57)

n

is satisfied for all Al-admissible (n, M) random codes, where

R = (1/n) log, M; this implies (b).
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To prove this, let

ol ={(u D) (w04 )

be any Al-admissible ( », M) random code. Fix § > 0, and let 7,%(6) be the PJ-
admissible jamming sequence introduced in (3.33). As in part (b) of the proof of

Theorem 2, it is easy to show that

(e > max Pr{ u,+ 17, + 0,6 € D; } (3.58)

> max Pr{ u'+n ++/P;/(1+6)n" €D, }—exp{—%éz}.

1<i <M

We now use Lemma 3 to lower bound the first expression on the right-hand
side of (3.58):

max Pr{ u'+n + VP, /(1 +6 ) €D }

1< <M

M =~}

t=1
> Pr{P(U*(Cn")) < (4R TN, +Py/(1+6 ) ) } = n (€) ,(3.59)

where U*( ) is defined just prior to Lemma 3, and =, (¢) is as defined in (3.11).
Recall the definition of N/ 1 P/ (R ) in (2.19); when we want to exhibit the depen-
dence of this function on P,;, we use the notation XA/ P/(R: P,). Since C;
satisfies Al, it is true that EP (U *(C}/)) < Pg . Using this and Chebysheff’s ine-

quality, we can easily show that

Pr{ PU(CH) < (4R -2 1Y N, + P, J(1+6)) }
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> NP R _9 Pi/(1+6)). (3.60)

Therefore, combining (3.58), (3.59) and (3.60), we conclude that for all ¢ > 0
and § > 0 |

NI e > NIPICR —2¢, P, /(1 + 5))—exp{ —11052 } — 7, (€) . (3.61)

Note that the right-hand of (3.61) depends on C,f only through the rate R . Now
choose {6, } 3, and {e, },%,, both depending only on R and decreasing to zero
slowly enough so that the last two terms in the right-hand of (3.61) converge to
zero. The right-hand expression then tends to A4/ | P/ (R ), as desired. This com-

pletes the proof of the strong converse to Theorem 3.

Proof of Theorem 4:

(2 Raras D Rypyas -
For any non-negative R, set M, = I_Q"RJ. Fix ¢ > 0 and define a sequence

of Al-admissible (n, M, ) random codes, say

C(e)

f

O TR (T TR R (3.62)

where

u,-*(e) = Po*(é) V,-*; (363)
P(¢) is a non-negative random variable, independent of v;” which satisfies
E Pe) < Py, and whose distribution will be given below; and
Cl={(v" A" },&1 is the standard (n, M, ) random code. It is easy to verify
that C,(¢) satisfies Al for all 0 < X < 1, and all n. We claim that there are

positive sequences {¢, } 72 and {7, } % such that
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M (Cfen)) S MTTA(R) + v, (3.64)

and v, — O ; this implies (a).
In proving this claim, we assume that N, > 0; the proof in case N, =0is
similar. We refer the reader to the Theorem of Appendix C, and adopt the nota-

tion used there. A consequence of this theorem (cf. (6.15)) is that if X, has the

distribution (6.38b), and v, is as defined in (6.38a), then
Py X, 2Y+e )20, (3.65)

holds for all non-negative random variables ¥ which satisfy EY < b.
Now make the following substitutions:

Pr
G='—'—‘_—'—, b—_—Pj, C=N€’
(4R+e_1)

and define P,%(¢) in (3.63) by
Ple) = (4%+-1)X, .
With these substitutions, it is easy to verify that

v, = 1-XNTA(R +¢).

>From (3.85), it follows that if J* is any non-negative random variable which

satifies E J* < Py, then
Pr{ Ple) < (4f Te- )NV, +J7) } < NTTAT(R 4+ ¢) . (3.66)

* 12 (so

Let s* be any AJ-admissible jamming sequence and define J* = |s
that EJ* < P,), and set 8" =s*/VJ* when J* > 0 and 8" = 0 otherwise

(so that [8" | < 1 as.). In the proof of Theorem 1 (cf. (3.29)) we showed that
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if |8"| <1as.and P and J are positive constants then

Pr{ VP +nS+ VIS = X,-'

0

< 4K (R ,P' )exp{ -nE (R ,P' ) } ,
for all n > 1, provided that
P! = > (4% ~1).

In particular, if

— 4R+€_1’
N 70! )

then using (3.5b) we can further upper bound the right-hand of (3.67) by

Bn(R,e)E4I((R,4R+5—1)exp{—nE(R,4R+€—1)},

Note that B, (R, ¢) — 0 for all ¢ > 0. Now define

B (R,¢) P >R+ _1)N, +J)

hy (P, T) = { 1 otherwise .

PXe)=P,J* =J }

(3.67)

(3.68)

(3.69)

(3.70)

so that A, (P,J) is an upper bound on (3.67) for all P, J and n. Averaging this

bound over the distributions of C,(¢) and J*, we find that

P"{ ufle) + 0+ 8" €4/ } - P’{ VPV + 0+ Vs €A
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< B (R,e)+ A (R +¢). (3.71)

where the last inequality follows from (3.66). Taking the supremum of (3.71)

over all 7 and AJ-admissible s*, we obtain the bound
MI(CHe) < By (R, )+ MITA (R +¢), (3.72)

for all € >0, n > 1. The claim (3.64) now follows by choosing {€, } 2, to
decrease to zero slowly enough so that B, (R, €, ) — 0; since M/ 147 (- ) is con-
tinuous, the right-hand term then tends to A4/ 14/(R), as desired. This com-

pletes the proof of the forward part of Theorem 4.
(b): Rasjas C Rarjay -
We now prove that there is a positive sequence {v, } 22 ,, which depends only on
R, so that v, — 0 and

MI(Cr) 2 M (R) -, (3.73)
is satisied for any Al-admissible (n, M) random code C,’, where
R = (1/n) logy M; this implies (b).

Fix ¢ > 0. As in part (a) of the proof of Theorem 4, we i(nvoke the Theorem
of Appendix C. This Theorem implies that if Y, has the distribution (6.38¢), and

v, is as defined in (6.38a), then

0

Pr{ X>2Y, +c¢ } <, (3.74)

holds for all non-negative random variables X which satisfy E X < ¢. Making

the substitution
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and defining
S = v,,

P#

(4R~—2€__1 ).Y ,
we obtain that
v, = 1-MI4/(p - 2¢)

and
Pl Pt <4 gy, + 1) | 2R o) (35)

holds for all P* satisfying
EP* < Py . (3.76)
Note that \/J(e)n* is Al-admissible for all € > 0.

Let C;' be any (n, M) random code. We may bound the error probability of

this code below as follows:

[V
B
5
U
=3
et Nrnan,
=
- »*
+
3
»
+
3
o
<
*
m
IS
*
L —

(el

(¢)
> NTAT (R _9e )y (e, (3.77)

where v, (¢) is defined in (3.11). The justification of these steps is as follows: (a)

results by applying Lemma 3; (b} follows from (3.75) and the fact that
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EP(U*(C.)) £ Pr. Now choose a decreasing sequence of positive numbers,
{e; } 24, such that €, — O slowly enough so that ~, (¢, ) — O. Substituting ¢,
into the right-hand side of (3.77), we obtain an expression which tends to
\Al l"“(1’1’) uniformly for all Al-admissible codes of rate R, as desired. This

completes the proof of the strong converse to Theorem 4.

4. Discussion

Our results demonstrate that the asymptotic behavior of GAVCs is qualita-
tively different from that of discrete AVCS: whereas the latter always have a ran-
dom coding capacity (cf. Blackwell et al [1] ), the former generally have no capa-
city (except in the case PI|PJ). This is a direct consequence of the imposition of

power constraints of the average type.

It remains to determine, if they exist, the corresponding \-capacities for the
GAVC when the transmitter is restricted to deterministic codes (i.e. those of the
form (2.2)). For the discrete AVC, deterministic coding capacities are known in a
large number of special cases. Ahlswede [15] , using the average probability of
error concept, has shown that the capacity of the discrete AVC is either equal to
the random coding capacity, or else it is zero. £ This methodiapparently fails for
the GAVC, owing to the presence of a cost structure on the allowable channels
and encoders.

The coding problems of section 2 lend themselves to an alternative game

theoretic formulation. Corresponding to each GAVC, say A|B, there is a family of

two-player, zero-sum games (cf. Blackwell and Girshik [16] ) defined as follows.

1 At present, no simple, general method is known for deciding between these two alterna-
tives.
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Fix the blocklength n and the source rate R . The transmitter’s (resp. jammer’s)
allowable strategies consist of all ( n,2"%) random codes, C, (resp. all R"-
valued random vectors, s*) which satisfy the power constraint A (resp. B). The
payoff when the jammer plays s* and the transmitter plays C,’, is the error pro-
bability A\(C,’,s" ), defined in (2.8). The jammer wants to maximize this probabil-
ity; the transmitter wants to minimize it. Therefore, they seek strategies which

attain the outer extrema in the following programs:

Transmitter’s Program: U, = infsup M C,s"), (4.1a)
Cy s
Jammer’s Program: y, = sup inf \(C,",s"), (4.1b)
s C/

where the extrema are taken over all allowable s* and C,’. An optimal strategy
for the transmitter (resp. jammer), if it exists, is one which attains the outer
extrema in the transmitter’'s (resp. jammer’s) program. For any ¢ > 0, e-optimal

strategies, C,, and s, are allowable strategies for which

sup MCye,8") < 7, +¢, (4.2)
inf X\N(C/s,") > i, —¢€, (4.3)
o :

where the extrema are taken over all allowable 8* and C,. It is always true that

v, <7D,;ify, = U, then the game is said to have a value: v,, =y, =7,.

Equation (4.1a) defines a sequence (in n) of communications games. Basar
and Wu [6] have considered games of this type for a memoryless Gaussian source,
and for a different cost function, viz., mean-square distortion. For each n, they
obtain the value of the game and characterize saddle-point strategies for each

player. In contrast, we can say little about each game in the sequence; we can,

however, say a great deal about the asymptotic behavior of the sequence.
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Implicit in the proofs of Theorems 1-4 is the following result: The sequences

Yo 122y and {7, },>2_, converge and
1 n fn=1

lim y, = lim 7, =x[13(R)  (4.4)

A — +00 n — +00

holds for every R and every pair of constraints A|B. Thus the sequence of games
has an “asymptotic value” equal to \*4 | B (R ). Furthermore, for all ¢ > 0, there
exists, for all sufficiently large n, e-optimal strategies for both transmitter and
jammer. (Such strategies for the transmitter are explicitly constructed in the for-
ward parts of the proofs in section 3; jamming strategies are constructed in the

converse parts.)

Some authors further constrain the jammer to signals of the form
s* = (zim', . .,z ), (4.5)
where {n,"},"=; is i.i.d. N(0,1) and {2}, is a sequence of random variables
independent of {n,"},"~, and subject only to the average power constraint

E{—I-Zz'”} < P,

n 1 =1

We call this constraint AJG, and use the notation GAVC AJAJG to refer to the
channel with input constraint A and jamming power constraint AJG. Since AJG
is more restrictive than AJ, we must have R4 456 DO Ry |4s. However, the
jamming strategies constructed in the converses to Theorems 2 and 4 are all of

the form (4.5), so that we must have Ry | 456 = R4 | 4s and consequently
AATAG(RY = NMIA(R). (4.8)

Thus, our results extend to Gaussian jammers.
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It is especially interesting that the achievable regions of Theorem 2-4 are not
determined solely by the optimization of a mutual information, as is usually the
case in information theory. Some authors have modeled the conflict between
transmitter and jammer, when coding is used, by a two-player, zero-sum game
with mutual information as the payoff function. McEliece and Stark [8] have stu-
died this game for the channel which we have called the GAVC AI|AJ (for the
special case N, = 0) and have obtained the following results: Optimal transmis-
.sion strategies for both players are i.i.d Gaussian sequences of maximum power

and of length n, and the value (or optimal payoff) is is

The authors interpret this result as follows: when n is large and

P
1+—~Z—]

1
R -1
< 5 089 P,

then \*/(C) = 0 is possible. In contrast, however, note that the e-optimal
strategies for the game AI|AJ in (4.1a) (cf. proof of Theorem 4) are not memory-
less, and the error probability of any positive rate code is bounded away from
zero. It is of considerable interest that these two apparently related games lead

to such different results.

An explanation of this disparity between predictions of these two games lies
in the fact that mutual information takes on operational significance only when
the blocklength is large compared to the memory of the channel. The error pro-
bability formulation (i.e. (4.1a)) allows the jamming memory to equal the block-
length, whereas the mutual information formulation always assumes that the

blocklength of the code is large compared to the jamming memory. Therefore
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the game on mutual information gives an a prior: advantage to the transmitter,
and it is not surprising that this approach leads to much more optimistic results
for the transmitter. We conclude that, at least in the case of GAVCs, one must
be careful in attributing a coding significance to games having mutual informa-

tion as a payoff function.

From a practical viewpoint, the results of this paper may be difficult to
achieve, or may lack meaning for a real jammer. Like the pulse-jamming signals
considered by Houston [17] , our e-optimal strategies demand high peak power
when R is small; unlike Houston’s, however, this peak power must be sustained
over the blocklength of the code. When n is large, the average power constraints
(Al, AJ) may fail to reflect all the physical constraints which would limit a prac-
tical system. An extreme example: let n — +o0o , then thé optimal jamming
strategy for the case PIJAJ is of the form: s, ~ N(0,P,/p) for all time with pro-
bability p, and s; = 0 for all time with probability 1 — p . One may approach a
more realistic situation by considering multiple constraints on the jam.uer (as dis-

cussed in Section 2).
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6. Appendices

Appendix A
Proof of Lemma 1: To prove Lemma 1(a), let s and w* be as in the statement of
the lemma, let w be any unit vector in R", and let T be any orthogonal
transformation on R™ which maps s into |s|w, i.e. so that

Ts = |s|w.
Since minimum distance decoding is used (and distances are preserved by T'), the
following holds almost surely:

Pr{ v1*+ne'+s€./?f} = Pr{ Tv'+Tn'+|s|weE TZ;} .

The sets { TA4;"},; remain minimum distance decoding sets for the codewords
{ Tv;}™,, and the distributions of { v;*},*., and 5,” are spherically symmetric,

and so are unchanged by T . We conclude that

Pr{ v '+n +s € Zf} Pr{ vi'+n+ s |w EMX;} ,

for all w in the ensemble of w*, from which Lemma 1(a) immediately follows.

We now prove (b). Let the random variable m;* be defined by

*

m; = ]7];%—1&)* l

and let F;(m) be its distribution function. It is easy to verify that, conditioned
on the occurence m;* = m, the expression ,” + [w” is uniformly distributed on
the n-sphere of radius m ; hence, its conditional distribution does not depend on

[ . Therefore, define the quantity

~m) = Pr{ uftn Hw €Al || nS+lw | =m } : (6.1)
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Since A | is a set formed by the minimum distance rule, if m < s then

* *
N, + lw _
u1*+m _e__‘___ EA;
m
implies
* *
. 7, +lw -
u'+m | ——— | €4
my

and consequently, +( - ) is monotone increasing. If for each m, F;(m) is mono-
tone decreasing as a function of [, then

(e ]

Am ) dF(m) < gv(m)sz(m),

o— g

which, according to (6.1), is simply Lemma 1(b) disguised in different notation. It

therefore only remains to show that
Pl it fsm ) < mliasier [ <n} 62

We shall, in fact, prove a stronger result which implies (6.2):

[

Pri| /4wt [ < m?

w =w}§Pr{| nS+lw |2 < m? w*=w}.

for all w. The latter inequality is an immediate consequence of the fact that the
distribution of 7,* decreases monotonically and symmetrically with distance from

the origin. This completes the proof of part (b), and Lemma 1.
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Appendix B

Proof of Lemma 2: Let {n;"}2, be an i.i.d N(0,1) sequence. To prove Lemma
2(a), note that 2(a) is trivially true when ¢ > 0; therefore take ¢ > 0. we apply
Chernoff’s bounding technique (e.g. Wozencraft and Jacobs [18] , section 2.5) to
obtain the following bounds:

PT{ 'Li 7% > 1+e } < [\/H-e /2 ]n (6.3)

t=1

( In(1+¢€) € ) ]

o=

= exp[

Tatsie) s [vEer] (6.4

(ln(1-€) + €) ] .

w3

= exp[

We now make use of a well-known (e.g. Olmstead [2]) expansion for In( 1 + z )

2 3 z 3 ’

T T f—t!
In( 1 = - — dt -1<z <1. 8.5
n(l+z) =z 2+3+£1+t ' (6.5)

Let us use (8.5) to derive approximations to the expressions which appear in

the exponents of (6.3) and (6.4); viz.,

¢ ¢
L (. 6.6
In(1+¢€) € 5+ 3 {1+t (6.6)
2 3 2 )
€ € € ¢
<S5 =55
2 3 ¢ +3
In(l-¢)4e = —-——-62 ——63 —g——_t dt (6.7)
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2 3 2
< £ _£ L £ [1_£
- 2 3 - 2 3

Substituting these approximations into (6.3) and (6.4), we obtain

Pr{ | %; ntt-1] < e} | (6.8)

=

The last inequality holds for all n larger than ny(e) = 6 in2/€%( 1 - ¢ ), which

depends only on e. This completes the proof of Lemma 2(a).

We now prove Lemma 2(b). For n =1 and 2, by direct calculation we
obtain
Pr{ n'?>1 } = 0.3174 , (6.9)
and
1 & -1
Pr 3 omtt > 1) =et =0.3679, (6.10)
=1

so that Lemma 2(b) holds for these values of n. For n > 3, we proceed as fol-

lows:
n (a) X _(n-2)/2 ,-a/2
PT"}‘ZW,'Qzl}:fa oen da
Ln i n 287 T(3)
(6) ,(n-2)/2 ,~n/2 o0 (n-4)/2 , -a/2
= = . + f = ¢ — d«
o(n-2)/2 r(Z) woy 2(n-2/2 P22
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(¢) 1 n—-2 0
=pr{ LY n 21} + e, (6.11)
< =1
where
n(n=2)/2 ,-n/2 n aln-4)/2 g-a/2

€ = -

2(n—2)/2 r(%) o 2(n—2)/2 T

~~ |
3
1
[ ]
~——

These steps are justified in the following way: (a) follows from the observation

n
that Y, n;*? has the standard chi-square density with n degrees -of freedom
t=1

(cf. [14] ); (b) follows from (a) by using integration by parts; and (c) is merely a

rearrangement of (b).

We now claim that ¢, > O for all n > 3. If true, this together with (6.11),
(6.9), and (6.10) would imply (b). To prove this claim, bound the integral in

(6.12) as follows:

} a("~4)/2g—a/j G nn/2e—n/2) n [lﬁ e(l—a/ﬂr/?
n- n—-z n-2}/2 n -2
o 2ln-2)/2 (&) o(n-2)/2 p( ) W n
(b) n/2 ,-n/2 n
< T 1 5
o(n-2)/2 F( nr)—..) "o 2
(¢) p(n-2)/2 g-n/2

Equation (a) is simply a rearrangement of factors; (b) follows by observing that
the bracketed expression is strictly less than one when a/n < 1; (c) results when
the integral in (b) is evaluated. This completes the proof of the claim and

Lemma 2.
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Appendix C

In this appendix, we study the following two-player, zero-sum game (cf.
Blackwell and Girschik [16] ). Let a, b and ¢ be real numbers such that
a,b >0 and ¢ > 0. Player I's (respectively, player II's) allowable strategies
consist of all non-negative, real-valued, random variables X (resp. Y) satisfying
EX < a (resp. EY < b). t The payoff to player I, when I plays X and II plays
Y,is

Pr{X>Y +c¢}. (6.13)

Player I wishes to maximize (6.13); player II wants to minimize it. Therefore, I

and II seek strategies which attain the outer extrema in the programs

Program I v = su inf Pr{X >Y +c¢}, (6.14a)
XEX<a YEY<b

Program II: U= inf sup Pr{X >Y +¢}. (6.14b)
YEY b X:EX<a

If a strategy exists which attains the outer extrema for Program I (resp. II) it is
called an optimal strategy for player I (resp. II). It is always true that T > y; if
7 = v then the game is said to have a value, v, = U = y. A saddle-point solu-
tion to this game (if it exists) is a pair of allowable strategies; say (X, ,Y, ), such

that
PriX>Y,+c¢c }<Pr{X, >2Y, +c¢ }< Pr{X, > Y + ¢ ¥6.15)

is satisfied for all allowable (X ,Y ). The existance of a saddle-point is a sufficient

condition for a value to exist; in this case we have

v, =T=y=Pr{X, 2Y, +¢ }. (6.16)

+ In this appendix, we abandon the convention used earlier in the paper which distin-
guishes random variables with asterisks.

September 24, 1985



-592 -

and thus X, (resp. Y, ) is an optimal strategy for player I (resp. player II).

In this appendix, we derive a unique saddle-point solution to (6.14a). The
special case a =) =1, ¢ =0, has been studied by Bell and Cover [19] in connec-
tion with competetive investment, and the special case ¢ =0 by McEliece and
Rodemich [20] as part of a study of optimal jamming of uncoded MFSK. We con-
struct the general solution of (6.14a) from the known solution in the special case
¢ =0. Without many of the complications which arise in the MFSK problem stu-
died in [20] this special case admits a proof which is much simpler than that
given in [20] ; we present this below.

Lemma 1: (Bell-Cover-McEliece-Rodemich) Consider the two-player, zero-sum
game given by (6.14a) when ¢ =0. This game has a value, v,, and unique

saddle-point strategies, X, ~ F, and Y, ~ G,. These are given, in the case

a 2> b,by{
v, = 1- 7;(-1- , (6.172)
F, (.’L‘) = Uy Qa](z) ' (6.17b)

a
v, = ;7)-, (617d)

a

Fole) = () Upasi(@) + (1= 5 ) Bglz),  (6.17¢)

+ Throughout this appendix we use the following notation: X' ~ F means that the real-
valued random variable X has distribution function F. We denote by Uy, ;)(z ) the dis-
tribution function of a random variable which is uniformly distributed on the interval
fa,b], and denote by A (z) the distibution function of the trivial random variable

X =c.
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Go(z) = Ujpapifz) - (6.171)

Remark: The proof given here is a generalization of Bell and Cover’s [19] .

Proof: et X ~ F and Y ~ G be any allowable strategies. Observe that
o

Pr{X>vY} =£ G (z) dF(x)=1—£F(x—) iG(z).  (6.18)

First consider the case a > b. Let us show that (X,,Y,) satisfies (6.15) when

¢ = 0. Using the obvious inequality Uy 4)(z) < z/d when z > 0, we then

obtain
o0
Pr{X>Y,} = [ G,(z)dF(z)
0
b b
= | 1-2 | + L[ Upa) dF (o)
a a
b oo
< —
< | 1-= +202£xdF(:r)
)
< 1-=— = vy, (6.19)
- 2a
In much the same way, using the right-most equality in (6.18), we can show
Pr{X,>2Y} > v, . (6.20)

Since Pr{ X, > Y, } = v,, we conclude that (X,,Y,) is a saddle-point and v,

is the value of the game.

To complete the proof in the case a > 6, it only remains to show the
uniqueness of F, and G,. First consider G,. Let Y, ~ G,’ be any other

random variable such that £Y,” < b and
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Pr{x >2Y,'} < v,, (6.21)

for all admissible X . Substitution of

(1): X ~ U[O,Qa](x );

(2): X ~ { af—ﬁ

Dol + [ 225 ) Basle),

forall0 < a, 8 < a, into (6.21) yields, respectively
(1: G," (2a) = 1,

g
a+f

(2):

] G, (a-a)+ laiﬂ] G, (a+h) L v,,

forall0 < a,f <L a.

We claim that (2) implies that there is a line, say {(z ), which passes through

the point (@ ,v, ) and is such that

for all z > 0. To prove this claim, define t

G, (a+8)-v
g = max o )~ % < 400 . (6.23)
0<pf<a i} -

and let § attain the maxima. Let {({z ) be the line through (a,;v, ) having slope u.
We know that G,’ (a) < v, = {(a) (proof: take @« = =0 in (2)). By con-
stiuction, [(z) satisfies (6.22) when z > a, and passes through the point

(a +5,G," (a+8)). Now if

G, (a-a) > l(a-a), (6.24)

+ The “max’ in (6.23) is justified by the fact that (G,' (a +8) - v,)/8 is upper semi-
continuous, the right-hand inequality by the fact that this function is bounded by v, /a
(to prove: take a = a in (2)).

September 24, 1985



- 55 -

for some 0 < a < a, then a and f violate (2). Therefore, to avoid a contradic-
tion, [{z ) must satisfy (6.22) for 0 < z < a as well, proving the claim.

We now show that (6.22) implies that G,’ = G, . For any measurable func-
tion, say f (z), let vy denote the Lebesgue volume of the region in R? compris-
ing the points R; = {(z,y) | 0 <7 < 2a, f(z)<y <1} Byan elemen-

tary fact of probability theory and (1), we know that

vg, = EY,’ < b . (6.25)

Equation (6.22) implies that v, > v, , and hence
v < b. (6.26)
Since [{0) > G,' (0) >0, {(2a)> G,' (2a)=1 and {(a)=v,, R, is a tri-

angular region and [ (0) must be such that 0 < /(0) < 2v, — 1. By elementary

geometry, we can show that

_ a(1-1(0)7 .
U= Y, S10)) (6.27)

for all 0 < [(0) < 2v, - 1. It is easy to show that (8.27) is a strictly decreasing
function of [(0) which attains a minimum value of v, = b when
-~ 1. Therefore the only line, {(z ), which passes through (a,v,) and

which does not contradict (6.26) satisfies [ (0) = 2v, — 1, and hence

I(z) = +(1-2). (6.28)

Comparing (6.28) with (8.17c), we see that [ equals G, for all z such that
0<z <2a and 0 < {(z) < 1. It follows from (6.22), the non-negativity of

Y,’ and Y,, and (1), that

g
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for all real z. This implies that G,’ = G, , since if G,’ (z) < G, (z) for some

0 <z < 2a then
EY,! =vg: >vg =5b,

a contradiction. We conclude that, in the case a > b, G, is unique. The proof
that F, is unique, and the proofs for the case ¢ < b are similar. This completes

the proof of Lemma 1.

We now consider the game (6.14a) when ¢ > 0, and demonstrate that the
solution in this case can be constructed from the known solution for the case
¢ = 0. To see this, note that any non-negative X ~ F which satisfies EX < a

can be decomposed in the following way:

c + 7 W.p. P
X = { (6.29)
w w.p.1-p
where p = 1 - F(c-) and W ~ L and Z ~ H are non-negative real-valued

random variables. The distribution functions L and H are given by

% o<z <c
Lz) =
1 r >c

if F(c-) > 0, otherwise L (z) = A¢(z ); and

' 0 —o <z <0
H(z) = )
F(z4c)-F(c—) >0
1-F(c-) -

if F(c-) < 1, otherwise H(z) = A¢(z ).
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In terms of the new variables p, Z and W, the cost function (6.13) becomes
Pr{X>Y4+c}t=pPr{Z +c>Y +c¢}
+(1-p )Pr{W>Y +¢}

=pPr{Z>Y}. (6.30)

Clearly, W has no effect on the cost function Pr{X > Y + ¢ }, only our

choice of p and Z influence it. The latter choice is constrained by

or

EX =(1-p )EW +p (c +EZ) L a

a -(1-p)EW
p

EZ <

e ,

so that the widest choice of Z is permitted when W = 0 and

EZ < 2_¢ = i(p).
p

Using this decomposition, we can reformulate (6.14a) in the following way:

PTO ram I UV = su .lnf PT Z > Y , 6.314
’ (p.Z)-Enga(p) yEr<s © {Z27Y} ( )

Program II: U = inf sup p Pr{Z Z Y }. (6.31b)
Y.EYSb (p,2)EZ<i(p)

Games (6.14a) and (6.31a) are equivalent in the following sense: If X, p,,

and Z, are related as in (6.29), then {(p,,Z, )Y, } is a saddle-point for (6.31a) ¢f

and only if (X,,Y,) is a saddle-point for (6.14a); and, of course, the resulting

0

values of both games are the same. Therefore, solving (6.31a) is entirely

equivalent to solving (6.14a).

Using (6.31a), we can derive the only candidate saddle-point for (6.14a) in

the following way. Suppose that {(p,.Z, ),Y, } is a saddle-point so that
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pPr{iz2>2Y,}<p Pr{Z2, 2Y,}<p, Pr{Z, 2Y} (632
for all admissible {(p ,Z),Y }. Then, in particular, we have

po Pr{Z27Y,}<p, Pr{2,2Y,}<p, Pr{Z, 27 } (6:33)
for all (Z,Y ) such that {(p,,Z),Y } is allowable. Ignoring momentarily the trivial
possibility that p, = 0, (6.33) implies that (Z,,Y,) must be a saddle-point of
(6.14a) with constants

a =&(p0)E—g——c, b =6, ¢! =0. (6.34)

0

Since (6.17a) gives the unique solution to (6.14a) when ¢ = 0, we conclude that
(Z,,Y,) must have the distributions F, and G, obtained when the constants
(6.34) are substituted into (6.17a). The corresponding value of this game, as a

function of p,, is

v (P,) = (6.35)

i(p,) < b .

We now show that (6.32) fixes a value for p, as well. If’ {(p,:2,),Y,} is a

saddle-point for (6.31a), then the left-hand bound in (6.32) implies that

‘ == max v
Vg o J2X ()

Using this, we may explicitly find the only possible saddlepoint. The following

facts will be very useful:

FACTS:

(1): The maxima of v, (p ) over the range 0 < p < 1 is attained by
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a b I
— - 9
: [1 %6 +5 ) a<c+2 |1+ 1+-=bi}
P = ] (6.36)
1 a>c+— |1+ 1+%)£

and note that p, < a /¢ when ¢ > 0.
(2): Define ¢ (p ) on the interval 0 < p < a/c by
b be
g(p)=1-—7-— :
i(p) 2d%p)

Then ¢g(p, ) =0if0<p, < 1,and g(p,) > 0if p, = 1.

(3): a(p,) = b for all a, b >0, and ¢ > 0, where p, is as defined in

(6.36).

Therefore, based on facts (1) and (3), Lemma 1, and the comments above,
the only possible saddle-point for the.game (6.31a) is p,, Z, ~ H,, and

Y, ~ G, where p, is given in (6.36) and

H, (l‘) = U[O,Q&(p, )](:L‘) ’ - (6.37a)
b b ‘ .
G, (z) = ( i, )U[OQa(po)]($)+(1— i (7,) ) Do(z) - (6.37b)

Remark: Note that ¢ > O implies that a(p, ) = 2 ¢ > 0, so that (6.37b) is

Po

always well-defined.

H, and G, are obtained by substituting p, above into (6.34), substituting
the resulting constants into (6.17a), and taking H, = F,. The corresponding

value of the game is

a b 2¢ b 2¢
1—[1+-C—[1~ 1+T}} a§c+—2—{l+ 1+Tj)

o



- 60 -

We have shown that {(p,,Z,),Y, } is the only candidate for a saddle-point
for the game (6.31a); let us now verify that this is indeed a saddle-point. Let

{(p,Z),Y} be any admissible triple, and suppose that Z ~ H and Y ~ G.
Then

pPr{zZ2>2Y }=p[G,(z)dH(z)
0

a(p,) a(p,)
b o0
< p 11— i + —E z dH(z)
a’(po) 24 P, 0
S p 1._ ,.b +b%g’£p_1
i(p,) 2a°(p, )
= p 1-— b B ch + Afa
a(p,) 2a“(p,) 24°(p, )
ba
= p ¢(py) + —5—
2d(p, )

>From fact (2) it follows that pg (p, ) < p, ¢ (p, ) and therefore

pPT{Z ZYO }<-P0 Q(Po)+

The proof of
Py PT{ZO _>.Y} 2 Vo -

for all allowable Y is very similar to the proof of Lemma 1 and so is omitted.
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We conclude that {(p,,Z,),Y, } is the unique saddle-point for (6.31a) and
that v, is the corresponding value. Recalling the equivalence between the games
(6.31a) and (6.14a) when p, Z and X are related by (6.29) (cf. remarks following
(6.31a)), we have therefore proved the following:

Theorem: Consider the two-player, zero-sum game given by (6.14a) This game

has a value, v,, and unique saddle-point strategies, X, ~ F, and Y, ~ G,.

These are given in Lemma 1 for the case ¢ = 0, and for the case ¢ > 0 by
9 9
L 1+-[-’-[ 1- 4 /1+‘—c] o <c+2 144 /1422
c c b 2| b
v, = ) (6.38a)
b
1] - — 4 — b 2c
2a -c ) a>c+§- -1+ 1+-—b—
Fo@) = po Uggagp (@) + (1-20) Bolz). (6.38b)
Gy(2) = (=L ) Upgaappy(®) + (1= —— ) Aglz),  (6.38¢)
i(p,) " i(p,)
where d(p)=a/p - ¢ and
a b i >
c [ S VAT ) a§c+7',’- 1+ ‘H-‘ﬂ
P, = -
()
! a>c +—Ob— 1+ 1+—‘-3}
Remark: Note that some of the quantities above are indeterminant when ¢ == 0.

Nevertheless the saddle-point strategies and the value in (6.38a) tend continu-
ously to those of Lemma 1 as ¢ — O. To see this, fix ¢ > 0 and b > 0 and

denote by v, (¢ ), X,(c), and Y, (c), the value and saddle-points for the game

(6.14a) with parameters a, b, and ¢ . As ¢ =0, we have by elementary expansion
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and therefore

Ry N B )

We also have, trivially,

1+ 1+—2—9-} = b +o(c).

b.
) b

Therefore, we conclude that as ¢ — 0
v, () — v,(0),
X,(c) = X,(0) (inlaw),
Yo(c) = Y,(0) (inlaw),

as claimed.
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