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ABSTRACT

In this paper, we present an analysis of the zeromemory quantization of
memoryless sources when the éuantizer output is to be encoded and transmitted
across a noisy channel. RNecessary conditions for the joint optimization of the
quantizer and the encoder/decoder Pair are presented and a recursive algorithm
for obtaining a locally optimum system is developed. The performance of this
locally optimal system, obtained for the class of generalized Gaussian distri-
butions and the Binary Symmetric Channel is couwpared against the Optimum Per-
formance Theoretically Attainable (using Rate-Distortion theoretic arguments),
as well as against the performance of Lloyd-Max quantizers encoded using
Natural Binary Codes. It is shown that this optimal design could result in
substantial performance improvements. The performance improvements are more

noticeable at high.bit rates and for more broad-tailed densities.
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I. Introduction:

In a typicgl communication system, we wish to transmit information about a
source {Xn} with entropy rate (possibly infinite) H(X) across a chafnel with
capacity C (measured in bits/socurce symbol) in such‘a way that the resulting repro-
duction of {Xﬂ} ip the receiver, say, {Xh}, is as close a replica of the original
source as possible., Shannon's channel coding arguments [1],{3] prove that when
H(X) > C, it is impossible to obtain an exact replica of {Xh} in the receiver. In
this case, rate-distortion theoretic arguments [2]-[4] suggest that a source
encoder can be used whose effect, essentially, is that of mapping the source out-
put {Xn} into an approximation of itself, say, {i;}, whose entropy rate H(g) satisfies
H(i) < C., Then, again through channel coding arguments [1],{3],[4], it is well-
known that {i;} can be encoded and transmitted through the channel with perfect
reliability, i.e., the only distortion between {Xn} and the reconstructed
sequence in the receiver {ih} is that produced by the source encoder., Thus, the
best source encoder is that which maps {Xn} into {ig} satisfying H(i) < Cin
such a way that {ﬁ;} is as good an approximation of {Xh} as possible,

Theiébéve argument implies a certain demarcation in the encoding process.
Specifically, it suggests that the source and the channel encoder can be
separated in such a way that the entropy rate reduction takes place in the
source encoder and the protection against channel errors in the channel encoder.
Indeed, one of the important results of Shannon's celebrated papers [1],[2] was
his demonstration that the source and the channel coding functions are funda-
mentally separable. However, as indicated clearly in {3], the assumption that
the source and the channel coders are separable is justifiable only in the limit of
arbitrarily complex encoders and décoders. Of course, in practical situations,
thére aré limitations on the-systemfs complexity which make ‘this separation

questionable. It is our intent in this paper to study the interrelatioaship



between the source and channel coders for a practical system with limited
complexity.

The effects of the channel errors on the performance of source éoders, as
well as the interaction between the source and channel éoders, have been studied
by several researchers. Among others, Spilker [5] has noted that when the out-—
put of a zero—memory quantizer is coded and transmitted via a very noisy channel,
quantizers with small number of levels (i.e., large quantization distortion)
yield better performance than those with larger number of levels. Kurtenbach
and Wintz [6] studied the problem of optimum quantizer design when the quén—
-tizer's output is transmitted over a noisy channel. However, in [6], the issue
‘of code assignment is not addressed. On the other hand, Rydbeck and Sundberg
[7], without considering the quantizer design problem, have shown that the code
assignment plays an important role in determining the system's performance.

On the other hand, a few researcners in the channel coding area have used
the abstract Fourier analysis of groups to design an optimum mean—-square—-error
code for discrete—alphabet uniformly distributed sources [8]-[10].

On the more practical side, combined source/channel coding schemes are
studied for image coding situations in [11],[12]. Also, similar schemes have
been reported for speech coding in [13],{14].

Ih this paper, we present a rigorous treatment of the joint source—channel
optimization for a specific case in which the source is a discrete—time memory-
less source, the source coder is a zero—memory quantizer, and the channel coder
is a block coder. Here, we make use of the results in [15] which were developed
for a more general scheme, to develop necessary conditions for the joint optima-
1lity of the source and the channel coders. Moreover, we develop an algorithmic
‘procedure which is sure to resul# in a locally optimal system. We will

demonstrate through our numerical results that, in certain cases, optimal desigu



of source—channel codes could result in substantial performance improvements,
The organization of the paper is as follows. In Section II, we present a
description of the overall system and the issues involved in system éptimization.
In Section III, the necessary conditions for optimality afe derived under the
squared—error distortioq criterion. This is followed by the description of the
algorithm for system design in Sectiom IV. In Section V, we have discussed the
issue of separability of the source and the channel distortions for this par-—
ticular problem. Section VI is devoted to the presentation of the numerical
results, and, finally, in Section VII, a summary and suggestions for future

research are included.

II. Problem Statement and Preliminary Analysis:

In this paper, our analysis is based on the assumption that the source to
be encoded {Xn} can be modeled as a discrete—-time zero—mean memoryless stationary
process with probability density function (p.d.f.) p(x) and variance 0; = E{Xﬁ}.

The block diagram of the system we wish to analyze is illustrated in
Figure 1. 1In the first stage of the encoding process, the source output, which
belongs to a continuous alphabet, is discretized by means of a zero-memory
quantizer. An N-level zero-memory quantizer is a function q(.) which maps the
source output x€R into one of N values QI’QZ""’QN each in R, This operation
can be described in terms of the threshold levels TI’T2’°"’TN—1’ partitioning
the support of p into N disjoint and exhaustive regions described by ~
I, = (Tﬂ—l’ T£], L =1,2,...,N, with (TO, TN] = (a,B] describing the support of

L
A
p, such that x€R is mapped to y = q(x) € AY = {Ql,QZ,...,QN} according to

q(x) = Q2 , XEIR , L =1,2,...,N, (IL.1)

Here, the T2 are called the quantization thresholds and the Ql are called the

quantization (representation) levels.



As indicated in Fig. 1, subsequent to quantization (source encoding), a
channel encoder §escribed by the mapping f:AY + AU = {0,1,...,M—1}, with
M= Zr ? N, operates upon the quantizer output Yn to generate a sequéhce
Un = f(Yn) of integers. The binary representation of these integers will then
constitute r-bit codes which will be delivered to a binary symmetric channel
(BSC) with crossover probability €. The channel operates on these r—bit long
codes on a bit-by-bit basis. Let us suppose that Vn€AU denotes the decimal
representation of the r-bit binary code at the channel output. Obviously, for
€ # 0, there is a nonzero probability that Vn does not equal Un. From this
point on, for the sake of simplicity, we consider our channel as a channel
with'input U and output V both in AU. Note that computing the probability
matrix of this channel is straightforward.

Finally, to complete the description of the encoding/decoding operation, we
should mention the last stage of the operation whigh consists of taking the
channel output Vn and decoding it into in = g(Vn) that can take on one of the M

possible values, called the decoder reconstruction levels, from the set

Aﬁ = {Rl,Rz,...,RM}. It is important to note that, in general, M need not be
equal to N, Furthermore, even if M = N, the Rl's are not necessarily equal to
the Qg's. We shall elaborate on this issue shortly.

Our goal in designing the above encoding/decoding scheme is to minimize the
average distortion between X and X for a fixed number of transmitted bits per source
symbél, say, r. In the sequel, we will focus attention on the squared—error distor—
tion criterion. Thus, the mean squared—error (MSE) incurred in this operation, which
depends upon the choice of the quantizer q, the channel encoder f, and the decoder g,

is given by

¥ It must be noted that the quantity D(q,f,g) is also a function of the channel
crossover probability €., This dependency is not reflected in our notation for the
sake of brevity.




D(q,f,g) = E{(X - i)z} . (11.2)
Let us introduce the following notation
R k-1, k=1,2,...,M, , ’ (I1.3)
and define the channel transition probability from U to V by

Picm = pPri{v = vk]U = um} , mk=1,2,.,,M . (11.4)

Then, (II.2) can be expanded in the following form:

M N Ty 2 ’
D(g,f,g) = L L Pri{v=v u=1£} [ (x-R)P(x)x, (11.5)
k=1 £=1 ) Tg—1

in which Rk = g(vk). Equation (I1.5) can be further simplified to

M N 'j"g' 9
D(q,f,8) = )L ). P . (x - R ) p(x)dx , (11.6)
kel gop KA Ty g
where m(.) is defined by
£Q) =gy s £=12,.0N (11.7)

We can now state our objective more formally. We wish to minimize the
overall MSE given by (II.6) by appropriate choices of q, f, and g. It is evi-
dent from (II.6) that the Qx's do not play any role in determining the
oyerall MSE. This makes sense because the QQ'S are only inter@ediate entities
in our system whose indices are used to determine the quantization interval to
which the source output has fallen, and their actual values are of no signifi-
cance in determining the overall MSE. With this in mind, the MSE is only a
fénction of the guantizétion thresholds T = (TI’TZ""’TN~1)’ the channelr

encoder f(.), and the reconstruction levels-R = (Rl’R2’°"’RM)'

The problem of obtaining the'optimum thresholds If,-the optimum reconstruc-—

tion levels R*, and the optimum encoding function f* will be addressed in the
- ' 5



next section, WNotice that f is a function from a finite alphabet AY to a finite
alphabet AU and hence there is only a finite number of possibilities for £. In
fact, it is simple to show that the total number of distinct possibilities for £
is M!/(M-N)!. Various researchers have considered the problem of system design under
fixed encoder choices. Among these, Kurtenmbach and Wintz [6] consider the
problem of quantization for noisy channels. They restricted attention to the
natural binary codes (NBC) and the Gray code (GC). Also, Rydbeck and Sundberg
{7] consider a similar problem with other code assignments, such as folded binary
codes (FBC) and minimum distance codes (MDC).

In any case, upon fixing the encoder structure f, the problem is that of
detérmining the vectors T* and R*, For a fixed f and R the best set of the threshold
levels T is determined by minimizing D(q,f,g) with respect to T subject to the

constraint that TE <T £ =0,1,...N-1. This constraint will be referred to as

2+1°

the realizability constraint,

Let us for the moment drop the realizability constraint and attempt to solve the
unconstrained minimization problem. The best set of the threshold levels T is deter-
mined by setting the partial deviatives of (II.6) with respect to the TQ'S equal to

zero, i.e.,

M
3 2
1, 26a.68) - E [P 1acey = Prjaceeny 1Ty ~ RO P(T) = 0, (1L.8)

which, in turn, implies

2
[P jacey = Pela IR
(2)  “k|@(e+1)
1,2,...,8 . (11.9)

-
P
1l

M
Z
1 k=l
Ty = 2 M
2

P jacny - k]ﬁ(£+l)]Rk

If this unconstrained minimization results in-a'solutionlz_that satisfies the

realizability constraint, then this T is also the solution to the constrained problem.



On the other hand, fixing T and f and setting partial derivatives of (I1.6) with

respect to the Kk's equal to zero, yields

3§E-D(q,f,g) = - 221 Py 162 2i—1(x - RJp(x)dx =0, (11.10)
which, in turn, implies
N Ty
R - zﬁlpklﬁ(ﬁ) {l_lxp(x)dx ke l2m (I1.11)
N Tg
2£1Pk]ﬁ(2) gg-lp(x)dx

From an estimation theory point of view, for fixed T and f, the recounstruc-
tion levels should be chosen to minimize the reconstruction error E{(X -X)z}
upon observing V. Therefore, from well-known results of estimation theory [16],

the best Rk is given by the conditional expectation of X given V = Vi i.e.,
R, = E{X]V = vk} , (I1.12)

which is just a concise form of (II.l1).

Equations (II.9) and (II.11) constitute a set of M + N nonlinear simultan-
eous equations whose solution (if it exists) results in vectors T* and R¥
that satisfy the necessary conditions for optimality for a fixed encoding rule f.
It is important here to note that (II.9) and (II.11) are simply the generalized
versions of the similar set of necessary conditions obtained by Kurtenbach and
Wintz [6] for the case in which M = N,

Several comments about the above necessary conditions for optimality are in
order. These comments are especially important as they provide motivation
for this work and_underséore the contribﬁtion of this paper; Kurtenpach and
Wintz [6] proposed an iterative algorithm for solving equations (II.é) and

(1I.11). This algorithm, which is a straightforward extension of Lloyd's

7



algorithm (lst method) for minimum distortion quantizer design [7], suffers from
some difficulties which are not mentioned in [6]. Most important of all, it can
be proven that Lloyd's iterative algorithm for quantizer design actdhlly con—
verges, This is easily shown by proving that the average distorfion is a non-
increasing function of the number of iterations. Here, however, the same result
does not hold. Specifically, it is straightforward to prove that for a fixed
set of threshold levels T, updating the reconstruction levels R according to
(II.11) cannot increase the overall MSE. But, unfortunately, if we fix R and
update T according to (II.9), it does not immediately imply that the distortion
is not increased. In fact, the matrix of second derivatives of D(q,f,g) with

respect to Tz's given by (I1.9) is described by

0 ; m ¥ £
\2
-5 D(q,f,g) = M
9T 9T, 2(T,) 1 [P . =B 1sogy R m = 4 (II.13)
25 k |A(2+1) k|@(2) ’

which implies that the second derivative matrix is a diagonal matrix whose
entries are described by (II.13). To ensure that the solution to (II.9) does
not increase the average distortion, we need to show that this matrix is non-
negative definite, or,

M

fllpk]a(z+1) - Pk]ﬁ(z)JRk - elXJy -

Qb - ElXlY =g} >0, 2= 1,2,...,(0-1).
k

(I1.14)
Therefore, a sufficient condition for the convergence of the algorithm is that
(11.14) is satisfied at every step of the iteration process. The second important
point isithe realizability constraint. This needs to be stated explicitly because
there is no guarahtee that the uncoustrained minimization will result in a solution
that satisfies the realizability constraint. This is in marked—confrast to the

noiseless channel case (Lloyd's Aglorithm) where the realizability constraint is

8



always satisfied and hence is not stated explicitly.

In summary, the algorithm in [6] s;ffers from two major problems: (i) lack of
proof of convergence, and (ii1) lack of guarantee for realizability. &t can further
be shown (Sec. 1IV) that if the unconstrained minimization resultsiin a realizable
solution then the matrix of 2nd derivatives is nopinegative definite and hence the
average distortion is not increased when we update T,

In what follows, we present an algorithm in which both of the above
problems are resolved and a locally optimal system is obtained in which the
quantizer, the encoder, and the decoder satisfy the necessary conditions for

optimality all at the same time.

IT1I. Necessary Conditions for Optimal System Design:

We approach the probiem of optimal quantizer design from a slightly dif-
ferent perspective now. Our goal is to come up with a set of necessary condi-
tions for the optimality of the quantizer, the channel enccder, and the decoder.
Furthermore, we wish to develop an algorithm which does not suffer from the
realizability and convergence problems of the Kurtenbach-Wintz algorithm [6].

Here, instead of separating the quantizer (source encoder) and the channel
encoder, we concentrate on designing an encoder whose input is the source out-
put {Xn} and whose output is the channel input fUn}. In essence, we search for
an optimal mapping ¥Y:R + AU which is described by the composite function
v(x) = £[ax)].

The approach consists of two stages. First, for a fixed decoder g, we
develop necessary conditions for optimality of the euncoder function y. Then,
for a fixed v, we develop necessary conditions for optimality of g. The pair of
conditiqns given in these two stages can then be used to establish a set of con-
ditions for the optimality of the éntirevsystem. 'The same approach has béen

used by Fine [15] for optimization of -a more general system. Certain extensions



of Fine's work can be found in {18],
Let us now proceed by describing these necessary conditions for optimality.
We assume first that the decoder g is known and fixed. We vouid like to
determine the best encoder structure. Recall that our objective is to minimize

the MSE given by

<o

D(Y,g) = D(q,E,8) = J pGOE{(X - D)X = x}dx . (111.1)

— 0

Since p(x) is a non-negative quantity, to minimize D(Y,g) it suffices to

minimize E{(X - i)zlx = x}. But,

=

x}. (I111.2)

n
=
rymas
o
~
-
=
1
e
=3
I

E{X - DX =x, U
1

E{(X - i)zix =x} =

I~

i

Notice that our encoder is a deterministic mapping, aund hence it maps a given x

to some u = Y(x)EAU. This implies that for this u,
Pr{U=ulXx =x}=1, (111.3)
and, hence,
~ 2 . ~ 2
E{(X - X)°]X =x} =E{(X - X)X =x, U=u}
~ 2
= E{(x - °Ju = u} . (11L.4)

Therefore, to minimize D(Y,g), we have to obtain a mapping Y that minimizes
(I11.4) for every value of x. In other words, upon defining the set Ai(g) as
the collection of all values of x that should be encoded to the ith channel

input, i.e., U, we must satisfy
Ai(g) = {x:E{(x - i)zlu = ui} < E{(x —’i)le = u for all j#i}}, (I11.5)

which can be written as

10



M
A(g) = 0 A
i j=1 1

j# ¢

(g) , (111.6)

where Aij(g) is defined as

- -~ -~ A2 A~
A (@) = [x:2x[E{X]u = u.} - E{X]U = u,}] < B{X*|u = u.} - E{X*|U = u,}}.
ij i i j i
. (111.7)
Here, Aij(g) specifies a set on the real line whose members, if mapped to ug
instead of uj, will result in a lower MSE,
Let us now look more closely at (II1.7) as it becomes important in our

algorithm. Upon defining,+

22 52
% L E{x“lu = uj} - E{X°u = o}, (III.8a)
A < = — g =
Bis & E{X|u uj} E{X]u = v}, (I11.8b)
and
alj
A_13
tij T Bij 0, (1X1.8¢c)
ij
we have
/
(—w,tij] . By >0,
(£, ., , B..<0 ,
Ay = ¢ N
(—=,=) , Bij =0 |, % >0
¢ o B3 =0, e <0 . (111.9)

Therefore, Aij(g) is an interval and hence Ai(g) is also an interval as it is a
finite intersection of intervals. If we define the upper and lower endpoints
of A, (g) by

t

e oo

= min ot ' o (111.10a)
’ j:Bij>0' )

+Notice that %o Bijv and €1 all depend upon the decoder structure g. But,
here, to avoid complicating notation, this direct dependence is not reflected
in our notation. '

11




and

= . II1.1
ti j;géx<o tij . | (II1.10b)
By i
respectively, we can characterize Ai(g) by

PR
le, o ef1

A, (g) =
¢ , if 81j = 0 and aij < 0 for some j. (IIL.11)

Therefore, the optimum encoder mapping Y for a fixed decoder g is given by
YG) =u, ,  xeAlg) , i=1,2....M, (111.12)

where Ai(g) can be explicitly determined by (IIL.11). Notice that (II1I.12)

satisfies the necessary and sufficient conditions for the optimality of Y, given

a fixed g.
On the other hand, for a fixed encoder Y, the optimal decoder is described,
as mentioned in the previous section, by the conditional expectation of the

input given the channel output. Specifically,
RN =glv) =elXjv=v ]} , i=1,2,...0. (111.13)

It should be menticned that (III.13) is also the necessary and sufficient condi-

tion for the optimality of g, given Y.

Before we proceed to give an elaborate description of the algorithm for
system design, there are several comments concerning the conditiouns described by
(I1I.12) and (III.13). First, it is of fundamental importance to note that in
(II1.11) we could encounter a situation in which tf > t; even though Bij # 0 for
all j # i. This, in fact, implies thatrno value of x should be encoded as u, or,
equivalently, Ai(g) = ¢. As we will_deSCribg in the numerical results section,
this phenomencn, which occurs when the channel 1s highly nbisy, indicates that in

certain cases the total number of quantization regiouns should be smaller than the
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total number of available codes M. Secondly, an iterative algorithm, which works
based on successive application of (IIL.12) and (III.13), guarantees convergence.
This is because the sequence of values of the MSE obtained in thesefitérations is
a nonincreasing sequence of nonnegative numbers, and hence it converges. Furthef—

more, despite the fact that (IIXI.12) and (III.13) are both necessary and suf-

ficient conditions when g and Y are fixed, respectively, the final solution
obtained by the iterative algorithm need not satisfy the sufficient conditions
for the system's optimality. That is, the final solutiop obtained by this
algorithm is only a locally optimum+ solution.

In the following section, we present a precise description of the algorithm

used for the optimal encoder/decoder design.

IV. Algorithm.

Our objective is to develop an algorithm based on the results of the pre-
vious section that, for a fixed value of €, generates a locally optimum encoder/
decoder pair. We would like to obtain these results for a range of different
values of the channel crossover probability €, say, 0 < € < 8max°

The following is a brief description of the algorithm that is used to com—

pute the minimum MSE associated with the locally optimum system.

(a) Set e=€ . SetR =R, the initial set of reconstruction levels.
max — =0
(b.1) Set i =0 (i is the iteration index). Choose an initial set of
reconstruction levels (0) = BO' Set D(O) = ®,
() for the fixed (D),

(b.2) Use (III.12) to obtain the best encoder Y

(b.3) Set i =1+ 1. Use (ITI,13) to obtain the best set of recoanstruction
(i) (i-1)

levels 5_1 for the fixed Y

+An example of the situation with multiple locally optimum solutions is the case
of € = 0. 1In this case, our problem reduces to that of'minimum'MSE_quantizer
design and our algorithm is that of Lloyd's lst method [17]. It is well-known
in this case that the algorithm may not counverge to -the globally optimum
solution [20]. :

13



(b.4) Compute the MSE D(l) associated with_&?i) and Y(i—l).

If (D(i—l)—D(i))/D(i) < 6 , where § > 0, go to (c). Otherwise, go
to (b.é). .
(c) Set € = € -~ Ae (A€ > 0 is the increment by which € is cha;ged). If

€ >0, go to (b.1), otherwise, stop.

Clearly, in steps (b.1)-(b.4), the locally optimum system for a fixed value
of € is computed. In the actual iwplementation of the algorithm, to insure that
a good locally optimum system is chosen, we have counsidered the following vari-
ation of the algorithm. At the end of step (c¢), when € =:O, we begin to
increase € again by incrementg of Ae, We continue this until € = emax' By
means of this process, we obtain a curve of the MSE as a function of € which may
or may not coincide with the érevious one., If it coincides for all values of €,
we stop. Otherwise, we start decreasing € from emax down to € = 0., We will
continue this process back and forth until some two MSE curves coincide, in which
case we stop. Then, for each value of €, we take the smallest MSE obtained in
these iterations,

Before we close this section, we should mention a modification used in
(b.2) which helps reduce the complexity of the algoritim.

Careful examination of (III.12) reveals that in order to determine Ai(g) at
each step of the iteraticn, we need to make M computations. The following
procedure will result in a noticeable amount of saving in the number of compu—
tations, and hence the complexity of the algorithm.

After computing E{iiU = ui}, i=1,2,...,M, we arrange them in the increasing’
order, i.e., we reshuffle thercodes and the corresponding reconstruction levels in

such a way that

E{X|u = uf b < E{X|0 = ut} < ... < E[X]U = uth s S (1v.D)

14



in which u'eA; is such that E{X]U = u'} is the ith smallest element of the set
1 1

{E{X]u = ui}’ i=1,2,...,M}. Note that this reshuffling of the codes does not
affect our analysis of section III at all. However, it introduces s;bstantial
simplification in the implementation of the algorithm. The following theorem
shows that the above reordering of the codes results in an encoder which par-

titions the real line in essentially the same order.

Theorem 1: For a given g, or equivalently R, if the codes are reshuffled to
satisfy (IV.1), and if 1 < j, it is guaranteed that Ai(g) lies to the left of

: Aj(g) provided that Ai(g) and Aj(g) are both well-defined, i.e., tk > tk’

k = i,j. The converse is also true,'i.e., if we obtain an encoder for which Ai(g)

lies to the left of Aj(g), then E{i]U = u{} < E{i]U = uj}.

Proof: Let us use the same notation as in section III for the rehsuffled code.

+
Then, it is easy to see that

tY =min {t. .} , i=1,2,...,M-1, (IV.2.a)
i . ik
k>i

and, similarly,

tf = max {t.,} . i=2,3,...,M. (IV.2.b)
i ik
k<i
Let us suppose that t: ’ té, k = i,j. Then, to prove that Ai(g) lies to the

£
left of Aj(g) for i < j, it suffices to show that t; < tj. But

u
t, =min {t_ } <t . , (1v.3.a)
i K>i ik ij
and
tl = max {t } >t ' ) (IV.3.b)
i © ik jioc : o
k<} .

Hiere, tf = o and tﬁ = B. Also, in the sequel without loss of generality, we
will assume o = —= and B = e, ’

15



u L
= < *
1j tji’ which implies ti tj

To prove the converse, we proceed as follows: Since Ai(g) lies to the left of

But, by definition, t

A.(g), we have .

b
E{(i—x)Z]U = ui} < E{(i - x)Z]U = uj}, for x < tij . (1IV.4,.a)
Also, from the definition of tij’ we have
E{(i - t.,)zlu =u'} = E{(i - t..)2]U =u'}. (IV.4.b)
1] 1 1] R

Subtracting (IV.4.b) from (IV.4.a) and fdrther simplification yields
— = 1 g —_ a t .
(tij x)E{X|U uf} (cij x)E{x|U _uj}, for x < t 5 (1v.5)
which, in turn, implies
E{X]u = ull < E{x|U = uj}. (IV.6)

The following corollary shows that intervals with neighboring indices are

actually adjacent,

u £
Corollary 1: If t; > ¢t i+1’

L .. u . _
K K k =i, i + 1, then ti =t i 1,2,...,M-1,

. £
Proof: We know from Theorem 1 that t: < tf+l' Let us assume that tg < ti

L L u £
Si < =i+2,... i
ince ti+1 tk, k = i+2, , M, the interval (ti,ti+1

+1°
) will be mapped to no
code. This is impossible because for every x€R, there must exist a code which
minimizes the distortion. Recall that coundition (III.5) is a necessary and
sufficient condition,

The only issue which remains to be resolved is that of determining those
codes for which the corresponding upper endpdint is strictly smaller than the-
lower endpoint. Let us dehote the set of ali i's satisfyiné this condition by

*
I , given by
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o= {1:e% < e} . (IV.7)

Essentially, iei* implies that for every x€R there is always a code j¢I* t hat
performs better than (or equally well as) the ith code. Therefore, £* is the
set of all “useless” codes which should be discarded.

The following theorem provides a simple way of simul taneous identification

*
of the best partition and the codes in I .

Theorem 2: Let us suppose that the codes are reshuffled to satisfy (IV.1). Let

£
us suppose that the ith interval is well-defined, i.e., ti < tg, and suppose

u
ti = tij for some j = i+l1,i+2,...,M. Then,

*
(a) all the codes with indices k = i+l,i+2,...,j—1 belong to I , and

(b) the jth code does not belong to I*, i.e., t; < tg.
Proof: As we have assumed,
tlj St s ko= i+lid2, 0.0 ,M. (1v.8)
We will first show that
t, . <t , ko= i+1,i42,...,3-1, (1v.9)

1k). Then, for encoding this x, the jth code is prefer-

able to the ith code, and the ith code is preferable to the kth code, and

Consider x€(t, ,,t,
1]

hence the jth code is preferable to the kth code, i.e., x must satisfy x 2 tkj'
( ) -

Since this must hold for all x in (tij’tik)’ we must have tkj tij Notice

that in arriving at this result, the fact that i { k < j plays an important

role.

Using (IV.9), we have

cE =min fe, | < <e = tY , ko= i+1,i+2,.00,5-1 , (1V.10)
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which together with the fact that té > t: , k = 1+1,1+2,...,i-1, (see

Corollary 1) implies that ti < ti, k = i+1,i+2,...,j-1, which proves (a).

v > tz. We have t

3 3

Now, we proceed to show that t

u

t! = min {t., } > min {t, .} >t .., (Iv.11.a)
i K> jk K> ik ij .

ef = max {t,. )} <, =, ' (IV.12.b)
I k¢ jk ij i

which implies that t? > t?. Theréfore, the jth code is well-defined. Also,
according to Corollary 1, the jth interval lies to the right of the ith interval
and hence t; = tz, for otherwise there will be a gap between the ith interval
and the jth interval to which no code is assigned.

Combining the results of Theorems 1 and 2 and Corollary 1 yields the
following very simple algorithm for determining the best partition used in step
(b.2) of our algorithm.

(b.2.1) Set i = 1.

u i/ u . .
(b.2.2) Compute t;- Let j(i) be such that t, = tij(i)' Eliminate all
codes with indices i+1,i+2,...,j(i)-1. Set ti(i) =} .

(b.2.3) Set i = j(i). If i < M, go to (b.2.2). Otherwise, set tg = o,

stop.

It is important to note, as we will emphasize in the numerical results
section, that for highly noisy channels, it turns ouﬁ that a large number of
quantization intervals belong to I*. In this case, the algorithm for generating
the best partition results in a quick way of identifying these "bad” codes and
hence 1s much more efficient than ad hoc algorithms, which simply compute all
the thresholds énd eliminate the “bad" codes.

Before leaving this section, let us prove our assertion in Section II that if,

while updating the thresholds, a solution to the unconstrained minimization problem

18



results in a realizable quantizer, then the MSE will not have increased. Recall that
the solution to the unconstrained problem is given by (I1.9). If (II1.9) should

result in a solution for which Tl < TZ € eeea KT holds, then The&;em 1 implies

N-1

that E{X]U = u, } < E{X|U = u = 0,1,444,N-1, which, in turn, implies that the

b 1
matrix of second derivatives given by (II.13) is non-negative definite. Hence, when
we update T by (II.9), the MSE will not increase if the realizability condition is
satisfied.

We are now in a position to present the results of this algorithm as
applied to the encoding of specific mémoryless sources., However, before pre-
senting the results, in the next.section we examine the interaction between

the quantization error effects and the channel error effects.

V. Separability of the Overall MSE,

In this section, we will study the relationship between the overall MSE and
the MSE due to th? quantization noise and the channel noise separately. This
separability issue (or the lack thereof) has been addressed in various places
such as [5]-[7], and [19]. It would be convenient, as it is sometimes errone-
ously assumed, if the overall MSE could be written as the sum of the quan-
tization noise and the channel noise. Indeed, Totty and Clark [19] have shown
that this is the case when the decoder reconstruction levels are chosen to be

the same as the encoder quantization levels (i.e., with our notation, N = M and

R2 = Ql’ £=1,2,...,M), and when the Ql's are chosen to be the center of proba-
bility mass of their corresponding intervals.

We would like to prove the same type of separability in our scheme which is
more general than that in [19]. In our scheme, in which the encoder is
described in terms of a partitioning of the real line followed by a mapping to.
the code alphabet, the first outstanding issue is‘that of "défining“ the quan-—
tization noise. This is because, in the scheme described in section III, thefe

is no mention of the quantization levels in the encoder.
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In what follows, we will show that if the quantization noise is defined as

the smallest possible squared-error distortion attainable by a quantizer whose

threshold levels are the same as the threshold levels of the encoder, then cer-

tain nice properties hold, and the overall MSE can be decomposed into the sum of

the quantization noise and the channel noise.

Theorem 3:

Let us suppose that in the encoder/decoder pair described in

section III, for a fixed encoder, the optimum decoder reconstruction levels E;is

chosen.

T
Q= AL =128,

We define

T

[ xp(x)dx
(v.l)

] p(x)dx
Tg_l

in which the T,'s are used to denote the boundaries of the encoder partitions.

L

Then, the following hold:

(a)

(b)

(c)

Proof:

(a)

The best reconstruction levels Rk are given by

R = E{X]V = vk} = E{Y|Vv = vk} , ko= 1,2,000,M, (v.2)

)
It

E{(x - D%} = elx - Y)Z} + E{(Y - 2%, (V.3)

i.e., the overall MSE is decomposable, and

D= o2 - o2 (V.4)

where Oiz is the variance of {in}.

We first note that

20



o

= | xp(xIV = vk)dx .

. -]

E{X]V = v

N Pr(Y = Qz,V = vk) Ty

251 Pr(Y = Q )Pr(V =v ) {2_1xp(x)dx . (v.5)

Now, upon substitution of (V.l) im (V.5), we will obtain

N Pr(Y = Qx,V = vk)
Pr(V = vk)

E{x]v = v Q, = E{Y|v = vk} . (V.6)

} -
L

(b) We have

p=Elx- 0%} =elx-0%}+{(x - D2+ 2:{E =~ D - D).

(V.7)
An immediate conclusion of (V.1) is that
E{(X - )Y} =0 . (v.8)
Furthermore,
~ M ¢ ~ ~ ~
E{xXX} = | E{xX]X = Rk}Pr(X =R)
k=1
M
= ) RkE{x}v = vk}Pr(v =v) . (v.9)
k=1
Now, if we use the result of part (a), we have
- M -
E{xx} = kgl RE{Y]V = vk}Pr(V =v) = E{yx} , , (V.10)
or, equivalently,
E{(X - X} =0 . : , (V.1

. Combining (V.8), (V.11), and (V.7) yields the desired result in (V.3).

(c) It is easy to show that the quantization-noise can be written as
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E{(x - Y)Z} = 6,% - 0,2[ ; (V.12)

similarly, as a result of (V.2), we have

E{(Y - D2} = 03 - o (V.13)

Therefore, combining (V.12), (V.13), and (V.3) yields (V.4).
The above theorem has enabled us to define the quantization noise in such a
way that a separation between the quantization and the channel noise has become

possible. In the next section, we will make use of this result in studying the

interaction between these two sources of distortion.

VI. Numerical Results:

In this section, we provide numerical results determining the performance
of the system described in section III operating on various source distribu-
tions. We make comparisons against the performance'offthe Lloyd-Max quantiza-
tion scheme encoded by natural binary codes as well as the optimum performance
theoretically attainable (OPTA) obtained through rate—distortion theoretic

arguments.

A. Source Description:

In what follows, we assume that the p.d.f. of the assumed memoryless source

is chosen from the class of generalized Gaussian distributions described by

[0‘“(0‘, 8)

p(x) = .ETTTTETJ exp{—[n(a,ﬁ)]xl]a} , 2 < x =, (Vi.l.a)

where

n(a,8) b g1 [F(3/0‘) ]1/2

sz-)— (VI.lqb)

’

with o > 0 describing the exponential rate of decay, B a positive quantity
representing a scale parameter, and I(.) is the gamma function. The variance of

; 2 2
the associated random variable is given by OX = 87, For a = 2, we have the
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Gaussian distribution, while for a = I we have the Laplacian distribution. The
generalized Gaussian distribution with values of a in the range 0.1 < @ < L.0
provides a useful model for broad-tailed processes [21]. It is also pseful to
note that for large values of‘a, the distribution tends to a uniform distribu-
tion. Typical behavior of p.d.f.'s as a function of normalized input are

illustrated in Fig. 2 for selected parameter choices,

B. Rate-Distortion Derived Bounds:

It is well-known from the results of source coding subject to a fidelity
criterion that for a channel with capacity C bits/channel use, and a source with
distortion-rate function D(R), where R is measured in bits/source symbol, the

smallest attainable average distortion is given by [2]-[4],
D . = D(xC) , (V1.2)
min

in which r is the number of channel uses for each source symbol,
In our problem, the channel igs a binary symmetric channel with crossover

probability €., It is easily shown [3] that, in this case,

C=1+c¢ log2€ + (1 - €) 1og2(l - €), bits/channel use. (V1.3)

In general, closed form expressions for D(R) do not exist; however,

Blahut's algorithm [22] can be used for numerical computation of D(R).

C. Lloyd—-Max Quantizer Performance on Noisy Channels:

We compare our results against the performance of thé Lloyd—Max quantizer
optimized for the same source, when the quantizer output is encoded
by natural binary codes and transmitted via a binary symmetric channel. 1In
effect; we compare the performance of our system designed by the noisy channel
agaiﬁst a sys£em whose designer has been completely igporant about the channel

noise but has made every effort to minimize the quantization noise. We will
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denote the performance of this system by DLM(R)' This quantity can be easily
computed from (II.6). It might be interesting to note at this point that for
small values of € (€ = 0), DLM(R) grows approximately linearly with }espect to €,

D. Performance Results:

For the selected values of & used in Fig. 2, we have obtained the perfor-
mance of the locally optimum encoder/decoder pair of Section III fog{differént
values of € in the range [0,0.1]. The resulting signal-to-noise ratios are
illustrated in Figs, 3-6. In these figures, we have also included the optimum
attainable performance.based on (VI.2) and the performance of the Lloyd—Max
quantizer transmitted using the natural binary code. Similar results are
tabulated in Tables 1-4 for r = 1,2,3, and 4 bits/sample, and € = 0.005, 0.01,
0.05, and 0O.1.

It can be concluded from these results that the optimized system offers
performance improvements over the Lloyd-Max quantizer, Let us emphasize here
that these performance improvements are quite substantial; for example, for the
Laplacian source which closely approximates the distribution of speech signals,
at € = 0.01, a noticeable 3.38 dB SNR improvement is obtained for r = 4 bits/
sample (Table 2). The general trend that can be observed from the results in
Figs. 3-6 or Tables 1-4 is that this performance improvement becomes more noti-
ceable for larger r, larger €, and more broad-tailed densities. Indeed, for
r = 4 bits/sample, € = 0.1 and @ = 0.5 (Table 1), the SNR improvement is more
than 11.5 dB.

One could conclude from the above discussion that the optimal design of the
system in general results in performance improvements that cannot be neglected,
especially if the channel is very noisy.

We have usedr(V.3) to write the overall MSE in terms of the q;éggiéatiou MSE aﬁa
the channel MSE, separégely; It is observed that the quantization MSE‘increases as a

function of €, - In other words, the system design is such that the quantizer's struc-
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ture is changed, as € is increased, in such a way that more distortion will be
incurred in the_quantization portion (source coding) so that the overall MSE is mini~
mized. This type of exchange of MSE between the source and channeliencoder, of
course, does not exist in Shannon's coding arguments,

In Fig. 8, we have illustrated the behavior of the quantization thresholds in an
8—1evé1 optimum scheme as a function of €, It is interesting to observe that, while
the quantizer starts off with 8 levels at € = 0, for some value of € > 0 it switches
to a 4-level quantizer (i.e., higher quantization noise). Indeed, our experimental
results have shown that for some value of € > 0.1, this quantizer will switch again
to a 2-level quantizer. In other words, consistent with our claims in Sections III
and IV, some of the codes become "useless” (those denoted by I* in Section IV) as the
channel becomes noisier, and, therefore, they will not be used in transmission of any

values of the source output.

VII. Summary and Conclusions:

We have studied the problem of optimal quantization and coding when the
quantizer outputs are to be transmitted via a noisy channel. Only memoryless
sources, zero-memory quantization, and memoryless channels have been considered.
An iterative algorithm has been developed for obtaining a locally optimal
quantizer and coder. On the basis of the numerical results obtained for a wide
variety of sources, it can be concluded that this design technique offers
substantial-improvements over Lloyd—Max quantization followed by natural
binary codes. The improvement is more noticeable for more noisy channels, for
more broad-tailed densities, and at higher bit rates.

Having defined the quantization error properly, we have shown that under
certain conditions which are satisfied in our problem, the overall MSE can be
deéomposed into the sum of the quantization noise'and the channel noise.r It is

shown through nunerical results that in the optimal system, there is close
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interaction between the quantization noise and the channel noise to minimize the
overall MSE.

An open problem which remains unresolved is that of obtaining @he globally
optimum system. At this point, the locally optimum system to which our
algorithm converges depends upon the initial point, and we know of no way of
choosing the initial point to ensure coavergence to the globaliy optimum system.

A second interesting problem worthwhile studying is the effect of channel
noise in block transform encoding of sources with memory. In this context, we
must mention that the optimal design of the system not only affects the struc-—
ture of the quantizer and the encoder, but it could affect the bit assignment
too [23]. The study of this problem in block transform coding of Gauss—Markov
sources is currently underway.

Finally, in most practical cases, the exact value of the channel crossover
probability is not known. An interesting issue is that of designing a robust
system where only a partial knowledge of the channel's characteristics is

available.
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