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Abstract—This paper is devoted to a Shannon-theoretic study of  In this paper, we will prove that turbo codes are indeed
turbo codes. We prove that ensembles of parallel and serial turbo good, in the following sense. For any turbo code ensemble,

codes are “good” in the following sense. For a turbo code ensemble arallel or serial. defined by a fixed set of component codes
defined by a fixed set of component codes (subject only to mild nec- p ! y P

essary restrictions), there exists a positive numbet, such that for (sul:_)j_ect only to mild necessary res_triCtiof‘S), there exists a
any binary-input memoryless channel whose Bhattacharyya noise positive numbery,, such that on any binary-input memoryless
parameter is less thamyo, the average maximum-likelihood (ML) = channel whose Bhattacharyya noise parameter is lessyan

decoder block error probability approaches zero, at least as fast the average maximum-likelihood (ML) decoder blackrror
as n—?, where 3 is the “interleaver gain” exponent defined by

Benedettoet al.in 1996. probability approaches zero, at least as fasta€, where
Index Terms—Bhattacharyya parameter, coding theorems, max- p i_s the (ensemble-dependent) “interleaver gain™ exponent
imum-likelihood decoding (MLD), turbo codes, union bound. defined by [2]-[5]. (For an exact statement of these results,

see Section VIII, Theorems 8.1 and 8.4.) It is only fair to
acknowledge that similar results were first stated, and proved
informally, by Benedett@t al,, in [2]-[5].

HE invention of turbo codes in 1993 [6], and the explosion

of research that followed, has revolutionized every aspect
of channel coding. Turbo codes appear to offer nothing less thane Section 1l: A definition of the parallel and serial
a solution to the challenge issued by Shannon in 1948 [33]: to  turbo-code ensembles.
devise practical methods of communicating reliably at rates near . section I11: A discussion of general code ensembles, and
channel capacity. And while there has been a good deal of ex-  theijr weight enumerators.
cellent theoretical work on turbo codes, it seems fair to say that
practice still leads theory by a considerable margin. In partic-
ular, there has been little previous Shannon-theoretic work on
turbo codes. By “Shannon-theoretic” we mean a study of the i ]
average performance of the codes in the turbo-code ensemble’ S€ction V: A coding theorem for general code ensem-
under maximum-likelihood decoding (MLD). Of course, there ~ bl€s, combining the ensemble weight enumerator with the
is little possibility that MLD of turbo codes can be implemented ~ Union bound.
practically, but since the turbo decoding algorithm seems to be, « Section VI: Estimates (upper bounds) of the weight enu-
in most cases, a close approximation to MLD, itis importantto  merators of the parallel turbo code ensembles defined in
know the MLD potential for this class of codes. In any case, this ~ Section II.
paper is devoted to a Shannon-theoretic study of turbo codes. In. section VII: Estimates (upper bounds) of the weight
particular, it may be viewed as an elaboration of the following  enumerators of the serial turbo code ensembles defined
remark, which was made in [24]: in Section II.

“The presence [in turbo-codes] of the pseudorandom

interleavers between the component codes ensures that . . .
the resulting overall code behaves very much like a long * Section IX: Examples: The CCSDS ensemble, and the en-

random code, and by Shannon’s theorems, a long random semble of RA codes.
code is likely to be ‘good. . .” + Section X: Discussion and conclusions.

, _ _ _ _ * Appendix A: Combinatorial facts about convolutional
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I. INTRODUCTION

Here is an outline of the paper.

Section IV: The Bhattacharyya noise parameter and the
union bound, for binary input discrete memoryless chan-
nels.

¢ Section VIII: Statement and proof of the main results.

tech.edu).
Communicated by S. Shamai, Guest Editor. 1L ater, we will also consider bit error probability, but for now let us agree that
Publisher Item Identifier S 0018-9448(02)04013-0. “good” refers to vanishingly small block error probability.
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Fig. 1. Encoder for a parallel turbo code. The numbers above the input—ou

lines indicate the length of the corresponding block, and those below the li
indicate (when present) the Hamming weight of the block.
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Fig. 2. Encoder for a serial turbo code. As in Fig. 1, the numbers above
input—output lines indicate the length of the corresponding block, and th
below the lines indicate the Hamming weight of the block.
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Fig. 3. Encoder for a multiple serial turbo code.

the choices for the interleaver, there &fecodes with the struc-
ture shown in Fig. 2. We call this set of codes {iig = Ej]
ensemble.

Our second main result (Theorem 8.4) implies that if the
minimum distance of the outer code, is at least three, the
[E1 = Ej%] ensemble is also “good.”

Finally, we mention the “multiple” serial turbo code depicted
in Fig. 3. Here, an information block of lengkhis encoded by a
firstencodet; into a first codeword of length/;, which is per-

ﬂﬁhted by an interleave?; ; this codeword is then encoded by a

second encodék, into a second codeword of lengify,, which

is permuted by an interleavéb, etc. This process is repeatéd
times, concluding with the'th encoderE?;, which is required

to be recursive. The overall code rateRBs= R Ry--- Ry,
whereR; is the rate ofF;. We call this set of codes th&; =

FE, = .- = E7%] ensemble. Our third main theorem (The-
tQgem 8.7), which is stated without proof, guarantees that the
[Ey = Ey = --- = E7%] ensemble is good whenever

J-2
Z di + [dy-1li]] = J.

=1

The general structure of a parallel turbo code is shown

in Fig. 1. There areJ interleavers (pseudorandom per-

mutations) P;, P», ..., Py and J recursive convolutional
encodersEY, E5, ..., E%.2 An information block of length
k is permuted by interleave?®; and then encoded (an
truncated) byE!, producing a codeword of length;, for
1 1,2, ..., .J. TheseJ codewords are then sent to th
channel. The overall code is therefore @n &) linear block
code, withn = S n,;. If R; = k/n; is the rate of theéth
component codé€’;, then the overall code rate is easily seen
beR = (Z;]:l R;H)~1. Because there aié choices for each

interleaver there are a large number of codes with the structure

shown in Fig. 1. We call this set of codes {#& || E5|| - - - || EY]

ensemble. (We will define a code ensemble more precisely i

Section IlI.)

Our first main result (Theorem 8.1) implies that/if> 2, the
[ET||ES|| - - - || E%] ensemble is “good,” in the sense defined
Section I.

A serial turbo code has the general structure shown in Fig

An information block of lengtl is encoded by an outer encode

FE, into a codeword of lengtlv, which is permuted by an in-
terleaverP, and then encoded by a recursive inner encdder
into a codeword of lengtlh. The outer cod€’; is a truncated
convolutional codé,and the inner codé€ is a truncated recur-
sive convolutional code. The overall code is thereforéank)

linear block code, with rat& = R, R,, whereR, is the rate of

the outer code an&, is the rate of the inner code. Because o?

I1l. CODE ENSEMBLES IN GENERAL

Parallel and serial turbo codes are important examples of code

densembles, but our results can be applied to other ensembles as

well. In this section, we will give a general definition of a code

eensemble.

By an ensemblef linear codes, then, we mean a sequence
Cnys Cny, ... Of sets of linear codes, wheig,, is a set of
g k;) codes with common rat&; = k;/n;. We assume that
the sequence;, no, ... approaches infinity, and that
lim R; = R

100
whereR is called the rate of the ensemble.
"We shall be concerned with the weight structure of the en-
semble, and with this in mind we introduce some notatiof If

irils an(n, k) linear code, we denote its weight enumerator by the

list Ag(C), A1(C), ..., A.(C). In other words A, (C) is the
rymber of words of weight in C, forh =0, 1, ..., n. When
'rno' ambiguity is likely to occur, we denote the weight enumerator
simply by Ag, A1, ..., A,. We will also need theumulative
weight enumerator
h
Ay =Y Ag,  forh=1,... n (3.1)
d=1

In words, A<, is the number ofonzerocodewords of weight
h.
When the code” is viewed as the set of possible outputs

2Here and hereafter, a superscript fndicates that the designated encoderof a particular encodeF, we denote byAEUEZL the number

is recursive, i.e., any input of weightproduces an output of infinite weight.

3without loss of generality, we may assume tRatis the identity permuta-
tion, so that there are really onlfy — 1 interleavers.

of (z, y) pairs where the encoder inputhas weightw and
the corresponding encoder outpgt(codeword) has weight

4We note that a block code can be viewed as a convolutional code withdr Usually the encoder will be understood, and the simpler

memory, so thaf; may be a block encoder.

notation A,, ;. will do. The set of numbersi,, ; is called
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the input—output weight enumerator (IOWE) for the code. In The “noisiness” of the channel can be summarized by the
analogy with (3.1), we define the cumulative input—outpuBhattacharyya noise parameter which is defined by

weight enumerator (CIOWE)
h v=Y_ Vp(ul0)p(yl) (4.2)
Av<n = Apa. (3.2) veQ
d=1

Returning now to the ensemble, we definedlreragewveight if €2 is finite and

enumeratoifor the set’,, as the list
A A A

’vz/Q p(yl0)p(y|1) dy (4.2)

if 2 = R". Itis easy to see (by the Cauchy—Schwarz inequality)
Z}(") a 1 Z Ap(C), forh=0,1,...,n (3.3) thaty < 1 with equality if and only ifp(y|0) = p(y|1) for all
' Cnl o2 y, in which case the channel has capacity Zero.
Similarly, we define the average cumulative weight enumer- For example, for a binary erasure channel with erasure prob-
ator A, the average IOWEL(™), and the average CIOWE aPility p, we have

where

w, h?
FM
Aw, <I: . YBEC = D-
For each inthe sequence, no, ..., thenthspectral shape
function is defined as For a binary-symmetric channel (BSC) with crossover proba-

) _ bility p we have
rn(8) 2 % gAY, foro<s<l. (3.4 yr

vBsc = 2y/p(1 —p).

Thus4,™ = "), wheres = h/n.

Finally, we define theasymptotic spectral shape For the asymmetricZ” channel, we have
() 2 lim rn (), for0 <6 <1 (3.5) Y7 = /-

provided the limit exists. In this case, we can say, roughly, that, 5n additive Gaussian channel with= R and
for largen, if the ratios = i /n is fixed, then

1 L (y—1)2 /252
Z}En) N enr(é). p(y|0) e W e (y—1)*/2
It is worth noting here that the main difficulty in proving our ply|l) = % e~ (wtD)?/207
main results (Theorems 8.1 and 8.4) is that we are unable to Vana
computer(é) for the [E[|E5| - - -[|E7] and[Ey = E3] en- 5 ghort calculation using (4.2) gives

sembles. Instead, we have had to resort to upper boundgpn
(see (6.8) and (7.8)), based on the work of Kahale and Urbanke
[21], which render our results existence theorems only.

Yace = e

As a final example, for the binary input coherent Rayleigh-

IV. MEMORYLESS BINARY -INPUT CHANNELS AND THE fading channel with perfect channel state information available
UNION BOUND to the receiver, we haw@ = R x R, and for(y, a) € Q
Since turbo codes, as we have defined them, are binary codes, 1 o ,

we consider using them on memoryless binary input channels. p(y, al0) = = e~ W) /207900
Such a channel has binary input alphap@t1} and arbitrary Vino
output alphabefl. If the channel input is a binary random vari- ( 1) = 1 —(va)? /202
able X, then the channel output is a random variablef € is P alt) =153 ¢ ae
finite, thenY” is characterized by transition probabilitigg|0),
p(yl1), ie., fory € Q In this case, (4.2) yields

p(y|0) = Pr{Y = y|X =0} ) <1 N )1

, RF, CSI = = .
p(y|l) = Pr{Y = y|X =1}. 202

If ©is a subset oR”, whereR is the real line, thed” is char- The importance of is thaty" is an upper bound on the ML
acterized by transition probability densitig&|0), p(y|1), i.e., decoder error probability for a binary code with two codewords

if S is a measurable subset Qf separated by a Hamming distancehdsee [23, Theorem 7.5]).
It follows that for an(n, k) binary linear code witt¥,, code-
/SP(?J|0) dy = Pr{Y € 5|X =0} words of weight, we have the following upper bound, usually

— P+ _ 5The so-called cutoff rate for the channel's = 1 — log,(1 + 7), which
/Sp(y|1) dy = Pr{Y € 5|X =1}. is positive if and only if the capacity is positive, i.g.,< 1. ’
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called the union bound, on the ML decoder word error probatereD is an integer withl < D < n. In Words,Z(")(D) is

bility: the average number of words of weighb for a code in the set
n C,. (Incidentally, it is also an upper bound on the probability
Py < Z Ay that the minimum distance of a codedh, is <D.)
hzl Theorem 5.1:Suppose the ensemble threshqjdiefined in
= Z Aje (4.3) (5.4) isfinite, and the channel error exponerdatisfiesy > .
he1 Then, if?é{?) denotes the ensemble ML decoder error proba-
wherea = —log~y > 0 is what we shall call th@oise expo- bility, there exists an integet, and positive constant&” ande

nentfor the channel. Since, as noted previously 1, we have such that fom > ng

« > 0 with equality if and only if the channel has zero capacity.

P53 < Z20(D,) + Ke P, (5.5)

Similarly, we can use the union bound to estimate the ML de-

coderbit error probability

n k
Pb < Z Z %Aw,h’}/h

=1 w=1

Proof: Since the channel error exponenis nonnegative,
we have

Ahc_ah S Ah-

whereA,, j is the input—output weight enumerator of the codd.herefore, by (4.4) and (4.5)

Since the union bound is linear on weight enumerators, it also

applies to ensembles of codes, with replaced byZ,(L"), the
average number of codewords of weighin C,,

P < ST AW

(4.4)
h=1

= Z e~ (ab—r.,(6)) (4.5)
h=1

where in (4.5% = h/n. For the ensemble bit error probability

we have correspondingly

n

P <y
h=1

k

w_(n) —ah
z : EA'zu,he y
w=1

V. A CODING THEOREM

In this section, by combining the spectral shape function with
the union bound, we obtain an upper bound on the ML decoder

D,
PSS AT Y A

h=1 h>D,,
IZ(")(Dn) + Z e hla—ru(6)/8) (5.6)
h>D,,

If « > ¢, then there exists an integeg, and ane > 0 such
that forn > no, o — c(()") > ¢. Hence, fom > ng andh > D,,,
we have

(6
Q_M za—c(()n) > €,
)
so that
o= a=r(8)/5) < o=he. (5.7)
Thus,
Z e Iern(6)/6) < Z e~ = Ko Dne (5.8)

L>D,, h>D,,

word error probability for an ensemble of binary linear codéghere X’ = ¢=/(1 — e~). Substituting (5.8) into (5.6), we
(Theorem 5.1). It shows that under certain conditions, there &¥ave (5.5). O

ists a threshold, such that if the channel noise exponergx-

Corollary 5.2: If, in addition, Z(™(D,,) = O(n~?) where

ceeds:g, the ensemble word error probability approaches/e B > 0, then fora > o

shall see that the low-weight codewords in the ensemble deter-

mine whether or not the threshatd is finite.
To begin, we introduce some notation. First, /gt be a fixed
sequence of integers satisfying
Dn
/’—LF
logn

—0, foralle > 0 (5.2)

— 0. (5.2)

n

For exampleD,, = log? n will do. Second, we define theoise
thresholdsfor the ensemble

cén) 2 sup rn(8)/6 (5.3)
D, /n<6<1
co 2 lim sup cé"). (5.4)

n—oo

Finally, thenth innominate sunis defined as follows:

D
zM(Dy2 S AW

h=1

P = 0(n="). (5.9)

Proof: Note thath = = ¢=?!°¢", The result now follows
from (5.5) and (5.2).
The question as to whethes is finite is partially answered
by the following two technical results.

Theorem 5.3:For a code ensembi& the code threshold,
is finite if and only if for all sequences, such that,, > D,,/n
ande, — 0

¢y = lim sup  (8)/6 (5.10)
"0 Dy fn<é<en
is finite.
Proof: Clearly
sup (%) < sup "n(9)

D, /n<s<e, O D, /n<s<t O
so that ifeg as defined in (5.3) is finite, so ig,, for any choice

of ¢,.
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To complete the proof, we will show thatd, is finite, so is 1 -
co, Or rather the contrapositive, i.eg, = oo impliesc) = oo. If TN H Z w, hi
co is infinite, then there is a convergent subsequefice- &g () =1 =1
such thatD, /n < 6, < 1 vT/it(r; | lﬁl Al _,
lim 7"6—" = . (5.11) = W (6.2)
If 60 > 0, note that Next, we apply the bound of Theorem A.3 from Appendix A
Z}(Ln) < <”) < nHO) to eachA,[ﬁKh in (6.2). The truncation length for eadl} is
h less than its code lengthy, which, in turn, is strictly less than
hencer, (§) = 10gz;fn)/ﬂ < H(6). Thus, n =y, n,;. Definingn = max; n;, and noting that the binomial
o (6) (80) coefficient(’;) is an increasing function of, we obtain
lim 0/ o 220907
n—eo b T o Lw/2] \
which contradicts (5.11). Thug, = 0. Hence, if we define Al < gw Z <n> < K ) (6.3)
. w, <h — 72 K
e, = min(26,, 1), we have j=o /WY
rr(0) _ rn(bn) ;
sup 5 > R If nh < n, then by Proposition B.1(7) () attains its max-
Dn/n<b<en " imum for0 < j < |w/2] atj = |w/2]. Thus (provided
Thus, (5.11) diverges, which shows tlagtis infinite. U < n/n), eachA,Ei{ -, can be bounded as follows:
Corollary 5.4: If there exists a functior(é) and constants ‘ n 5
Y = O(D,,/n) such that, (§) < . + s(6) for all sufficiently Al < (L J + 1) < ) < " )
small § and all sufficiently largen, then the ensemble noise - Lw/2]) \[w/2]
threshold is finite provided
B <" (1ey) (1)
limsup ——= < oo. (5.12) v v
50 6 since|w/2| +1 < 2¥). (6.4)
Proof: We use Theorem 5.3. Thus, let be a sequence
such that,, > D, /n ande,, — 0. Then Combining (6.2) and (6.4), we obtain
lim sup  rn(6)/6 n T gh Y
n—oo D, /n<é<ey, (n) w (Lw/?J) (fw/?])
- Aw <h S 4 J—1
< lim sup (v +5(6)/6 (%)
n—o< Dn/n/<(5<‘:n ur
< limsup (9, /D) + lim < sup 3(5)/5> for some constarit > 1. Consequently, for smad, ZS}B can
T oo n—00 \p<s<e, be upper-bounded as follows: -
< K + limsup s(6)/6 < oo. h
6—0
- 2
Thus by Theorem 5.3, the code threshajds finite. O Ay, Z w, <h
w=1
J
VI. WEIGHT ENUMERATOR ESTIMATES FOR PARALLEL #h )y ()
w Lw/2J [w/2]
TURBO CODE ENSEMBLES <Y 6 B )J T (6.5)
w=1 W
For the[ET||E5|| - - - || E] ensemble, the average IOWE can
be obtained from the IOWESs of the component codes using thide sum in (6.5) stops ath rather thank because of The-
“uniform interleaver” technique [2] orem A.1). Equation (6.5) will be used to bound the innominate
sumZz(D,,) that appears in Theorem 5.1.
ZIE:/)}L — 1J - Z H e hz (6.1) To boundfn(&) for small §, we simplify ((_5.5), by replacing
() S e the summation with the maximum term times the number of

terms. Sincg”") < 27" for any integei, anduh < n, we have
whereAM », IS the IOWE for theith component cod€’; (see

Fig. 1 for notation). Therefore, —(n
9 ) Aih) < n27Mgrt max - (6.6)
) 1 = 1<w<ph (k)
Azu <h myJ—1 Z H 2w, h i . . .
(¥ EL ho<h =1 Using the inequalities in (B3), we have
j J
( n nJH(z/2)
Lw/2 J) e 1
J 1 Z Z H w, hz gy I —1 = enR(J-1)H(z/R) (k+1)
( hi=1 ly=1 1=1 ('w)
8We have collected several useful inequalities on binomial coefficients in Ap- < eI H(w/2) T—1 6.7
pendix B. = enR(J—l)H(ac/R)n (6.7)
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whereR = k/n (the rate of the overall code), and= w/n.
Combining (3.4) with (6.6) and (6.7), we have
(8 = L 1oe A
rn(8) = - log A,
LA™
<= log A
= 0g Ay,

logn

<J +1T'é

{JH (g) ~R(J—1H (%)} (6.8)

n

+ sup

Oz pud
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forany0 < j < |d/2] by Proposition B.1. Therefore, replacing
the inner sum in (7.4) wittd/2] + 1 times the right-hand side
of (7.5), we have

wh an
—(n) d (Ld/d1 J) N nh
Az = 2, 0 (a2 D arag) (1)
o~ (Lh% J) yn nh
d 1
< 2 (261) () <Ld/2J) <fd/21>' (7:6)

(The last inequality becaud@/2| + 1 < 2¢.) The inequality

whereT” is a constant. Equation (6.8) will be used with Theorei§?.6) will be used to bound the innominate st (D,,).

5.4 to prove thaty is finite for the[E]|| - - - || E%] ensemble.

VIl. WEIGHT ENUMERATOR ESTIMATES FOR SERIAL
TURBO CODE ENSEMBLES

For the[F; = E7] ensemble, the average IOWE can be ob-

tained from the weight enumerator of the outer c64deand the
IOWE of the inner cod€’; [4] (see Fig. 2 for notation)

N Al 412
_ A4
A =30 el (7.1)
o ()
Hence
N Al 412
_ A4
ASL) = Z d T, <k (7.2)

(%)
Since ifA([ilh £ 0, d is less thamh by Theorem A.1 (where
= p(E2)), applying Theorem A.2 to the outer codg and

Theorem A.3 to the inner codé, with L; as the trellis length
for C; and L, as the trellis length fo€5, we obtain

ng) = Z (1\)
d=1 d
wh ( Ly ) ld/2] I h
<ol S (1) @
270 2 G

whered; is the free distance of. If C; is an(nq, ki, my)
code of rateR; = k1 /n1, andCs is an(nz, k2, mo) code with
rate Ry = k2/no, then we havdy = N/ny, L» = n/n9, and
N = Rsn, so that

I = 2 n=an
nino
k
N:—2n=/3n
T2
1
Ly=—n=vyn
T2

wherea = ks/nina, f = ko/no, andy = 1/ns. Thus, (7.3)

becomes
SR O (P ) AV ) 24
§h—z (,ﬁn) Z 1 d_l . ()
d=1 d 7=0 - -

For§ = h/n small enough, we havgh = nén < n, hence
nh

G2 = (i) )

nh

) <fd/ 2]

N

1d/2] (7.5)

To boundr,(6), we further simplify (7.6). Using the in-
equality ("*) < 27", and bounding the summation in (7.6) by
the number of terms times the maximum term, we have

i)/ ()

(7.7)
Using techniques like those that led from (6.6) to (6.8), the spec-
tral shape can thus be upper-bounded by the following expres-

sion, wherer = d/n:
x x
H|— H|—
{a <d1a> o <2’Y>

_pH <%>} (7.8)

wherel” is a constant. Equation (7.8) will used with Corol-
lary 5.4 to prove that, is finite for the[F; = EZ] ensemble.

<Lh6;21J

max

Zirl? S neuh2nh
= 1<d<puh

1 N
ra(8) < 2 2270

+T6+ sup

n O<e<pud

VIIl. PROOF OFMAIN RESULTS

In this section, we give the proofs of our main resultz,
Theorems 8.1 and 8.4. These theorems first appeared as conjec-
tures, implicitly in [2] and [4] and explicitly in [12]. Theorem
8.1 can be summarized, using the language of [2] and [4], by
saying that thdE7|| - - - ||E%] ensemble has word error proba-
bility interleaving gain exponentJ + 2, and bit error proba-
bility interleaving gain exponentJ + 1. Theorem 8.4 can be
summarized by saying that th&; = F%] ensemble has word
error probability interleaving gain exponenl{dlglj, and bit
error probability interleaving gain exponen{de—“J , Wwhered;
is the minimum distance of the outer codg.

Theorem 8.1:For the[E]]| - - - ||EY;] ensemble, ifJ > 2,
there exists a positive numbey, such that for any binary-input
memoryless channel whose noise exponrenatisfiesy > ¢y,
we have

Fé‘") — O(n—J+2+e)
P =O(n=IH1+e)

for anye > 0.

Proof: (We restrict our attention to the statement about
?&?). The extension t?b(") is explained in Appendix C.) Given
Theorem 5.1 and Corollary 5.2, it will be sufficient to prove the
following two lemmas.

Lemma 8.2: For the[ET|| - - - || E5] ensemble, i/ > 2, ¢, is
finite.
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Proof: We use Corollary 5.4, with the upper bound (6.8) Lemma 8.5:For the[E; = EZ] ensemble, if the free dis-
on the code spectral shape tance of the outer code satisfiés > 2, ¢ is finite.
Proof: Corollary 5.4, together with (7.8), makes it suffi-

Jlogn )
= cient to show

Tn
n
x x
s(6)=T6+ sup (JH(Z)-R(J-1)H(=)). 1 oz z\ z
0<w§/u5( (2) (R)) %13(1) 60<S;l<pwg afl di T 27 pH I < oo
To show thatlimsup s(6)/6 < oo, we need to show that the

following limit is finite: But by Proposition B.3, this is true, sind¢d; + 1/2 — 1 < 0,
1 " . for d; > 2. O
Y 5 i (']H (5) ~R(J-DH (E)) ' Lemma 8.6: For the[E, = E3] ensemble, if; > 3
But by Proposition B.3, this is true, sindg2 — R(J —1)/R = Z209(D,) = 0 (n_Ldlz—ng)
—J/241<0,forJ > 2. O '
Lemma 8.3: For the[E] || - - - || E’;] ensemble, if] > 2 for arbitrarye > 0.

Z0(D,) = O(n=7+2+9) Proof: With the bound (7.6), we have

for any positivee.

Proof: Using the upper bound (6.5) oﬁé’i},we have - rff o (Ldﬁlj) n nDh,
D 20 \ld/)) \[d72)
Z0N(Dn) =AM =47 b
P - @ R gy, L4/l —[d/2] pyd+Td/2]
wD, ( n )J(UDn)J S d; @ n Dn
< Z ow lw/2] J|"w:{2‘| o) =dy L
w=1 (F:Un) =0 (nfL 2 J+€) .
(@) 122
< Y evplle2A==he pRI=e In step(a), we have used the following inequalities {see (B2)):
w=1
(b) —J+2+¢ an < L/ d1 ]
In (a), we h d the following i liti B2)): 3
n (a), we e;ve used the following inequalities (see (B2)) </;> > (Bn)¢/d? > (B (uD)?
< ) < plw/2]
s <Ld72j> S
<fw/21> < D) < (nDs) and
nDy
Rn ur ur ur ur < Dn [d/Q] .
(%) 2 yyu = Ry i,y (faym) <60

Here, © represents a new constant. Kby, the sum in (8.1) For step(b), the sum is upper-bounded byD;, times the

can be upper-bounded D, times the largest term, which, bybiggest term, which by Proposition B.2 is the= d; term, as

Proposition B.2, is thes = 2 term for large enough. Notice  becomes large. The conclusion follows, sifg = o(n?)

D,, = o(n*) for any positivec by (5.1). O forany positiver. U
Next, we prove the corresponding theorem for serial turbo We conclude this section by stating a theorem, without proof,

aboutthgdEy = E; = --- = E7] ensemble fo > 3. Letus

) _ . denote the free distance of tith code byl;, i =1, 2, ..., J—
Theorem 8.4:For the[E, = E;] ensemble, if the free dis- ; (Note that the free distance of the inner cageplays no role;

tance of the outer code sat|sf!é§ > '3, there exists a positive |yo only require thaf; be recursive.) Now define

numberey such that for any binary-input memoryless channel

codes.

whose noise exponent satisfiese > ¢g 5 dyy Jz—:z
—(n dp-1 /3‘4; = ’7—_—‘ + (di - 1) —1 (8.2)
P‘EV) -0 (n BE J+e) 2 e
— di+1
Pb(n) :O nfL 2 J+€ (J) d.]—l J=2
( ) B = [Tw + ; (d; — 1). (8.3)

for arbitrarye > 0.
(We again restrict our attention Taé{f’), Ieavingﬁ‘({f’) to Ap-

pendix C.) Again, because of Theorem 5.1 and Corollary 5.2, itTheorem 8.7:For the[E;, = E; = --- = E%] ensemble,

is sufficient to prove the following two lemmas. for J > 3, there exists a positive numbey such that for any
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binary-input memoryless channel whose noise exponesat- TABLE |
isfiesa > co RA ENSEMBLE NOISE THRESHOLDS QUOTED AS CHANNEL CROSSOVER
PROBABILITIES, OBTAINED FROM THE UNION BOUND (UB) AND THE “T YPICAL
F(n) -0 ( 7’3(;)_1.6) PAIRS” (TP) TECHNIQUES ON THEBSC. THE SHANNON LIMIT FOR THE
w n ENSEMBLE OFALL LINEAR CODES OFRATE R IS ALSO GIVEN

Fb(") -0 (n—,ﬁén-i-f ) g R UB TP Shannon Limit
3 1/3 0.091 0.132 0.174
for arbitrarye > 0, whereﬁ&{) andﬁg“') are defined in (8.2) 4 1/4 0132 0191 0215
and (8.3). 5 1/5  0.163 0228  0.243
The multiple serial ensembles with= 3 were considered by 6 1/6 0187 0254 0265
Benedetteet alin [5], and their calculation of the corresponding 7 YT 0207 0274 0281
interleaving gain exponent agrees with our formulas (8.2) and
(8.3) forJ = 3. TABLE Il
RA ENSEMBLE NOISE THRESHOLDS QUOTED As E, /Ny (IN dB), OBTAINED
IX. EXAMPLES FrRoM THE UNION BOUND (UB) AND THE “T YPICAL PAIRS” (TP) TECHNIQUES
ON THE AWGN CHANNEL. THE SHANNON LIMIT FOR THE ENSEMBLE OFALL
It is interesting to consider the CCSDS “standafti= 1/3 LINEAR CODES OFRATE R IS ALSO GIVEN
turbo code [7] in the I|ght of our resu!ts. This turpo code is a & UB TP Shannon Limit (dB)
parallel concatenation witlh = 2 recursive convolutional com-
 cod ~1/2 Ro — 1 and Il rate — 1/3 1/3 220  0.739 -0.495
ponent codesity = 1/2, Ry = 1, and overall rateR = 1/3. 1/4 193  —0078  —0.794

The two encoders are described by the transfer functions

14+ D+D*+D*
GI(D)_<1a 1+D3+D4
Ga(D) _1+D+D*+D*
2 14+ D34 Dt Two short tables of these thresholds, on the binary-symmetric

Experimental evidence, together with density evolution analy$iannel and the Gaussian channel respectively, are given next.
[11], with this ensemble on the additive white Gaussian noise!n Table I, the noise threshold is given as the largest value
(AWGN) channel suggests that for any valuemf/N, greater of the channel crossover probability for which the union bound
than around-0.05 dB? the bit error probability can be made ar-guarantees good code performance for the corresponding RA
bitrarily small, in approximately inverse proportion to the blocRnsemble. In Table Il, the threshold is given as the smallest value
size, butthe word error probability does notgoto zero. Ifwe app®f £5/No for which the union bound guarantees good perfor-
Theorem 8.1 to this same ensemble, we get no quantitative fi@nce. If the union bound is replaced with a more powerful
formation about the noise threshold, but we find that above tk0!. these thresholds can be considerably improved. For ex-
threshold, we have (ignoring the-” in the exponentP™” = ample, using the “typical pairs” method, we can obtain the““TF:”
O(1/n), andﬁ‘({}’) = O(1), in gratifying agreement with exper- column of Table | for RA codes on the BSC [1], and in the “TP
iment. It is important to bear in mind, however, that: 1) the ex20lumn of Table Il for the AWGN channel [20].
periments are with suboptimum iterative decoding, whereas The-
orem 8.1 deals with MLD; 2) Theorem 8.1 only provides an upper X. DISCUSSION ANDCONCLUSION
bound on code performance, and does not preclude the possibility he results in this paper are in a sense the culmination of a
that a more rapid decrease in decoder error probability is p@gries of earlier papers [1], [10], [12], [13], [18]-[20]. In those
sible; and 3) experiments always deal with particularinterleavefapers, we were interested in computing channel noise thresh-
whereas Theorem 8.1 treats the average over all interleaverg|ds for specific code ensembles on specific channels; in this
The repeat—accumulative (RA) codes introduced in [13] affyper, we have considered general ensembles on general chan-
serial turbo code ensembles with Bn = 1/q ¢-fold repetition nels. However, we have paid a price for this generality: whereas
code as the outer code, and Bn = 1 recursive convolutional in the earlier papers our estimates for the noise thresholds were
code, with transfer function/(1 + D), as the inner code. The computed numerically, in this paper we only prove the existence
outer code has minimum distande = q. Hence, by Theorem of the thresholds. To get good numerical thresholds using our
8.4, on all memoryless binary input channels, RA codes hafsthodology would require at least two improvements. First,
word error probability approaching zero f@> 3 and bit error e would have to replace the union bound with a more pow-
probability approaching zero far > 2. For this ensemble, we erful technique; and second, we would need much more accu-
can say something quantitative about the noise thresholds, sifg@ estimates for the asymptotic weight spectnt{ify of the

1/5 180  —0.494  —0.963
1/6 172 —0742  —1.071
1/7 167  —0.905  —1.150

~N O U WD

we can compute the exact spectral shape [13] ensembles in question.
g—1 We have already addressed the first of these two problems. In
r(6) = max y {— 4 H(qz) [1], [10], [12], [13], and [18] we have developed a tool, the “typ-

g . ical pairs” method, which is capable of reproducing Shannon’s

+(1-6)H <m +6H (2_6)> } . theorem for the ensemble of random linear codes. (Examples of
(1-9) the thresholds obtainable using these techniques are givenin Ta-

“The Shannon limitfol2 = 1/3 codes on the AWGN channelis0.495dB. bles | and Il.) Additionally, the recent techniques of Divsalar [9],
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Duman and Salehi [16], [15], and Sason and Shamai [28], [32hdes, due essentially to Kahale and Urbanke [21]. (Although
[29], [30], which build on Gallager’s technique [17], are all poTheorems A.2 and A.3 were stated in [21] only for systematic
tentially capable of producing far stronger results than possilskgel /2 codes, the proofs given apply in the generality we state.)

using the union bound. B ) .
However, these methods, despite their power, are useless ur;l:heor_em AL (They Theore_m). For a noncatastrophic
nvolutional encodek, there exists a constapt u = u(E),

I neh nex r near-ex xpression for th mptoti . . : . : .
ess one has an exact or near-exact expression forthe asy pf;og& that if the output weight i, then the input weight is

igh : f th lei ion. This is th . .
weight spectrum(§) of the ensemble in question. This is t eémostuh. Also, there is a constant — #(E) such that if a

second, and more difficult, of the needed improvements. To daf d din the t ted cod ists of | det ¢
we can give good estimates fofé) in only three cases: the en-codeword in the truncated code consists of Several detours, o

semble of all linear codes of raf&(herer(5) = H(8)— (1— R)), total lengthLg, then the codeword weightsatisfiesd > Lg».

the ensemble of Gallagéy, k) low-density parity-check codes  |n what follows, A\ denotes the number of codewords of
[17], and the ensemble of RA codes [1]. Amethod forcomputlrweight # in the Lth truncation of the code anAEUL)h denotes

7(6) for other ensembles, in particular the turbo code ensemblgs, corresponding number of codewords with input weight
would be very welcome. The recent results of Sason, Teletgy output weighk. Thus

and Urbanke [31] may prove to be helpful in this grec):tion. N n

F((z)urbmaln results prowdg only upper bounds Bé(:, and AELL) _ Z AEUL,)JL — (by Theorem A.1)= Z AEUL)h
, » but based on experimental evidence we conjecture that =

these bounds are close to best possibie,for any channel with

v < WO,F‘({?) = Q(n~7?).2 More generally, for any binary-input

discrete memoryless channel, we conjecture that for any valli

w=1

Similarly, AEUL,)@ denotes the number of codewords with input
gightw and output weight less than or equalta.e.,

of ~, either . "o
—(n) A’EU,)SIL = Z Agu)d
lim Py’ =1 d=1

or Theorem A.2 (cf. [21, Lemma 3])tet C be an(n, k, m)

— ) 5 convolutional code, as represented by a noncatastrophic encoder

Py’ =0 (n""). E.ThenforthgnL, kL—m) block code obtained by truncating

at depthL

If these conjectures are true, it follows that the interleaving ga% P
exponent3 is an important measure of the ensemble’s perfor- AL < gh L (AD)
mance, and not just an artifact of our method of proof. b = |h/d; |

Finally, we mention the important alternative approach to this , . .
problem recently announced by Richardson and Urbanke [2#1€7€¢1 is the free distance of the code, afilis a constant
This work extends their earlier, landmark work on Iow-derf-ndeendent of andn.

sity parity-check codes [25], and deals directly with the perfor- \we define aecursiveconvolutional code to be one for which

mance of iterative decoding. They show, for ahy- 2, ratel /3 any input of weight 1 produces an output of infinite weight.
parallel turbo ensemble, on a extensive class of symmetric bi-

nary-input channels, the existence of a noise threshjduch ~ Theorem A.3 (cf. [21, Lemma 1])et C be an(n, k, m)re-
that if the noise is below*, the ensemble bit error probability CUrsive convolutional code, with corresponding noncgtastrophlc
can be made arbitrarly small, whereas if the noise exceéds encodet. Then, for the(n L, kL —m) block code obtained by
the ensemble bit error probability is bounded away from zeruncating thek-trellis representation af' at depthL

Furthermore, they describe a numerical algorithm that can be Lw/2] I 3
used to find the exact value of in many cases. In many ways, AEULL,L <6 Z <> < K ) (A2)
this work surpasses ours for the (ensemble, channel) pairs to N =0 N/ ANwTJ

which it applies. The only pieces of our main results apparentiyheregs ands are constants independent:of z, andn. (For
not present ifk—/ is quantitative information about the rate afpe significance of, see Theorem A.1.)

which ?b(") approaches zero, and information about the word
error probability. We conjecture that tHé-{/ analysis can be APPENDIX B

extended to the genergly || E5|| - - - [ E7] and[EL = E3] en- SOME USEFUL INEQUALITIES

sembles, and to all memoryless binary-input channels. S
Supposer, k are positive integerd, < £ < n. Then

APPENDIX A nY <on (B1)
COMBINATORIAL FACTS ABOUT TRUNCATED k)~
CONVOLUTIONAL CODES nk "
k
In this appendix, we shall state for reference three useful EE = <k> =n (B2)
combinatorial facts about the weight structure of convolutional
nH(k/n n nH(k/n
8Recall thatf(r) = O(g(n)) means thaf(n) < Kig(n), for some con- e Hk/ )/(” + 1) < <k> <e (k/m). (B3)

stanti(, f(n) = Q(g(n)) means thayf(n) > K.g(n), for some constant
K,,andf(n) = ©(g(n) meansthaf(n) = O(g(n)) andf(n) = Q(G(n)). (For (B3), see [8, Example 12.1.3, p. 284].)
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Proposition B.1: If n > m, 0 < 5 < |w/2], then
m

GG ) = () (o o)

N <Lw7}2J> <fwﬂ;21>'

Proof: It suffices to show thaif(j) = (’;) (w’ﬁj) is an
increasing function of, for 0 < j < |w/2]. Consider the ratio
on—j+1 w—j+1

G
fG-1) m—-w+j J

sincew —j+1>jandn—j+ 1> m—w+ j, we have

, forj>1

Ff(1)/f(i —1) > 1. Hence the conclusion follows. O
Proposition B.2:
1) Given
Fn(w) _ @wnJLw/QJ—(J—l)w‘Dr(LQJ—l)w7 1<w< an

F,(2) will be the largest term as becomes large.
2) Given

G,(d) = @dnLd/d1J+|_d/2jde72Ld7

G, (dy) will be the largest term as becomes large.
Proof:

1) Itis easy to show thak,,(w) satisfies
Fa(1) 2 Fo(3) 2 Fa(5) 2
and
Fa(2) > Fo(4) > Fo(6) >

asn gets large by taking the ratio of two consecutive

terms. Verifying thatf, (2) >
the claim.
2) Similarly, we can show

F, (1) for largen, we have

by taking the ratio of two consecutive terms. O
Proposition B.3: Given real numbers «;, 3; for
i1 =1,...,n,with 8; > 0, define
=1
and forp > 0, let
1 n
L=1lim - sup o, H(Bz) | . B4
§—0 6 <0<?L‘<H(5 ; ( )> ( )

ThenL < +oo, if A < 0.
Proof (Sketch): It is easy to see that for small

1
H(z) :a:log; + 2+ O(z?)

and so

1 1
= Azxlog - + <Z o, f3; <1 +log E)) z + O(z?).

T
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If A < 0, the first term in the above expansion dominates, and
the result follows immediately (indeed, the limitds If A =0
we have

Z o H(piz) = <Z i log </3 )) z+0(z%)

in WhICh case the “sup” in (B4) is attainedat= 116 asé — 0,
and the limit is finite. O

APPENDIX C
BIT ERRORPROBABILITY VERSUSWORD ERRORPROBABILITY

The union bound on the bit error probability for MLD of an
(n, k) binary linear code&” with IOWE (A, ») over a memo-
ryless binary input channel has the following form:

P, < Z Z Aw e —ah

=1 w=1
In this appendix, we WI|| state, and sketch a proof of, a theorem
on the ensemble bit error probabilif_ylf"), analogous to The-
orem 5.1 (which deals with word error probability). To that end,
we define another innominate sum

D k
n A W —(n
YO 23Ty Al
h=1 w=1

Theorem C.1:If the thresholdey defined in (5.4) is finite,
then ifa > ¢q, there exists an integer and positive constants
K ande such that fom > ng

PM <y"™(D,) + Ke P,
Proof (Sketch) Beginning with (C1), we have

(C1)

(C2)

(C3)

A (n) —ah

wh

ZZ

h>D w=1
k

zi

h>D w=1

D)+ Z Z,En)e_“h.

h>D
Theorem C.1 now follows almost immediately from (C4) and

A (n) —ah

wh

Z (n) —ah

w, n€

=Y (C4)

the proof of Theorem 5.3. O
Corollary C.2: If in addition, Y (D,,) = O(n=?), where

£ > 0, then fora > ¢
P =0(n"). (C5)

The following lemma shows how the results on word error
probability can be easily extended to bit error probability. In
essence, Lemma C.3 shows ti&t)(D,,) = O(n~?) if and
only if Y™ (D,) = O(n=P11).

Lemma C.3: There exists a positive constantsuch that
Z(D)/k < Y(D,) < uDnZ(D,) k.
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Proof: Applyingw/k>1/kto (C2), we obtain the leftin- [13]
equality. From Proposition A.1 we know thaﬁfi}’f}b #0, then
w < ph. Thus, ifh < D, andA™ £0, thenw < ph < uD,.  [14]

The right-hand inequality thenu;‘b}ilows if we upper boundk
by pD, /k in (C2). Finally, sincek = Rn, whereR is the
rate of the ensemble, it follows th&™) (D,,) = O(n=") iff
Y™(D,)=0(n=f+1), O (6l

(17]

[15]
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