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Abstract—This paper is devoted to a Shannon-theoretic study of
turbo codes. We prove that ensembles of parallel and serial turbo
codes are “good” in the following sense. For a turbo code ensemble
defined by a fixed set of component codes (subject only to mild nec-
essary restrictions), there exists a positive number0 such that for
any binary-input memoryless channel whose Bhattacharyya noise
parameter is less than 0, the average maximum-likelihood (ML)
decoder block error probability approaches zero, at least as fast
as , where is the “interleaver gain” exponent defined by
Benedettoet al. in 1996.

Index Terms—Bhattacharyya parameter, coding theorems, max-
imum-likelihood decoding (MLD), turbo codes, union bound.

I. INTRODUCTION

T HE invention of turbo codes in 1993 [6], and the explosion
of research that followed, has revolutionized every aspect

of channel coding. Turbo codes appear to offer nothing less than
a solution to the challenge issued by Shannon in 1948 [33]: to
devise practical methods of communicating reliably at rates near
channel capacity. And while there has been a good deal of ex-
cellent theoretical work on turbo codes, it seems fair to say that
practice still leads theory by a considerable margin. In partic-
ular, there has been little previous Shannon-theoretic work on
turbo codes. By “Shannon-theoretic” we mean a study of the
average performance of the codes in the turbo-code ensemble
under maximum-likelihood decoding (MLD). Of course, there
is little possibility that MLD of turbo codes can be implemented
practically, but since the turbo decoding algorithm seems to be,
in most cases, a close approximation to MLD, it is important to
know the MLD potential for this class of codes. In any case, this
paper is devoted to a Shannon-theoretic study of turbo codes. In
particular, it may be viewed as an elaboration of the following
remark, which was made in [24]:

“The presence [in turbo-codes] of the pseudorandom
interleavers between the component codes ensures that
the resulting overall code behaves very much like a long
random code, and by Shannon’s theorems, a long random
code is likely to be ‘good’ .”
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In this paper, we will prove that turbo codes are indeed
good, in the following sense. For any turbo code ensemble,
parallel or serial, defined by a fixed set of component codes
(subject only to mild necessary restrictions), there exists a
positive number , such that on any binary-input memoryless
channel whose Bhattacharyya noise parameter is less than,
the average maximum-likelihood (ML) decoder block1 error
probability approaches zero, at least as fast as, where

is the (ensemble-dependent) “interleaver gain” exponent
defined by [2]–[5]. (For an exact statement of these results,
see Section VIII, Theorems 8.1 and 8.4.) It is only fair to
acknowledge that similar results were first stated, and proved
informally, by Benedettoet al., in [2]–[5].

Here is an outline of the paper.

• Section II: A definition of the parallel and serial
turbo-code ensembles.

• Section III: A discussion of general code ensembles, and
their weight enumerators.

• Section IV: The Bhattacharyya noise parameter and the
union bound, for binary input discrete memoryless chan-
nels.

• Section V: A coding theorem for general code ensem-
bles, combining the ensemble weight enumerator with the
union bound.

• Section VI: Estimates (upper bounds) of the weight enu-
merators of the parallel turbo code ensembles defined in
Section II.

• Section VII: Estimates (upper bounds) of the weight
enumerators of the serial turbo code ensembles defined
in Section II.

• Section VIII: Statement and proof of the main results.

• Section IX: Examples: The CCSDS ensemble, and the en-
semble of RA codes.

• Section X: Discussion and conclusions.

• Appendix A: Combinatorial facts about convolutional
codes.

• Appendix B: Some useful inequalities.

• Appendix C: Extension of main theorems to bit error prob-
ability.

1Later, we will also consider bit error probability, but for now let us agree that
“good” refers to vanishingly small block error probability.
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Fig. 1. Encoder for a parallel turbo code. The numbers above the input–output
lines indicate the length of the corresponding block, and those below the lines
indicate (when present) the Hamming weight of the block.

Fig. 2. Encoder for a serial turbo code. As in Fig. 1, the numbers above the
input–output lines indicate the length of the corresponding block, and those
below the lines indicate the Hamming weight of the block.

II. TURBO-CODE ENSEMBLES

The general structure of a parallel turbo code is shown
in Fig. 1. There are interleavers (pseudorandom per-
mutations) and recursive convolutional
encoders .2 An information block of length

is permuted by interleaver and then encoded (and
truncated) by , producing a codeword of length , for

. These codewords are then sent to the
channel. The overall code is therefore an linear block
code, with . If is the rate of theth
component code , then the overall code rate is easily seen to
be . Because there are choices for each
interleaver,3 there are a large number of codes with the structure
shown in Fig. 1. We call this set of codes the
ensemble. (We will define a code ensemble more precisely in
Section III.)

Our first main result (Theorem 8.1) implies that if , the
ensemble is “good,” in the sense defined in

Section I.
A serial turbo code has the general structure shown in Fig. 2.

An information block of length is encoded by an outer encoder
into a codeword of length , which is permuted by an in-

terleaver , and then encoded by a recursive inner encoder
into a codeword of length . The outer code is a truncated
convolutional code,4 and the inner code is a truncated recur-
sive convolutional code. The overall code is therefore an
linear block code, with rate , where is the rate of
the outer code and is the rate of the inner code. Because of

2Here and hereafter, a superscript “r” indicates that the designated encoder
is recursive, i.e., any input of weight1 produces an output of infinite weight.

3Without loss of generality, we may assume thatP is the identity permuta-
tion, so that there are really onlyJ � 1 interleavers.

4We note that a block code can be viewed as a convolutional code without
memory, so thatE may be a block encoder.

Fig. 3. Encoder for a multiple serial turbo code.

the choices for the interleaver, there arecodes with the struc-
ture shown in Fig. 2. We call this set of codes the
ensemble.

Our second main result (Theorem 8.4) implies that if the
minimum distance of the outer code is at least three, the

ensemble is also “good.”
Finally, we mention the “multiple” serial turbo code depicted

in Fig. 3. Here, an information block of lengthis encoded by a
first encoder into a first codeword of length , which is per-
muted by an interleaver ; this codeword is then encoded by a
second encoder into a second codeword of length , which
is permuted by an interleaver , etc. This process is repeated
times, concluding with the th encoder , which is required
to be recursive. The overall code rate is ,
where is the rate of . We call this set of codes the

ensemble. Our third main theorem (The-
orem 8.7), which is stated without proof, guarantees that the

ensemble is good whenever

III. CODE ENSEMBLES, IN GENERAL

Parallel and serial turbo codes are important examples of code
ensembles, but our results can be applied to other ensembles as
well. In this section, we will give a general definition of a code
ensemble.

By an ensembleof linear codes, then, we mean a sequence
of sets of linear codes, where is a set of

codes with common rate . We assume that
the sequence approaches infinity, and that

where is called the rate of the ensemble.
We shall be concerned with the weight structure of the en-

semble, and with this in mind we introduce some notation. If
is an linear code, we denote its weight enumerator by the
list . In other words, is the
number of words of weight in , for . When
no ambiguity is likely to occur, we denote the weight enumerator
simply by . We will also need thecumulative
weight enumerator

for (3.1)

In words, is the number ofnonzerocodewords of weight
.

When the code is viewed as the set of possible outputs
of a particular encoder , we denote by the number
of pairs where the encoder inputhas weight and
the corresponding encoder output(codeword) has weight

. Usually the encoder will be understood, and the simpler
notation will do. The set of numbers is called
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the input–output weight enumerator (IOWE) for the code. In
analogy with (3.1), we define the cumulative input–output
weight enumerator (CIOWE)

(3.2)

Returning now to the ensemble, we define theaverageweight
enumeratorfor the set as the list

where

for (3.3)

Similarly, we define the average cumulative weight enumer-
ator , the average IOWE , and the average CIOWE

.
For each in the sequence , the thspectral shape

function is defined as

for (3.4)

Thus , where .
Finally, we define theasymptotic spectral shape

for (3.5)

provided the limit exists. In this case, we can say, roughly, that
for large , if the ratio is fixed, then

It is worth noting here that the main difficulty in proving our
main results (Theorems 8.1 and 8.4) is that we are unable to
compute for the and en-
sembles. Instead, we have had to resort to upper bounds on
(see (6.8) and (7.8)), based on the work of Kahale and Urbanke
[21], which render our results existence theorems only.

IV. M EMORYLESSBINARY-INPUT CHANNELS AND THE

UNION BOUND

Since turbo codes, as we have defined them, are binary codes,
we consider using them on memoryless binary input channels.
Such a channel has binary input alphabet and arbitrary
output alphabet . If the channel input is a binary random vari-
able , then the channel output is a random variable. If is
finite, then is characterized by transition probabilities ,

, i.e., for

If is a subset of , where is the real line, then is char-
acterized by transition probability densities , , i.e.,
if is a measurable subset of

The “noisiness” of the channel can be summarized by the
Bhattacharyya noise parameter, which is defined by

(4.1)

if is finite and

(4.2)

if . It is easy to see (by the Cauchy–Schwarz inequality)
that with equality if and only if for all
, in which case the channel has capacity zero.5

For example, for a binary erasure channel with erasure prob-
ability , we have

For a binary-symmetric channel (BSC) with crossover proba-
bility we have

For the asymmetric “ ” channel, we have

For an additive Gaussian channel with and

a short calculation using (4.2) gives

As a final example, for the binary input coherent Rayleigh-
fading channel with perfect channel state information available
to the receiver, we have , and for

In this case, (4.2) yields

The importance of is that is an upper bound on the ML
decoder error probability for a binary code with two codewords
separated by a Hamming distance of(see [23, Theorem 7.5]).
It follows that for an binary linear code with code-
words of weight , we have the following upper bound, usually

5The so-called cutoff rate for the channel isR = 1� log (1 + 
), which
is positive if and only if the capacity is positive, i.e.,
 < 1.
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called the union bound, on the ML decoder word error proba-
bility:

(4.3)

where is what we shall call thenoise expo-
nentfor the channel. Since, as noted previously, , we have

with equality if and only if the channel has zero capacity.
Similarly, we can use the union bound to estimate the ML de-
coderbit error probability

where is the input–output weight enumerator of the code.
Since the union bound is linear on weight enumerators, it also

applies to ensembles of codes, with replaced by , the
average number of codewords of weightin

(4.4)

(4.5)

where in (4.5) . For the ensemble bit error probability
we have correspondingly

V. A CODING THEOREM

In this section, by combining the spectral shape function with
the union bound, we obtain an upper bound on the ML decoder
word error probability for an ensemble of binary linear codes
(Theorem 5.1). It shows that under certain conditions, there ex-
ists a threshold such that if the channel noise exponentex-
ceeds , the ensemble word error probability approaches. We
shall see that the low-weight codewords in the ensemble deter-
mine whether or not the threshold is finite.

To begin, we introduce some notation. First, let be a fixed
sequence of integers satisfying

for all (5.1)

(5.2)

For example, will do. Second, we define thenoise
thresholdsfor the ensemble

(5.3)

(5.4)

Finally, the th innominate sumis defined as follows:

where is an integer with . In words, is
the average number of words of weight for a code in the set

. (Incidentally, it is also an upper bound on the probability
that the minimum distance of a code in is .)

Theorem 5.1:Suppose the ensemble thresholddefined in
(5.4) is finite, and the channel error exponentsatisfies .
Then, if denotes the ensemble ML decoder error proba-
bility, there exists an integer and positive constants and
such that for

(5.5)

Proof: Since the channel error exponentis nonnegative,
we have

Therefore, by (4.4) and (4.5)

(5.6)

If , then there exists an integer, and an such
that for , . Hence, for and ,
we have

so that

(5.7)

Thus,

(5.8)

where . Substituting (5.8) into (5.6), we
have (5.5).

Corollary 5.2: If, in addition, where
, then for

(5.9)

Proof: Note that . The result now follows
from (5.5) and (5.2).

The question as to whether is finite is partially answered
by the following two technical results.

Theorem 5.3:For a code ensemble, the code threshold
is finite if and only if for all sequences such that
and

(5.10)

is finite.
Proof: Clearly

so that if as defined in (5.3) is finite, so is , for any choice
of .
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To complete the proof, we will show that if is finite, so is
, or rather the contrapositive, i.e., implies . If
is infinite, then there is a convergent subsequence

such that with

(5.11)

If , note that6

hence . Thus,

which contradicts (5.11). Thus, . Hence, if we define
, we have

Thus, (5.11) diverges, which shows thatis infinite.

Corollary 5.4: If there exists a function and constants
such that for all sufficiently

small and all sufficiently large , then the ensemble noise
threshold is finite provided

(5.12)

Proof: We use Theorem 5.3. Thus, let be a sequence
such that and . Then

Thus by Theorem 5.3, the code thresholdis finite.

VI. WEIGHT ENUMERATOR ESTIMATES FORPARALLEL

TURBO CODE ENSEMBLES

For the ensemble, the average IOWE can
be obtained from the IOWEs of the component codes using the
“uniform interleaver” technique [2]

(6.1)

where is the IOWE for the th component code (see
Fig. 1 for notation). Therefore,

6We have collected several useful inequalities on binomial coefficients in Ap-
pendix B.

(6.2)

Next, we apply the bound of Theorem A.3 from Appendix A
to each in (6.2). The truncation length for each is
less than its code length , which, in turn, is strictly less than

. Defining , and noting that the binomial
coefficient is an increasing function of, we obtain

(6.3)

If , then by Proposition B.1, attains its max-
imum for at . Thus (provided

), each can be bounded as follows:

since (6.4)

Combining (6.2) and (6.4), we obtain

for some constant . Consequently, for small, can
be upper-bounded as follows:

(6.5)

(The sum in (6.5) stops at rather than because of The-
orem A.1). Equation (6.5) will be used to bound the innominate
sum that appears in Theorem 5.1.

To bound for small , we simplify (6.5), by replacing
the summation with the maximum term times the number of
terms. Since for any integer, and , we have

(6.6)

Using the inequalities in (B3), we have

(6.7)
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where (the rate of the overall code), and .
Combining (3.4) with (6.6) and (6.7), we have

(6.8)

where is a constant. Equation (6.8) will be used with Theorem
5.4 to prove that is finite for the ensemble.

VII. W EIGHT ENUMERATOR ESTIMATES FORSERIAL

TURBO CODE ENSEMBLES

For the ensemble, the average IOWE can be ob-
tained from the weight enumerator of the outer codeand the
IOWE of the inner code [4] (see Fig. 2 for notation)

(7.1)

Hence

(7.2)

Since if , is less than by Theorem A.1 (where
), applying Theorem A.2 to the outer code and

Theorem A.3 to the inner code with as the trellis length
for and as the trellis length for , we obtain

(7.3)

where is the free distance of . If is an
code of rate , and is an code with
rate , then we have , , and

, so that

where , , and . Thus, (7.3)
becomes

(7.4)

For small enough, we have , hence

(7.5)

for any by Proposition B.1. Therefore, replacing
the inner sum in (7.4) with times the right-hand side
of (7.5), we have

(7.6)

(The last inequality because .) The inequality
(7.6) will be used to bound the innominate sum .

To bound , we further simplify (7.6). Using the in-
equality , and bounding the summation in (7.6) by
the number of terms times the maximum term, we have

(7.7)

Using techniques like those that led from (6.6) to (6.8), the spec-
tral shape can thus be upper-bounded by the following expres-
sion, where :

(7.8)

where is a constant. Equation (7.8) will used with Corol-
lary 5.4 to prove that is finite for the ensemble.

VIII. PROOF OFMAIN RESULTS

In this section, we give the proofs of our main results,viz.
Theorems 8.1 and 8.4. These theorems first appeared as conjec-
tures, implicitly in [2] and [4] and explicitly in [12]. Theorem
8.1 can be summarized, using the language of [2] and [4], by
saying that the ensemble has word error proba-
bility interleaving gain exponent , and bit error proba-
bility interleaving gain exponent . Theorem 8.4 can be
summarized by saying that the ensemble has word
error probability interleaving gain exponent , and bit
error probability interleaving gain exponent , where
is the minimum distance of the outer code.

Theorem 8.1:For the ensemble, if ,
there exists a positive number, such that for any binary-input
memoryless channel whose noise exponentsatisfies ,
we have

for any .
Proof: (We restrict our attention to the statement about
. The extension to is explained in Appendix C.) Given

Theorem 5.1 and Corollary 5.2, it will be sufficient to prove the
following two lemmas.

Lemma 8.2:For the ensemble, if , is
finite.
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Proof: We use Corollary 5.4, with the upper bound (6.8)
on the code spectral shape

To show that , we need to show that the
following limit is finite:

But by Proposition B.3, this is true, since
, for .

Lemma 8.3:For the ensemble, if

for any positive .
Proof: Using the upper bound (6.5) on , we have

(8.1)

In , we have used the following inequalities (see (B2)):

Here, represents a new constant. For , the sum in (8.1)
can be upper-bounded by times the largest term, which, by
Proposition B.2, is the term for large enough. Notice

for any positive by (5.1).

Next, we prove the corresponding theorem for serial turbo
codes.

Theorem 8.4:For the ensemble, if the free dis-
tance of the outer code satisfies , there exists a positive
number such that for any binary-input memoryless channel
whose noise exponentsatisfies

for arbitrary .
(We again restrict our attention to , leaving to Ap-

pendix C.) Again, because of Theorem 5.1 and Corollary 5.2, it
is sufficient to prove the following two lemmas.

Lemma 8.5:For the ensemble, if the free dis-
tance of the outer code satisfies , is finite.

Proof: Corollary 5.4, together with (7.8), makes it suffi-
cient to show

But by Proposition B.3, this is true, since ,
for .

Lemma 8.6:For the ensemble, if

for arbitrary .
Proof: With the bound (7.6), we have

In step , we have used the following inequalities {see (B2)):

and

For step , the sum is upper-bounded by times the
biggest term, which by Proposition B.2 is the term, as

becomes large. The conclusion follows, since
for any positive .

We conclude this section by stating a theorem, without proof,
about the ensemble for . Let us
denote the free distance of theth code by ,
. (Note that the free distance of the inner codeplays no role;

we only require that be recursive.) Now define

(8.2)

(8.3)

Theorem 8.7:For the ensemble,
for , there exists a positive number such that for any
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binary-input memoryless channel whose noise exponentsat-
isfies

for arbitrary , where and are defined in (8.2)
and (8.3).

The multiple serial ensembles with were considered by
Benedettoet al.in [5], and their calculation of the corresponding
interleaving gain exponent agrees with our formulas (8.2) and
(8.3) for .

IX. EXAMPLES

It is interesting to consider the CCSDS “standard”
turbo code [7] in the light of our results. This turbo code is a
parallel concatenation with recursive convolutional com-
ponent codes, , , and overall rate .
The two encoders are described by the transfer functions

Experimental evidence, together with density evolution analysis
[11], with this ensemble on the additive white Gaussian noise
(AWGN) channel suggests that for any value of greater
than around 0.05 dB,7 the bit error probability can be made ar-
bitrarily small, in approximately inverse proportion to the block
size,but theworderrorprobabilitydoesnotgo tozero. Ifweapply
Theorem 8.1 to this same ensemble, we get no quantitative in-
formation about the noise threshold, but we find that above the
threshold, we have (ignoring the “ ” in the exponent)

, and , in gratifying agreement with exper-
iment. It is important to bear in mind, however, that: 1) the ex-
perimentsarewithsuboptimumiterativedecoding,whereasThe-
orem8.1dealswithMLD;2)Theorem8.1onlyprovidesanupper
boundoncodeperformance,anddoesnotpreclude thepossibility
that a more rapid decrease in decoder error probability is pos-
sible;and3)experimentsalwaysdealwithparticular interleavers,
whereas Theorem 8.1 treats the average over all interleavers.

The repeat–accumulative (RA) codes introduced in [13] are
serial turbo code ensembles with an -fold repetition
code as the outer code, and an recursive convolutional
code, with transfer function , as the inner code. The
outer code has minimum distance . Hence, by Theorem
8.4, on all memoryless binary input channels, RA codes have
word error probability approaching zero for and bit error
probability approaching zero for . For this ensemble, we
can say something quantitative about the noise thresholds, since
we can compute the exact spectral shape [13]

7The Shannon limit forR = 1=3 codes on the AWGN channel is�0.495 dB.

TABLE I
RA ENSEMBLE NOISE THRESHOLDS, QUOTED AS CHANNEL CROSSOVER

PROBABILITIES, OBTAINED FROM THE UNION BOUND (UB) AND THE “TYPICAL

PAIRS” (TP) TECHNIQUES ON THEBSC. THE SHANNON LIMIT FOR THE

ENSEMBLE OFALL LINEAR CODES OFRATE R IS ALSO GIVEN

TABLE II
RA ENSEMBLE NOISE THRESHOLDS, QUOTED ASE =N (IN dB), OBTAINED

FROM THE UNION BOUND (UB) AND THE “TYPICAL PAIRS” (TP) TECHNIQUES

ON THE AWGN CHANNEL. THE SHANNON LIMIT FOR THE ENSEMBLE OFALL

LINEAR CODES OFRATE R IS ALSO GIVEN

Two short tables of these thresholds, on the binary-symmetric
channel and the Gaussian channel respectively, are given next.

In Table I, the noise threshold is given as the largest value
of the channel crossover probability for which the union bound
guarantees good code performance for the corresponding RA
ensemble. In Table II, the threshold is given as the smallest value
of for which the union bound guarantees good perfor-
mance. If the union bound is replaced with a more powerful
tool, these thresholds can be considerably improved. For ex-
ample, using the “typical pairs” method, we can obtain the “TP”
column of Table I for RA codes on the BSC [1], and in the “TP”
column of Table II for the AWGN channel [20].

X. DISCUSSION ANDCONCLUSION

The results in this paper are in a sense the culmination of a
series of earlier papers [1], [10], [12], [13], [18]–[20]. In those
papers, we were interested in computing channel noise thresh-
olds for specific code ensembles on specific channels; in this
paper, we have considered general ensembles on general chan-
nels. However, we have paid a price for this generality: whereas
in the earlier papers our estimates for the noise thresholds were
computed numerically, in this paper we only prove the existence
of the thresholds. To get good numerical thresholds using our
methodology would require at least two improvements. First,
we would have to replace the union bound with a more pow-
erful technique; and second, we would need much more accu-
rate estimates for the asymptotic weight spectrum of the
ensembles in question.

We have already addressed the first of these two problems. In
[1], [10], [12], [13], and [18] we have developed a tool, the “typ-
ical pairs” method, which is capable of reproducing Shannon’s
theorem for the ensemble of random linear codes. (Examples of
the thresholds obtainable using these techniques are given in Ta-
bles I and II.) Additionally, the recent techniques of Divsalar [9],
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Duman and Salehi [16], [15], and Sason and Shamai [28], [32],
[29], [30], which build on Gallager’s technique [17], are all po-
tentially capable of producing far stronger results than possible
using the union bound.

However, these methods, despite their power, are useless un-
less one has an exact or near-exact expression for the asymptotic
weight spectrum of the ensemble in question. This is the
second, and more difficult, of the needed improvements. To date,
we can give good estimates for in only three cases: the en-
sembleofall linearcodesof rate(here ),
the ensemble of Gallager low-density parity-check codes
[17], and the ensemble of RA codes [1]. A method for computing

for other ensembles, in particular the turbo code ensembles,
would be very welcome. The recent results of Sason, Teletar,
and Urbanke [31] may prove to be helpful in this direction.

Our main results provide only upper bounds on and
, but based on experimental evidence we conjecture that

these bounds are close to best possible,viz., for any channel with
, .8 More generally, for any binary-input

discrete memoryless channel, we conjecture that for any value
of , either

or

If these conjectures are true, it follows that the interleaving gain
exponent is an important measure of the ensemble’s perfor-
mance, and not just an artifact of our method of proof.

Finally, we mention the important alternative approach to this
problem recently announced by Richardson and Urbanke [27].
This work extends their earlier, landmark work on low-den-
sity parity-check codes [25], and deals directly with the perfor-
mance of iterative decoding. They show, for any , rate
parallel turbo ensemble, on a extensive class of symmetric bi-
nary-input channels, the existence of a noise threshold, such
that if the noise is below , the ensemble bit error probability
can be made arbitrarly small, whereas if the noise exceeds,
the ensemble bit error probability is bounded away from zero.
Furthermore, they describe a numerical algorithm that can be
used to find the exact value of in many cases. In many ways,
this work surpasses ours for the (ensemble, channel) pairs to
which it applies. The only pieces of our main results apparently
not present in – is quantitative information about the rate at
which approaches zero, and information about the word
error probability. We conjecture that the– analysis can be
extended to the general and en-
sembles, and to all memoryless binary-input channels.

APPENDIX A
COMBINATORIAL FACTS ABOUT TRUNCATED

CONVOLUTIONAL CODES

In this appendix, we shall state for reference three useful
combinatorial facts about the weight structure of convolutional

8Recall thatf(n) = O(g(n)) means thatf(n) � K g(n), for some con-
stantK , f(n) = 
(g(n)) means thatf(n) � K g(n), for some constant
K , andf(n) = �(g(n)means thatf(n) = O(g(n)) andf(n) = 
(G(n)).

codes, due essentially to Kahale and Urbanke [21]. (Although
Theorems A.2 and A.3 were stated in [21] only for systematic
rate codes, the proofs given apply in the generality we state.)

Theorem A.1 (The – Theorem): For a noncatastrophic
convolutional encoder , there exists a constant, ,
such that if the output weight is, then the input weight is
at most . Also, there is a constant such that if a
codeword in the truncated code consists of several detours, of
total length , then the codeword weightsatisfies .

In what follows, denotes the number of codewords of
weight in the th truncation of the code and denotes
the corresponding number of codewords with input weight
and output weight . Thus,

(by Theorem A.1)

Similarly, denotes the number of codewords with input
weight and output weight less than or equal to, i.e.,

Theorem A.2 (cf. [21, Lemma 3]):Let be an
convolutional code, as represented by a noncatastrophic encoder

. Then for the block code obtained by truncating
at depth

(A1)

where is the free distance of the code, andis a constant
independent of and .

We define arecursiveconvolutional code to be one for which
any input of weight 1 produces an output of infinite weight.

Theorem A.3 (cf. [21, Lemma 1]):Let be an re-
cursive convolutional code, with corresponding noncatastrophic
encoder . Then, for the block code obtained by
truncating the -trellis representation of at depth

(A2)

where and are constants independent of, , and . (For
the significance of , see Theorem A.1.)

APPENDIX B
SOME USEFUL INEQUALITIES

Suppose are positive integers, . Then

(B1)

(B2)

(B3)

(For (B3), see [8, Example 12.1.3, p. 284].)
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Proposition B.1: If , , then

Proof: It suffices to show that is an
increasing function of, for . Consider the ratio

for

since and , we have
. Hence the conclusion follows.

Proposition B.2:

1) Given

will be the largest term as becomes large.
2) Given

will be the largest term as becomes large.
Proof:

1) It is easy to show that satisfies

and

as gets large by taking the ratio of two consecutive
terms. Verifying that for large , we have
the claim.

2) Similarly, we can show

by taking the ratio of two consecutive terms.

Proposition B.3: Given real numbers , for
, with , define

and for , let

(B4)

Then , if .
Proof (Sketch): It is easy to see that for small

and so

If , the first term in the above expansion dominates, and
the result follows immediately (indeed, the limit is). If
we have

in which case the “sup” in (B4) is attained at as ,
and the limit is finite.

APPENDIX C
BIT ERRORPROBABILITY VERSUSWORD ERRORPROBABILITY

The union bound on the bit error probability for MLD of an
binary linear code with IOWE over a memo-

ryless binary input channel has the following form:

(C1)

In this appendix, we will state, and sketch a proof of, a theorem
on the ensemble bit error probability , analogous to The-
orem 5.1 (which deals with word error probability). To that end,
we define another innominate sum

(C2)

Theorem C.1:If the threshold defined in (5.4) is finite,
then if , there exists an integer and positive constants

and such that for

(C3)

Proof (Sketch):Beginning with (C1), we have

(C4)

Theorem C.1 now follows almost immediately from (C4) and
the proof of Theorem 5.3.

Corollary C.2: If in addition, , where
, then for

(C5)

The following lemma shows how the results on word error
probability can be easily extended to bit error probability. In
essence, Lemma C.3 shows that if and
only if .

Lemma C.3:There exists a positive constant, such that
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Proof: Applying to (C2), we obtain the left in-
equality. From Proposition A.1 we know that if , then

. Thus, if , and , then
The right-hand inequality then follows if we upper bound
by in (C2). Finally, since , where is the
rate of the ensemble, it follows that iff

.
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