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Description 1

Abstract—Multiple description (MD) coding is a source coding R1)

U

Decoder 1 (D1)

technique for information transmission over unreliable networks.

In MD coding, the coder generates several different descriptions of Source

the same signal and the decoder can produce a useful reconstruc- Coder
tion of the source with any received subset of these descriptions.

In this paper, we study the problem of MD coding of stationary

Gaussian sources with memory. First, we compute an approximate
MD rate distortion region for these sources, which we prove to be Description 2

asymptotically tight at high rates. This region generalizes the MD R2)

rate distortion region of EI Gamal, Cover, and Ozarow for mem-
oryless Gaussian sources. Then, we develop an algorithm for the
design of optimal two-channel biorthogonal filter banks for MD
coding of Gaussian sources. We show that optimal filters are ob-  The simplest formulation of the MD problem is illustrated in

tained by allocating the redundancy over frequency with areverse Fig. 1 and involves only two descriptions. This is the so-called

‘water-filling” strategy. Finally, we present experimental results ¢ of o channels and three receivers. If both descriptions are

which show the effectiveness of our filter banks in the low com- . )

plexity, low rate regime. received then the decoder can reconstruct the source at some
small distortion valueD, (the central distortion), but if either

one is lost, the decoder can still reconstruct the source at some

higher distortionD; or D, (thesidedistortions).

Fig. 1. The multiple description problem.

Index Terms—Filter bank design, integer-to-integer transforms,
multiple description (MD) coding, rate distortion functions, robust
source coding.

B. Information-Theoretic Performance Bounds

|. INTRODUCTION In a way analogous to classical rate-distortion problems in

A. The Problem of Multiple Description Source Coding source coding theory, in MD source coding one is also interested

ECENTLY, the problem of transmitting data over hetn finding a suitable MD rate-distortion region, defined as the set
I 2 erogeneous packet switched networks has receivRfuINtUpIes (&1, Kz, Dy, D1, D») for which there exist codes
considerable attention. Packet losses can be due to transmis® orr?gSRﬁ andr; achlevmr? avErage distortio3, Dy, Td
errors or congestion. If the network is able to provide preferentialF- di early, Wg can statebt att ﬁ r&?(f];gcgssag 0 ac r|]eve
treatment to some packets, then the use of multiresolution Bf distortionD, cannot be smaller t_ : (. 1) (R() s the
layered source coding systems is the obvious solution. But if tFée-dlstortlon function for the source); similar a_rguments apply
network cannot differentiate among packets, and if retransm o thetother_two_ cases, So we can state that a first bound for the
sions are not allowed (e.g., due to real-time delay constraints'\éP rate region 1
in multicast scenarios), then the source coding strategy should be R, > R(D)) 1)
different. Multiple description (MD) coding offers a potentially RID 5
attractive framework in which to develop coding algorithms for (D) @)
such scenarios. An MD coder represents an information source Ri + Ry 2 R(Dy). 3)
using multiple bit streams (descriptions). Each individual d‘f' - . : L
S . o L n general, it is not possible to achieve equality simultaneously
scription provides an approximation to the original message, an . . A o
. o . in the three equations since two individually good descriptions
multiple descriptions can refine each other, to produce a bet{gr

approximation than that attainable by anv sinale one alone nd to be similar to each other. Thus, the second description
P y anysing " will contribute very little to improve the quality of the first one.
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while Ozarow showed that this region is tight for the case &i. Contributions and Paper Organization

memoryless Gaussian sources and squared error distortionle1 this work, we consider sources with infinite memory,
[23]. Ahlswede [1] studied the case ob excess ratgwhen gnocifically, wide-sense stationary Gaussian sources and
there is equality in (3)), and Zhang and Berger [39] Cons'derﬁansider the classical MD scenario of two channels and three

theno excess marginal ratease (when there is equality in (1)’receivers. We present two new results: an MD rate-distortion

.(2))' Zhang and Berger also sh_owed by co unterexample ﬂpg ion for stationary Gaussian sources which is asymptotically
in the excess rate case the achievable region of EI Gamal

Cover is not tight [38]. More recently, Lindet al. [20] found % t at high rates (Theorem 1 of Section Il) and an algorithm

; or the design of optimal two-channel filter banks for MD
a rate region for memoryless sources and locally quadratic

distortion measure which is tight in the limit of small distortions0%in9 Of Gaussian sources (Theorem 2 of Section Ill). The
(high bit rate). Finally, Zamir [35], [36] extended the Shanno Iter banks are designed using an approach similar to the one

bounds [3] to the MD case and showed that for a Gaussi posed in the case of block transforms: we construct a first
source the outer bounds are asymptotically tight ilter bank to decorrelate the two input sequences and then we

use a second filter bank to efficiently recorrelate them. The
C. Code Constructions frequency responses of this second filter bank depend on the

Several efforts have also been made to design practical ’\}‘(ﬁal amount of available redundancy and on the allocation

coding systems. In [27], a design procedure for the constructid ategy of the redundancy over _frequency. In Theorem 2, it
g_shown that the optimal allocation of the redundancy over

of fixed-rate scalar quantizers was presented. In [29], that ) ; ) -
eguency is obtained using a reverse water-filling strategy.

sign procedure was extended to the entropy-constrained case. d handran have ind
is shown in [28] that at high rates, for the case of balanced de /N arecent paper [34], Yang and Ramchandran have indepen-

scriptions &, = R, = R) and Gaussian sources, the distortioﬂe”tly work_ed on the s_am_e problem of designi_ng filter banks
productDyD; of the entropy-constrained MD scalar quantizeie” MP Coding. The main difference between theirwork and the
(MDSQ) takes the forni(%)%‘“". Atthe same time, the MD ©N€ presented here in Section Il is that we hav_e moved the quan-
rate distortion bound (when put in distortion product form) bdlzation step before the transform and approximated the contin-
comesL2 %%, This is an important result because it shows th&0US trensform with a discrete one. Iq practical applications it
for the MDSQ both the side and the central distortion attain th& very important to put the quantization before a nonorthog-
optimal exponential rate of decappf~2"2%, D;~272R). The onal transform so that the square partition cells are maintained
only suboptimality of MDSQ at high rates is due to the use é¢€e, forinstance, [12], [14], [22], [32]). This different approach
a scalar quantizer which partitions the space into cubic regida@ds to a different formulation of the optimization problem and,
instead of an ideal vector quantizer that would optimally partid our case, to the analytical solution presented in Theorem 2,
tion the space into spheres. Various constructions of MD vecthich is not present in [34].
quantizers have been proposed [9], [11], [19], [30] and the MD In Section IV, we assess the performance of our system.
lattice quantizers of [30] do effectively close the gap betweaffe compare it against the ideal bounds, the MDTC [2] and
the performance of the entropy constrained MDSQ and the Mbe MD-DPCM system [18]. For this comparison we consider
rate-distortion bound. two possible scenarios. The first one is high rates and infinite
A rather different approach pioneered by Waetgal. [22], delay/complexity. This first comparison is interesting because
[33] and then extended by Goyal and Koeaic[13] consists it is under these hypotheses that the optimization problem is
of applying a suitable block-wise transform to the input vectatated and solved both in [2] and in this paper. The second
before coding to obtain the MD property. This approach is usgeenario is based on practical requirements of low rates and
ally called MD transform coding. The basicidea s to decorrelaf@ite delay/complexity. In this regime, performance of the
the vector components and then to introduce again correlatigystems considered will not be predicted well by the theory, and

between coefficients, but in a known and controlled manner, fifere is much to be learned by means of numerical simulations.
that erased coefficients can be statistically estimated from thage conclude in Section V.

received. Techniques based on overcomplete frame expansions
have been proposed in [6], [15], [21]. [l. AsYMPTOTIC MD RATE REGION

Most of the previous work on MD coding focuses on the | ) ith vari
case of memoryless sources or sources with finite memory. Inf " @ Memoryless Gaussian source with variarfce@zarow

[18], Ingle et al. consider the problem of designing differenI2_3] gave an explicit characte_rization_ of the set of achievable
tial pulse-code modulation (DPCM) systems for MD coding dfiStortions Oo, Dy, D) for a given pair of ratest,, 1t,:

sources with memory. Batllet al. considered a similar problem D >o2.9- 2R (4)

and proposed a solution that combines the use of an orthogonal b=

block transform and of the MDS i Dy > g2 . 27 2R (5)
Q [2]. As in the memoryless Y (Rt R)

case, this system has some good asymptotic properties. At low Dy > -2 2 - ©)

rates, however, except for some practical results obtained in the - 1_ ( VT — \/Z)2

context of still image coding [24], much less is known. Note

that Batllo and Vaishampayan use the term Multiple DescriptiQpere
Transform Coder (MDTC) to refer to this system. From now on,
we will also use that name to refer to their system. II=(1-Dy/o?)(1 = Dy/0?)
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and where
A = (Dy Dy Jo*) — 2 2(tRs). (VDi/Do=1)(VD2/Ds 1) - 1
The inverse of these functions are the following [20], [23]: PHE == VD1 D2/D3
1 o? and
Ry > = log | — 7
250057 @

DD
lim Dy = 172

1 2 T — 00 - D D :
Rz g os () ®) L+ D2
2 Now, based on these preliminary results we can state the fol-

1 2 1 2 lowing theorem.
R1+R22§10g<0—>+§10g<0—>+6 ) g

Dy Dy Theorem 1:1In the limit of small distortions (i.e.Dg, D1,
where$ is defined by Dy — 0), the asymptotic multiple description rate region for a
L o (1 Do < pmax stationary Gaussian source and mean square error (MSE) dis-
6= { 2 198 (l—pz) ’ 0 =" (10) tortions is given by the following equations:
0, Dy > Dy 1 (™ [S)
where 2 /777 tog < Dy ) dw
DD, 1 / " S(w)
Dy = 11 Ry > — log d
0 T Dy +Dy— (DiD2/o?) (11) 2= ) 8 < D, J ™
and R1+R224—</ 10g<%> dw
P \/Hﬁ%"‘r}/_ \/HG(Q) " - T 15( )
=— w
(1—60)\/6162 + / 10g <D—> dw—|—26HR>
—7 2
1= - @lla -~ w)le )+ wace - ol hereS(w)isth tral density of the Gaussi
M=(1—e)(1—e) whereS(w) is the power spectral density of the Gaussian source.

5 ) Proof: Let{X;,t = 0, &1, ...} be a discrete-time sta-
¢ =Difo (1=0,1,2). tionary Gaussian source. We begin by considefhguccessive
Notice thats depends on the three distortiodsy D, D) and €lements of this source and by calculating the asymptotic MD
on the variance? (see (10)) However, by rearranging(9), onéate region of thisV-sequence. Calb y the NV x NV correla-
can see the relationship betwe®and the ratest; andR, and tion matrix related to anyV successive components oX, }.
interprets as the excess rate that is used to reduce the cenfpélice the source is stationadyy is a symmetric Toeplitz ma-

distortion given the two side distortions or trix. Apply a Karhunen-Loeve transform (KLT) to th¥-se-
1 o2 1 o2 guence to get uncorrelated (and so independent) components.
6=R; — = log <—) + Ry — = log <—) . Because the KLT is unitary and invertible and we are consid-
2 Dy 2 = ering MSE as our distortion measure, the problem of finding the
Now, if 6 = 0 then MD rate region in the new coordinates is identical to that in the
1 o2 1 o2 original ones, except that the new components are statistically
R, = 5108‘ <D_1> and R, = 5 log <D_2> . independent. Calt” = (y1, ¥2, - .., yn) the N-dimensional

vector with independent components obtained after applying the

ThIS meaps th?lt all the rate is gsed to.m|n|m|ze thensafie dlst%-__l_ t0 the original N-sequence and can[), Y., Y, the appro-
tions and in this cas®, equals its maximum value)g*>>). If : . . N
iate reproducing vectors at the three receivers. Moregyegr,

6 > 0 it means that part of the rate is used to reduce the cent\?él represent thath component of the reproducing vectr
distortion which becomes smaller th&l*>*. In particular,Dg P P P 9 ’

A . 20k =0,1,2andY” is a vector with the firsi elements oft".
decreases fromv;*** to zero a$ increases from zero to infinity. .
o . . Extending the EI Gamal-Cover results [10] to the vector case,
This is why$ is also called the excess marginal rate [35], [39]. A
. . N e have that the MD rate region is given by
Consider now the high rate situation, namely, the case wheré
the three distortionsijy, D, D-) are very small compared to R, > 1 minI(Y; Yl) (13)

the variance? or, in other words, the case where the three ratios

Dy/o?, D, /a?, Dy /a? go to zero. In this situation, the excess 1 . 5
marginal rates (see (10)) and the maximum central distortion Ry 2 - minl (Y; YQ) (14)
Dg»* (see (11)) do not depend on the variance of the source 1 A o
anymore. In particular, we have [20] Byt By 2 Inin(I(Y; Yo, Y1, Y2)+ I(Yl; Yé)) (15)
6ur(Do, D1, Ds) 2 lim 8(c?, Do, Dy, D5) where the minima are over all the probability density functions
e p(Y, Yo, Y1, Y2) satisfying

2 lim 8(o%, ADo, AD1, AD,)

1 1
= —log <42> (12) E
2 e

N

1 ~

N Z(yv - ym)Q] < Dy, k=0,1,2.
i=1
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First notice that the termi(Y’; YO, Yl, YA'Q) +I(Y1; YA'Q) in (15) where the minimum is over all the distortiod3,; such that

can be equivalently expressed as Ai Zf;l D,; < D,. Consider now (15) and its alternative rep-
. o resentation in (18). Consider, first, the tefitt”; Yo, Y7, Y2);
I(Y; Yo, Y1, YQ) +I(Y1; YQ) (16)  following the same procedure as in (19)—(23) we have
1{vet 5 (501 (5) - (5.5 .
17 N oA
(17) = h(y) — h(Y[Yo, ¥i, 1) (26)

I(Y; Yy, Vi, YQ)JF I(Y; Y1)+I(Y; YQ)—H(Yl YQ)

N N
(18) =3 ww) -3 w(w
=1 =1

where in the last equality we have used the fact #hatt, are

Yl Yo, Vi, YQ) 27)

n '~ N N
deterministic function ot” and thusH (Y;,) = I(Y; Y3), k = N Nh A A
1, 2. In the rest of the proof we will use (18) rather than (16). = ; hw:) ; Mildos, di, 1) (28)
Now, the first thing we want to show is that the MD rate region of N
this V-vector reduces to the sum of the MD rate region of each = Z I(ys; o, s, Gai) (29)
component oft” and that the problem of minimizing (13)—(15) izl

reduces to the problem of finding the right allocation strategw

of the ratesi;, R, to the different components. Consider, first" here inequality in (28) follows from the fact that conditioning

(13), it results [7] reduces entropy and equality is achieved if
N
I(Y5 Yl) =h(Y) - h(Y‘Yl) (19) p(YYo, Y1, Y2) = Hp(yi@on s §2i)-

N N i=1
=> My)—Y_ h (yz Yy, Yl) (20)  For the second term of (18), we obtain
=1

=1
2 EA: h(y:) — EA: h(yilyi) (1) I(Y; 1:1> ’ I(Y; E);H(YM Y2) >
v - >3 s 1)+ L 620) - H(Y1, Y2)  (3D)
= ; (yis i) (22) - = N
N \2 > Zl(yi§ U14) + Zf(yi; Uo2i) — ZH(?)M, 92:) (32)
> ; 5 log < D;) (23) =1 =t =t

where inequality in (31) follows from (19)—(22) and we can

where (20) follows from the independence of the compongnts@chieve equality by choosing

and from the chain rule for entropy. The inequality in (21) fol- N

IOW§ from the f_act that conqlitioninAg reducei: entropy and we can p(Y|¥3) = Hp(yimki, fork=1, 2.
achieve equality by choosingY Y1) = TI;_; p(wil#1:). The ey

last inequality follows from the expression of the rate distortio? last i litv in (32) foll f the fact that
function of a Gaussian source and equality can be achieved lﬂ? ast inequality in (32) follows from the fact tha

choosing eacly;; ~ N(0, A? — Dy;), where)? is the variance o N
of theith component and; = E[(y; — 41,)?] is the distortion H(Y;, Ys) < ZH@”’ F2i)
related to that component. Hence, from (19)—(23), we get that i=1

the minimization in (13) reduces to [7] and equality is achieved if

N
1 1 A2 N
> — mi = log G Sy Lo
R > N mm; 5 log <D1i> (24) p(¥1, Ya) = Hp(yli’ i)
=1
where the minimum, now, is over all the possible distortibns Thus, combining the results from (26)—(29) and (30)~(32), we
such that have
1 & 1 & 5B 5 5 5o
a2 = L ‘ . ) v\
Bl 2(7, i) ] == 2 Dy <D, 1(Y3¥o, V0. ¥ )+ (VY2 )+ 1(v3Y2) - H(Y1,Y2) (33)
i= = N

Similar arguments apply to (14) and that minimization reduces > »_(I(vi; Goi» s> 2:) + (433 G1s)
=1 N ~ ~
to + L(yi; G2:) — H(J1is G2:)) (34)

N N

1 1 A2 1 A2 1 A2
Ry > — mi — log ‘ 25 > — log C — log t 6; 35
Q_len;2og<D2i> (25) _;208<D >+208<D2i>+ i (35)

1z
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where the last inequality comes from the Ozarow equations and 9J _ St +y =0 (44)
equality can be achieved by a correct choice of each trigie ( 9Dy 2N Dy
Y14, ¥2:)- This choice depends on the three distortiéhs, D1;, and

D,; and for an explicit characterization refer to [23]. Equations

(33)—(35) show that minimization in (15) reduces to Dy =C =D (45)
~ 32 Dy =Cy = Do (46)
: 1 7 . .
B+ Ry > mln<ﬁ Z 10g<D1‘> whereC; andC; are constants. Hence, the optimum allocation
i=1 ¢

of the rates to the various components results in equal distortion
1 22 1 for each component [3], [7]. This is due to the fact that the slopes
ToN 210g<—z> + N ‘5i> (36)  of the curves (40), (41) are independent of the variances. This
argument is not valid for the third functional (42) since the slope
where the minimum, now, is over all the distortioPs;, D;;, ©Of ¢ depends on the variance. However, in the limit of small
Ds; such that: >°¥ Dy, < Dy, k = 0,1, 2. Now, com-  distortions,5 becomes independent of the variaiige— 6y r)
bining (24), (25), and (36), we can see that the MD rate regi@md the minimization strategy for the third functional becomes
of Y reduces, indeed, to the sum of the MD rate region of eaite same as for the first two functionals (i2y; = D1, Dz; =

component and that the original minimization problem reducé&, Do; = Do, ¢ = 1, 2, ..., N). Then the MD rate region
to becomes
N
N 1 22
1 A7 ) Ri> o= log | -
Ri> _min =) log[ = 37 1= 08
b= %27 Dy;=Dy 2N; 8<D1i ( ) 2N =1 Dl
N
N 1 A2
1 A7 Ry>=—Y o < i )
Ry> _min =) log{ = 38 2= 8
e + > Doi=Ds 2N; 8<D27‘,> (38) 2N Do
N )\2 1 N )\2 1 N )\2
1 : et i il o
Ry + Ry > min —Zlog Z R1+R222N 2108 <D1> +2N210g <D2>+6HR.
~ 27. Doi=Do \ 2N i—1 Dy; i=1 i=1
2, Pu=n Notice that, since the Ozarow’s MD rate region is achievable
¥ >, D2i=D2

and tight [23], then also our MD rate region is (asymptotically)
N < 9 ) 1 ) achievable and tight. Indeed, we have seen that the MD rate-dis-
+—= 6

tortion functions (13)—(15) of the vectaf are lower-bounded
by the sum of the MD rate-distortion functions of each compo-
(39) nenty; and this lower bound is achieved by coding each com-

) ponent independently. Now, since the direct and converse part
Thus, the problem now is to understand how each compon@fthe Ozarow theorem apply to each component, the minima.in

ties in (37)—(39) or, stated in a different way, the problem is {@present a tight region.

understand how the ratég , &2, should be allocated to the var-  Now, using the result of the Toeplitz distribution theorem [3],

ious components to minimize (37)—(39). Using Lagrange Myt 6] (see the Appendix), we can go to the limit of infini¢and
tipliers we can construct the following three functionals: find the MD rate region of the complete SOUrc&, }

N x
1 5 A2 PR ‘<5(w)>d
S = 2N 7 o <Dli> tn Z Dui (40) Yar ) o8 D, *
~ ’ 1 7 S
1 X 22 Ry > ym log <#) dw
— - K . T
J2 = N ;21 log <E) + 1 % Dy; (41)

—T 2
: L S
> log | —~
A) 1 & <)\2> R1+R2‘47r</_wog’<D1>dw
g\ 7 n

N
1
,]3 = — 108 < L
2N ; D Dy + / log <%) dw + 26;”,) . g
— 2

2
1
A similar result in terms of the entropy rate power of the
L ) , : . Gaussian source can be found in [35], [36]. In these papers,
The problem ofm|n|m|_zm_g theflrsttvyo funcUona_Is is equw-Zamir extended the Shannon boun[ds][Sg to] the MD cagepand
alent to the problem of finding the optimal allocation strateg@hen showed that the outer bound is asymptotically tight. His
for the single description case. Differentiating with respect to j

1=1

+ % 61 + 19 Z DOi + 11 Z Dli + 1 Z D2i~ (42)

Dy; andD,; and setting equal to zero, we have re_sults are valid either for a memoryless source or for a source
with memory.
aJ; 1 1 Theorem 1 shows that at high rates the single description al-

— 41 =0 (43)

aD;; 2N Dy, location strategy is also optimal in the MD case. That is because
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y1[n]
Hp (w) 4@ Q |—=Channel 1 GO((JJ)

:

x[n] X[n]

y2[n]
Hw (2 o {2 6@

Fig. 2. Two-channel filter bank.

x[n] Q_ZLXI (n] yi[n]
N\

R® | H@w) | RO
y2(n]

T H(12)

X,[n]

Fig. 3. The polyphase representation of the analysis stage.

the slopes of the three functionals (40)—(42) are independenhigh rates the difference between the discrete and the continuous
the source. At low rates, this last assumption is not valid. Theansforms is small, our analysis will be based on properties of
functional (42) has a slope dependent on the input source vahie continuous transform.

ance and, in general, itis not minimized with a single description Now consider again Fig. 3. The input—output relation can be
allocation strategy. So we can state the following corollary. expressed in matrix notation introducing the analysis polyphase

Corollary 1: Under a high rate assumption, and for stalatrix H(w)
)

tionary Gaussian sources, the single description rate allocation /Y7(w Hyj(w) Hipp(w)\ 7 X1(w)
strategy is also optimal in the MD case. At low rates it is, in Ya(w) - Hy(w) Hap(w) Xo(w) /) (47)

general, suboptimal. )
Call R, (w) the2x 2 polyphase power spectral density (p.s.d.)

matrix of the input process. Likewis&, (w) is the p.s.d. matrix
. OPTIMAL TWO-CHANNEL FILTER BANKS FORMD CODING  of the outputs. The system response has the following form:

A. Problem Formulation and Notation Ry(w) = H(w)Ro () H () (48)

Consider the classical two-channel filter bank scheme shown -
in Fig. 2. Here, the input:[n] is assumed to be a stationary?VhereH *(w) denotes the Hermitian transposefbfw). _
Gaussian random process with known statistics and is fed/"e Synthesis part of the system can be analyzed in a
through an analysis filter bank. The two output sequences @ilar fashion. Recall that, given the analysis matrix, the
then separately quantized and sent over two different erasgy@thesis polyphase matr&(w) is uniquely defined (up to a
channels. We suppose that the channels are independent, RRag€ factor). In fact7(«w) must be such that the condition
they have the same erasure probability and fhat= R, For G(w)H(w) = I'is satisfied [31]. o
convenience, we will formulate our problem in the polyphase NOW, assume that the target central distortioisand that
domain [26], [31]. In this case, the analysis stage can B@th channels are coded independently. Singe], y.[n] are
equivalently represented by the block scheme shown in Fig. g‘gaﬂona_\ry Gaussian sources and quantization is fine, the min-
First we move the quantization step before the transform affgum bit rates necessary to scalar code the two sequences is [3]

approximate_: our continuous polyphasetra_nsform with adiscrete D 1 {1 ) Ry, (w) J 1 o (7€
one? The discrete transform can be obtained by factoring th&1(Do) o |2 7 p, T35 08 ¢
continuous one into a product of lifting steps and then sequen- 1 /1 R, () 1 re
tially rounding all these intermediate factors [4], [8]. It can beR2(Dg) = %/ 5 log y;);o dw + 3 log, (F) . (49)

shown that the error due to this approximation can be bounded
and that it goes to zero at high rates [12], [14]. The reason whyln case we do not use any filter decomposition, the bit rate
we use this kind of structure is that if the quantization is penecessary to get the same central distorfignis [3]

formed before the transform, then the square partition cells are 1 /77 S(w)

maintained. This enables the use of nonorthogonal transformsR*(Dy) = o D
0

dw + % log, (%6) (50)

1
3 log

—_—T

without increasing the quantization error. The importance of
performing quantization before the transform in the MD casehereS(w) is the p.s.d. of the input process. We call redundancy
was pointed out for the first time in [22] (see also [32]). Since #lhe difference rate between these two cases

IThis last hypothesis, although reasonable, is not strictly necessary; but it _ Ry (DO) + R2(D0) _ R*(D )
simplifies the solution. p= 2 0

2By continuous transform we mean a generic linear operaty(if ). The 1 T R R
discrete transform is a perfectly invertible operator that converts quantized se- —_ = ~ log Y11 (w) Y22 (w) (51)
quences into quantized sequences [4], [17], [37]. dr J_ .2 S?%(w)
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x[n] X,[n] y, [n] — y,[n] x1[n]
@ : Channel 1 ! m X[l‘l]
A L 1 ¢2)
H(w) H (0)
@ Channel 2 -
%, [n] ¥, [n] v, M) xz[ﬂ]

Fig. 4. The complete MD system in the polyphase domain.

Note that (49) holds because the transform is performed after #zame erasure probability, the expected distortion due to erasure
guantization. If the transform were performed before the quangside distortion) is

zation, the shape of the quantization cells would be affected and

one should also consider this effect to compute the correct rates. D= —(Dl + Ds). (58)

This is one of the limitations of the approach taken in [34]. ote that in our formulation we have only considered the dis-

Now consider the case when one channel (i.e., channel 1
ortion due to erasure and have neglected the one due to quanti-
cut off andy; [n] must be estimated from the received sequence

; R ) ; oL~ Zation, since at high rates, it is much smaller.
y2[n]. The optimal estimation is obtained by Wiener filtering Our target is to find a perfect reconstruction filter bank which

minimizes the side distortioP. The perfect reconstruction con-
R,,,(w) dition is realized by the constraidet[H (w)] = 1.2 The design
. o of the filter bank is also constrained by the redundancy through
Call (w) the error in predicting’; () from Y(w) (48) and (51). Thus, our optimization problem is to find a perfect

n(w) = Yi(w) — Y1 (w). (53) recons_tructio_n filter bank which minimizes the side distortion

for a given, fixed redundancy.

Since we have used a nonorthogonal transform, we must return
to the original space in order to compute the distortion (MSE. Optimal Solution

Vi) = By ) (52)

distortion in our case); therefore (see also Fig. 4) As a first step, we decompose the matfikw) into the
X1 (w) G(w) G\ [ Yi(w) +7(w) product of two matriced/(w) andT(w)
<X2(w) ) B <G21(w) Gaz(w) ) < Yo (w) ) H(w) =T(w)M(w). (59)
Xi(w) G (w)n(w) M(w) is a unitary decorrelating matrix that diagonalizes the
= <X2(w)> <G21(w)77(w)> (54) input covariance matris®,.(w). Thus,
and Ry(w) = M(w)A(w)M*(w)
Gri(w 2 where A(w) is a diagonal matrix which contains the spectral
‘ X(w)— H <G ) (55) eigenvalues of?,(w)
21
o o | M@ 0
Considering the fact that the errgiis still a Gaussian process Aw) = [ 0 2 } . (60)
with p.s.d. 2()
) For a stationary input process, the decorrelating matrix can be
R, (w)— | Ryps (w)] found analytically and has the following form [25]:
o Ryzz (w) \/Q ejw/Q 1
and using Parseval’s relation we obtain M(w) = 9 [ -1 G—jw/2:| (61)
Dy = E[||z[n] — #[n]||%] the filter bank related td4(w) is usually called principal com-
1T (~1 . ponent filter bank [25]. Now, this factorization does not reduce
=5 | 3(Gnw)Gau(w) + G (w)Gu(w)) the generality of the solution, sindd(w) is a unitary invertible
o IR, (w)[? matrix independent op and we are considering square error
. <Ryn(w) — %> dw (56) distortions. So it is enough to solve the simpler problem of op-
Rys (W) timally designing the matri’(w) for the two input sequences
and, finally, using the biorthogonal relations, we can express théh p.s.d. matrixA(w). Then, the final solution will be repre-
distortion as a function of the analysis filters sented by the product between this matrix and the decorrelating
| matrix M (w). From now on, we will always assume that the
Dy = _/ (H3,(w)Hay(w) + Hiy(w)Hoz(w)) two sequences$zi[n], z2[n]) have already been decorrelated
A J_x and are represented by the diagonal p.s.d. matfix). Notice

det[ Ry (w)] . . . o
=) dw. (57) 3Strictly speaking, the perfect reconstruction condition is satisfied if and only
Ry,, (w) if det[H (w)] # 0 on the unit circle. However, a factorization into lifting steps
. . . . . is possible only iflet[H (w)] is @ monomial [8]. Since the side distortion (57)
Likewise, we can obtain an expression for the distortion does not depend on the value of the determinant, we can assume, without loss
associated with the loss g§[»]. Since the two channels have thef generality,det[H (w)] = 1.
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that these two sequences are still a realization of a stationady, i = 1, ..., N, the variances related to the secaNese-

Gaussian process. quenceg Yz ). Sinced; y andeg,n are Hermitian—Toeplitz ma-
To develop our formulation we need to briefly review the retrices the result is (see the Appendix) that

sults presented in [13], [14]. Here, Goyel al. focus on the )

problem of designing an optimal block transform to transmit b1 < M < A Vi (65)

two Gaussian decorrelated variables over two independent efad that

sure channelsIn the case the two channels have the same era-

sure probability and the two components are coded at the same 62 < A3 < A, Vi (66)

rate(R; = Ry), they show that the optimal MD transform, also ) .
callegd éorrelg)ting t?lansform is P whereA; andé;, j = 1, 2, are the essential suprema and the es-

) sential infima of the power spectral densitiegw) and\3(w).
r_| % % (62) Equations (65) and (66) imply thag, > \3,,i=1,..., N,
% since we assumed] > A,.
Now, consider the generith couple of elementyy;, ¥2;).
We can apply the results of [13] to this pair and say that if we

—a

where the value of depends on the redundaney

op) 63 are allowed to use a redundangythen the optimal correlating
20, (220 — /2% — 1) (63)  transform for that pair is
1
&% andg3 are the variances of the two Gaussian components, a; ‘
1 2 2a;
with the usual assumption thaf > o3. Finally, the side dis- T = 1 (67)
tortion is given by —a; %4
2
91 1 2 2 wherea; is given b
= — - o] —05). 64 i 1S9 y
2 4.220 (220 — /2% — 1) (o1 = o3) 64) ;
21
We can now state the following theorem: \/2)\1i (220 — /2% — 1) (68)

Theorem 2:Assume thatp > 0 and that the two p.s.d.
A2(w), A3(w) of the two decorrelated input sequencasn),
x2[n] are such thad; > Ay, whereé; is the essential infimum L )\_i _ 1 (A2, — A2). (69)
of A\¥(w) and A, is the essential supremum &§(w). Then the T2 4.2 (22 e 1) T TR
optimal analysis filters for MD coding of,[n] andz2[n] are
represented by the following polyphase matrix:

and that the side distortion is

However, we want to minimize the global side distortion

1
1 D = — D
T(w) _ [ a(w) QaEw)] N 27: ® (70)
—Uw) m@ given a global redundancy budget
where 1 Z | -
a(w) _ )\2((4}) p= N - Pi-
2\ (w) (22”(“’) — V2irt) — 1) This is a typical problem of constrained minimization, so we
and define a new cost functioh which combines the distortion and
the redundancy through a positive Lagrange multiplier
p(w) = p+ % log(M(w) - A%iw» ) L=Dtwp
~ 3 log( A3 (w) — A3(w)) dw. L; =D; +vp;, i=1,2,..., N. (72)

Proof: Consider onlyN consecutive elements of the ﬁrst':'noIIng aminimum of. amo_u_nts to f|r_u_1||ng r.“'”'”?afor eadh .
(because the costs are additive). Writing distortion as a function

channel sequence; [n], and N consecutive elements of the : s
second channel sequeneg[n] which are located at the sameOf the redundancy; (p:) and taking the derivative we get

temporal interval. Callp; v and ¢. the two N x N corre- oL; 0D;
sponding correlation matrices. Apply a KLT to each of the two dp;  Op;
N-sequences to getindependent components and Yigtmand
Yon the two N-sequences after the transformation. Cel,
i1 =1, ..., N,thevariancesrelated to thé-sequencé’ 5 and

+v=0. (73)

Thus, for a solution to be optimal, the set of chosen redundancy
p; has to correspond to constant-slope points on their respec-
tive distortion—redundancy curves. Uniqueness follows from the
4actually, they consider also the case of larger vectors. For the two-chan@nvexity of these curves and from the use of the Kuhn—Tucker
case their work is an extension of the results presented in [22], [33]. conditions when necessary [5]. A constant-slope solution is ob-
St is interesting to notice that if the Gaussian source has a circularly SY®&ined for any fixed value gf. To enforce the constraint (71) ex-
metric probability density, i.eq, = o2, then the distortion is independent of .
aetly, one has to search over all the values oftil the budget

p. Inthis case, the side distortion cannot be reduced with the addition of red > . e
dancy, so the approach based on correlating transforms is useless. is met. However, if we suppose thatis sufficiently large then
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it is possible to give a closed form for the allocation problem. lwhere

fact, it follows that o)
2{Ww
aD; In2(7\2, — %) a(w) = J . (83)
= — d d 2p(w) _ 4p(w) _
oo -2 (Vi 1) 2y () (20 = VZTET )
~ -2 (AL = A3)27% = —w. (74) o . . -
4 When the approximation (74) is not verified, namely, when at
The constant-slope solution forces the redundancies to be of lds&st one of the two hypothesgss 0 andé; > As is not sat-
following form: isfied, the optimal allocation of the redundancy over frequency
1 ) ) can only be found numerically. This means that, for any fixed
pi=a+ 1 log(Ay; — A3;)- (75) v, onehasto numerically solve (74) and then has to search over

all the values of/ until the constraint (71) is met.
Consider, now, (80) and (81). They express the side distortion
Z pi=Na+ 3 Z log(A2, — A%) = Np  (76) infunction of the spectral distribution of the redundapche
P P side distortion is maximum when we are not allowed to allocate

Using the redundancy constraint (71)

we find any redundancy over the frequency and its maximum value is
1 I 2
X=PT AN Z log(Af; — A3) (77) D= Sr /_W()‘l(w) + A3 (w)) dw. (84)
and finally Its minimum value occurs when we can allocate an infinite
) ) amount of redundancy over the frequency and it is equal to
pi =p+ = log(A; = A3) — — log(Al; — A3;). (78) 1 [™
4 4N Z D= 4—/ A (w) do. (85)
g —7

The approximation in (74) holds j§; is sufficiently large. Its ) ] o

value depends on the total redundancy buggatd on the dif- This value represents tisgstematic errodue to the estimation
ference\?, — A\2,. The difference\, — A2, influences the slope of one subsequence with the other one and cannot be eliminated
of the distortion—redundancy curves (74). Now, the global di§ven at infinite redundancy. The systematic error typically oc-
tortion is minimized when the set of chosen redundanayor-  €urs in MD systems based on correlating transforms [14], [32].
responds to constant slope pointsAff — A2, = 0, the slope This is in contrast with the performance of other systems (i.e.,
of theith curve is zero and the optimal solution is always fountDTC), where at high rates both side and central distortions
imposing the Kuhn—Tucker conditiop; = 0. For this reason, decrease with the rate. Thus, this result gives us a first insight
the approximation in (74) holds only when both the conditiorAPout the performance of the filter bank system.

p > 0andé, > A, are verified ¢ > A implies )\51‘2? ASi» Corollary 2: Thefilter bank system is not useful at high rates
V). In general, we can say that the differendg — A3, influ-  gjnce, independently of the amount of redundancy allocated, the

ences the allocation strategy of the redundancy. The redundaggle distortion has a constant factor (the systematic error) that
is mainly allocated in the region where this difference is highefgnnot be eliminated.

Now we can letV go to infinity and find, in this way, the
optimal spectral distribution of the redundancy C. Approximate Finite Impulse Response (FIR) Solutions

p(w) = p+ = log(\2(w) — A2(w)) Usually, the filters obtained with the optimization algorithm
4 of the previous section are of infinite length. However, in some

_ 2i " i log(A2(w) — A2(w)) dw. (79) @applications it is important to approximate them with FIR fil-
(I - ters. Let us calH ;(w) the polyphase matrix related to the FIR
Oncep(w) is known, we can obtain the expression of the siddter bank andD; the corresponding side distortion obtained
distortion D with this set of filters. ClearlyD; > D, whereD is the ideal
” side distortion given by (58), since the best performance is usu-
D= 1 D(w) dw (80) ally achieved with infinite length filters. Now, the problem is to
2m J_x design a perfect reconstruction FIR filter bank that minimizes
where the performance gap; — D for each fixed redundancy.
A2(w) 1 We solve this problem numerically by running a constrained
D(w) =22 - minimization algorithm using a gradient descendent approach.
2 4 - 220(w) (22/’(@ — V29 —1 ) The convex function to minimize i§D — D/||?, while the con-
(W) = X)) (81) straints are the perfect reconstruction conditlet{ 4 ; (w)] =1
! 2 and the maximum allowed redundaney
and the expression of the polyphase maffix): Recall that given an FIR analysis filter bank, perfect recon-
ow) i struction with FIR filters is possible if and only dfet[H (w)] is
2a(w) (82) @ monomial [31]. So, once we have designed FIR analysis filters
—aw) % with the constraindet[H ;(w)] = 1, we know that it is possible
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to reconstruct the signal with FIR synthesis filters. These syresponses is exactly the same, the two filters differ only for the
thesis filters are obtained in the usual way phase response. This is due to the presence of the principal com-
e ponentfilter bank given by/(w) and to the constraidt; = R;
Go(w) =" Hi(w +m) which forces the matrig’(w) to have the shape given by (82).
Gi(w) =—¢’“Ho(w + ). Moreover, notice that at high redundancies the two filters tend to

Finally, recall that once the FIR filter bank is obtained, it cafi |oW-Pass. In the case af= 0.9, the Gauss-Markov process
always be factored into a finite number of lifting steps. Thedg & low-pass process; thus, the frequency responses of the two

steps can be sequentially rounded and, in this way, one can BE"S ténd to preserve the frequency region where the p.s.d. of
tain the discrete version of the continuous transform. the input process is mostly concentrated. This is valid in gen-
eral, that is, at high redundancies the analysis filters better pre-

D. Application to a Gauss—Markov Process serve the region where most of the p.s.d. of the input process is
To conclude this section, we apply our filter design tec c__oncentrated._ It is also of interest to note that, at low redl_md_an-

' cies, the two filter responses do not tend to be that of a principal

nigues to a Gaussian source and analyze the filter responses. ) . . )
. component filter bank, that is an ideal low-pass and an ideal
We consider a Gauss—Markov sourde] = az[n—1]4+w(n],

where the regression coefficienthas magnitude less than high-pass filter. This is because, if quantization is performed be-

. : : . fgre the transform, the principal component filter bank does not
and wherew[n] is a zero mean, unit variance, independent an : . . .
represent the only solution that gives minimum coding rates.

identically distributed (i.i.d.) Gaussian source. The p.s.d. of thﬁ]e same phenomenon happens in the block transform case
process is where the KLT does not represent the only transform that gives
. 1 (86) minimum rates if quantization is performed before the trans-
1= aemiw)2” form [12], [13]. Thus, this additional degree of freedom makes
. . , . it possible to have a filter bank (or a block transform [13]) that
N.OW' tg]e Eolyph(?se rr;a:]rlﬂ(w)i;f the pﬁurr]nal f||tg;1k\)/;ank IS achieves, at the same time, minimum coding rates and balanced
(i:]_|r\]/_en yt edpro uc;t Okt ematrd (.w) W't tsmgtl” T(wd). , rates. This is the solution that we have at low redundancies.
T IS secon done IS nownh and 1s gllve.n y (I ): foh esign Finally, in Fig. 6 we show the frequency response of the two
(w) we need to compute the spectral eigenvalues of the inifiy analysis filters obtained with the minimization algorithm
p.s.d. matrix. First notice that the two subsequences obtaingd oo in Section Ill-C. The filters are all of lengghlt is
b)_/ downsamplln_gzs ] are S.t'” Gauss—MarkOQV Processes, b hteresting to compare these frequency responses with the ones
W'.th. th?éegre§3|on coefficient lreple:jcsd bya "‘_‘r_"(jj tge ""d,' in Fig. 5. In the FIR case, the amplitude responses of the two
ongina .ahussmn soura&[ngl replace y2a Eew - h aussiajiers are not equal, but they tend to be close to each others at
source }Nollt £er1o rr;earrl]an variance- ”. Hence, t ebpower high redundancies. Moreover, in the high-redundancy region,
spectral densities for these two processes are given by the two frequency responses tend to be low-pass as in the ideal

14+a? case.
“ficatep  ©)

Sa(w)

lel(w) = Rm??(w)
IV. PERFORMANCEANALYSIS

The cross p.s.dR?,12(w) is given by
(—jeo) In order to assess the performance of the filter bank proposed
o (]_ + el7iw ) . . K . . ..
Ru12(w) = ————— Ru11(w) (88) inthe previous sectlon, we compare it with the asymptotic ideal
I+ bounds found in Section Il and with other two systems: the MD
with R, (w) = R, ,(w). Finally, the p.s.d. matrix after decor-transform coder [2] and the MD-DPCM system [18]. In the next
relation is shown in (89) at the bottom of the page. Observe thsatbsection, we briefly review these two systems. In the simula-
the two spectral eigenvalues are equal only édnd, of course, tions, we consider two different Gaussian input sources: a clas-
at —). As previously stated, at the points closest to the freical Gauss—Markov source and a low-pass Gaussian source ob-
quency values wher€ (w) = A\3(w) itis not possible to use the tained as illustrated in Fig. 7, wherg [n] andz2[n] are two
closed-form (79) even in the high redundancy hypothesis. S$6.d. Gaussian sources with variancgs o3, andG(w) is an
for the Gauss—Markov source(w) (and, consequentiif(w)) ideal low-pass filter. Moreover, we consider two different sce-
can only be found numerically. narios: high rate, infinite delay/complexity and low rate, finite
In Fig. 5, we show the frequency responses of the two andelay/complexity. In the first scenario, the analysis and the re-
ysis filters as a function of the redundancy for the case 0.9.  sults presented in the first part of this paper are valid. The second
Itis interesting to notice that the amplitude of the two frequenayore realistic simulation is important, because we do not have

2 cos(w/2)
Ron(w) [ 14+ ——5— 0
Alw) = < (1+0%) ) . (89)
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Fig. 5. Frequency response of the analysis filters in function of the redungancy

clear theoretical answers on the behavior of the considered sysd a set of entropy-constrained MDSQ. Recall that an MDSQ
tems in this particular context. produces a pair of indexes for each input scalar sample. The be-
havior of an MDSQ is characterized by two elements: the rate
. at which it operates and the strategy in the assignment of the
A. Other MD Coding Systems two output indexes. This second element defines the tradeoff
The MDTC [2] is illustrated in Fig. 8. Itis represented by twdetween side and central distortion. That is, it defines if the in-
main elements: a linear transform which turns out to be a Kldexes are assigned in a way to mainly minimize the central or the
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Fig. 6. Frequency response of the analysis FIR filters in function of the redungancy

x1[n]

X,[n]

Fig. 7. A low-pass Gaussian sourdg(w) is an ideal low-pass filter and
x1[n], x2[n] are two i.i.d. Gaussian sources.

G(o)

yin]

©

side distortion. The system works in the following way: it takes

a block of N consecutive elements of the input sequenfed

and applies a KLT to them. Then each of the decorrelated com-
ponent is encoded with a different entropy-constrained MDSQ
and the pair of indexes produced by the MDSQ are transmitted
over two separate channels. The resultis that in case of Gaussian
input sources and at high rates optimal performance is achieved
if the index assignment strategy is the same for each MDSQ



2048 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 7, JULY 2002

X1
ECMDS
. Q Channel 1
W KT = Teepsal ]
’ I
N - Channel 2
Xy .| ECMDSQ

Fig. 8. The multiple description transform coder.
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Fig. 9. The MD-DPCM system.

and bits are allocated to each component according to a singleere<> depends on the kind of quantizer used andb, are
description allocation strategy [2]. Finally, letting to go to related by the following equation:

infinity and in the case of high rates, the performance of this

system is given by [2] bi/oo+by/a® =1, 0< by <ol

DoD; = A2~ 4R exp<_ / In S(w) dw) (90) The interesting elementto note is that, as for our system, the side
7r distortion of the MD-DPCM system does not go to zero even at
infinite rate.

-7

whereD, is the central distortiony); is the side distortionR is
the average rate per sample per chansiel,) is the input power g High-Rate, Infinite-Complexity Performance
spectral density angl = (75)?.

The analysis part of the MD-DPCM system [18] is illustrated W€ consider a first-order Gauss-Markov source. In the
in Fig. 9. high-rate and infinite-complexity hypothesis, the performance

of the MDTC is given by (90) wheré&(w) is given by (86).
P(2) = bzt 4 byz2 The side and central distortions of the MD-DPCM are given
by (91) and (92). For the filter bank case, the filter responses

is a second-order predictor filter. The quantized predicted S¥& obtained numerically as shown in Section I1I-D. Given the
quence?[n] is separated into two subsequences containing théer responses, the side distortion at high rates is given by
even and the odd samples and these subsequences are senf®(kfnd (58). The central distortion is obtained by numerically
two different channels. If one subsequence is lost, it is linearffjverting the equations in (49).

estimated using the received one. Now, if the input source is/n Fig- 10, we compare the four performances: MDTC,

Gauss—Markov with regression coefficiemt it turns out that MDP-DPCM, MD filter bank, and ideal bounds, for the case

the estimating filters present in the synthesis part of the syst@n@ = 0.9 and & = 6 bit/sample/channel. As we can see,

are realizable filters. Moreover, in this case, the side distortiéf® MDTC outperforms the other two systems. This is not
is given by [18] astonishing since in the MDTC both the central and the side

distortions decrease exponentially with the r#&te The side
1 (b3 + 20202 + o?) distortions of the MD-DPCM system and of our system suffer
1-a?) < T 2(a2+ 82) ) 1) of the systematic estimation error that becomes dominant at
high rates and that does not reduce with the rate. It is also
while the central distortion is [18]: interesting to note that the gap between the ideal bounds and
the MDTC is constant and equal to 3.06 dB. This confirms that
Do = (14 b3/a?)?2728 (92) this system attains asymptotically optimal performance.

Dy =
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Fig. 10. Asymptotic performance for a Gauss—Markov input source. Abscissa: central distortion, Ordinate: side distortion. Dotted: ideahbbedddptted:
MDTC, dashed: filter banks for MD coding, line: MD-DPCM.
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Fig. 11. Comparison between MDTC, filter banks for MD coding, and MD-DPCM system. Input source: Gauss—Markov. Line: MDTC, dashed: filter banks for

MD coding, dashed—dotted: MD-DPCM.
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Fig. 12. Comparison between MDTC, filter banks for MD coding, and MD-DPCM system. Input source: low-pass Gaussian source. Line: MDTC, dashed: filter
banks for MD coding, dashed—dotted: MD-DPCM.

C. Low-Rate, Finite Delay/Complexity Performance performed by the other two systems. The MD-DPCM system

In practical settings, we are more interested in low-rate bis- the best system in this context. Moreover, comparing the
haviors and we have to deal with finite delay/complexity corf€Sults of Figs. 10 and 11, one can conclude that, in this case,
straints. That means that either the KLT or the filters in the filt}ur SyStem can attain the same performance of the MD-DPCM
bank have finite lengthV. The FIR filters are designed using the?YStem only at the price of infinite delay/complexity (i.e., with
numerical optimization presented in Section IIEChe MDTC  INfinité length filters).
is the same shown previously except that the KLT operates ot S€€ms that one of the reasons why the MD-DPCM system
blocks of finite lengthiV. Bits are still allocated according to'S SUP€rior to the other two is because it has been designed as-
a single description allocation strategy and the MDSQs are g&Mming that the input source is Gauss—Markov and, thus, it well
signed such that the index assignment strategy is the sameSgploits the particular str_ucture of this source. The other mQ
each of theV' components. The MD-DPCM system is made 0';Fysterr_ls do not take partu_:ular advar_1t:_:19e qf the characterl_stlcs
realizable filters and does not need to be approximated.  ©f the input source. For this reason, it is of interest to run sim-

In the first simulation, we consider again a first-ordefi@r simulations w_|th a_dlfferent Ga_u35|an source. Numerical re-
Gauss—Markov process with memory = 0.9. Numerical sults are shown_ in Fig. 12. In Fh|s case, the mp_ut source is a
results are shown in Fig. 11. Here, we consider two bit ratl¥V-Pass Gaussian source obtained asillustratedin Fig. 7, where
R = 2 andR = 3 bit/sample/channel and two different Iengtr‘@[”] ande[n]Qare two i.i.d. Gaussian sources with variances
constraintsN = 6 and N = 8. The graphs show the tradeoff’z = 1.5 ando; = 0.5, respectively. We consider two bit-rates
between side and central distortion for the three systems. e~ 1 @ndZ& = 2 bi/sample/channel and two different length
first interesting thing to note is that, in the low rate regimgeOnstraintsV’:. = 6 and.V. = 8. We can see that, in this con-
the MDTC, which is optimal at high rates, is generally outt€Xt, our s_ystem_ is the be_st system in the medium—low redun-

dancy region. It is also of interest to note that the performance
SFor simplicity, we did not decompose the filters into lifting steps. Doing th§/@P between our system and the MDTC reduces with the rate;
decomposition would slightly improve the filter bank scheme. in particular, we have noticed that for rates greater tRan 3
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Fig. 13. Comparison between MDTC, filter banks for MD coding, and MD-DPCM system in the cdge-oft bits/sample/channel. Input source: low-pass
Gaussian source. Line: MDTC, dashed: filter banks for MD coding, dashed—dotted: MD-DPCM.

bit/sample/channel the MDTC performs better also at low réforeover, if boths andA are finite and=(\) is any continuous

dundancies (see Fig. 13). Finally, the performance of these tfumction of A € [4, A], then

systems slightly increases with the lengthbut, the length, n x

does not changes the performance gap between them. lim 1 Z G ()\;N)) - i/ G[®(w)] dw
In conclusion, this set of experiments indicates that, in the nTeo 27 | &

low bit-rate regime and at low and medium redundancies, () ) )

MD-DPCM and filter bank system perform better than th@/here thex,” are the eigenvalues of theh-order matrix®,,

MDTC. Moreover, in this regime and for some classes &€ntered about the main diagonaldf,.

Gaussian sources, our system outperforms the other two.

k=1
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