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Optimal Filter Banks for Multiple Description
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Abstract—Multiple description (MD) coding is a source coding
technique for information transmission over unreliable networks.
In MD coding, the coder generates several different descriptions of
the same signal and the decoder can produce a useful reconstruc-
tion of the source with any received subset of these descriptions.
In this paper, we study the problem of MD coding of stationary
Gaussian sources with memory. First, we compute an approximate
MD rate distortion region for these sources, which we prove to be
asymptotically tight at high rates. This region generalizes the MD
rate distortion region of El Gamal, Cover, and Ozarow for mem-
oryless Gaussian sources. Then, we develop an algorithm for the
design of optimal two-channel biorthogonal filter banks for MD
coding of Gaussian sources. We show that optimal filters are ob-
tained by allocating the redundancy over frequency with a reverse
“water-filling” strategy. Finally, we present experimental results
which show the effectiveness of our filter banks in the low com-
plexity, low rate regime.

Index Terms—Filter bank design, integer-to-integer transforms,
multiple description (MD) coding, rate distortion functions, robust
source coding.

I. INTRODUCTION

A. The Problem of Multiple Description Source Coding

RECENTLY, the problem of transmitting data over het-
erogeneous packet switched networks has received

considerable attention. Packet losses can be due to transmission
errors or congestion. If the network is able to provide preferential
treatment to some packets, then the use of multiresolution or
layered source coding systems is the obvious solution. But if the
network cannot differentiate among packets, and if retransmis-
sions are not allowed (e.g., due to real-time delay constraints or
in multicast scenarios), then the source coding strategy should be
different. Multiple description (MD) coding offers a potentially
attractive framework in which to develop coding algorithms for
such scenarios. An MD coder represents an information source
using multiple bit streams (descriptions). Each individual de-
scription provides an approximation to the original message, and
multiple descriptions can refine each other, to produce a better
approximation than that attainable by any single one alone.
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Fig. 1. The multiple description problem.

The simplest formulation of the MD problem is illustrated in
Fig. 1 and involves only two descriptions. This is the so-called
case of two channels and three receivers. If both descriptions are
received then the decoder can reconstruct the source at some
small distortion value (the central distortion), but if either
one is lost, the decoder can still reconstruct the source at some
higher distortion or (thesidedistortions).

B. Information-Theoretic Performance Bounds

In a way analogous to classical rate-distortion problems in
source coding theory, in MD source coding one is also interested
in finding a suitable MD rate-distortion region, defined as the set
of quintuples ( , , , , ) for which there exist codes
of rates and achieving average distortions , , and

. Clearly, we can state that the rate necessary to achieve
the distortion cannot be smaller than ( is the
rate-distortion function for the source); similar arguments apply
for the other two cases, so we can state that a first bound for the
MD rate region is

(1)

(2)

(3)

In general, it is not possible to achieve equality simultaneously
in the three equations since two individually good descriptions
tend to be similar to each other. Thus, the second description
will contribute very little to improve the quality of the first one.
On the other hand, two descriptions which are complementary
cannot be individually good. Since, in general,

the resulting excess rate is usually calledredundancy
. One possible formulation of the problem of MD coding then

consists in minimizing the side distortion, given some allowed
redundancy .

Early papers on MD coding are information-theoretic in
nature and try to find the set of achievable values for the quin-
tuple ( , , , , ). El Gamal and Cover determined
an achievable rate region for general memoryless sources [10],
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while Ozarow showed that this region is tight for the case of
memoryless Gaussian sources and squared error distortions
[23]. Ahlswede [1] studied the case ofno excess rate(when
there is equality in (3)), and Zhang and Berger [39] considered
theno excess marginal ratecase (when there is equality in (1),
(2)). Zhang and Berger also showed by counterexample that
in the excess rate case the achievable region of El Gamal and
Cover is not tight [38]. More recently, Linderet al. [20] found
a rate region for memoryless sources and locally quadratic
distortion measure which is tight in the limit of small distortions
(high bit rate). Finally, Zamir [35], [36] extended the Shannon
bounds [3] to the MD case and showed that for a Gaussian
source the outer bounds are asymptotically tight.

C. Code Constructions

Several efforts have also been made to design practical MD
coding systems. In [27], a design procedure for the construction
of fixed-rate scalar quantizers was presented. In [29], that de-
sign procedure was extended to the entropy-constrained case. It
is shown in [28] that at high rates, for the case of balanced de-
scriptions ( ) and Gaussian sources, the distortion
product of the entropy-constrained MD scalar quantizer
(MDSQ) takes the form . At the same time, the MD
rate distortion bound (when put in distortion product form) be-
comes . This is an important result because it shows that
for the MDSQ both the side and the central distortion attain the
optimal exponential rate of decay ( , ). The
only suboptimality of MDSQ at high rates is due to the use of
a scalar quantizer which partitions the space into cubic regions
instead of an ideal vector quantizer that would optimally parti-
tion the space into spheres. Various constructions of MD vector
quantizers have been proposed [9], [11], [19], [30] and the MD
lattice quantizers of [30] do effectively close the gap between
the performance of the entropy constrained MDSQ and the MD
rate-distortion bound.

A rather different approach pioneered by Wanget al. [22],
[33] and then extended by Goyal and Kovačević [13] consists
of applying a suitable block-wise transform to the input vector
before coding to obtain the MD property. This approach is usu-
ally called MD transform coding. The basic idea is to decorrelate
the vector components and then to introduce again correlation
between coefficients, but in a known and controlled manner, so
that erased coefficients can be statistically estimated from those
received. Techniques based on overcomplete frame expansions
have been proposed in [6], [15], [21].

Most of the previous work on MD coding focuses on the
case of memoryless sources or sources with finite memory. In
[18], Ingle et al. consider the problem of designing differen-
tial pulse-code modulation (DPCM) systems for MD coding of
sources with memory. Batlloet al.considered a similar problem
and proposed a solution that combines the use of an orthogonal
block transform and of the MDSQ [2]. As in the memoryless
case, this system has some good asymptotic properties. At low
rates, however, except for some practical results obtained in the
context of still image coding [24], much less is known. Note
that Batllo and Vaishampayan use the term Multiple Description
Transform Coder (MDTC) to refer to this system. From now on,
we will also use that name to refer to their system.

D. Contributions and Paper Organization

In this work, we consider sources with infinite memory,
specifically, wide-sense stationary Gaussian sources and
consider the classical MD scenario of two channels and three
receivers. We present two new results: an MD rate-distortion
region for stationary Gaussian sources which is asymptotically
tight at high rates (Theorem 1 of Section II) and an algorithm
for the design of optimal two-channel filter banks for MD
coding of Gaussian sources (Theorem 2 of Section III). The
filter banks are designed using an approach similar to the one
proposed in the case of block transforms: we construct a first
filter bank to decorrelate the two input sequences and then we
use a second filter bank to efficiently recorrelate them. The
frequency responses of this second filter bank depend on the
total amount of available redundancy and on the allocation
strategy of the redundancy over frequency. In Theorem 2, it
is shown that the optimal allocation of the redundancy over
frequency is obtained using a reverse water-filling strategy.

In a recent paper [34], Yang and Ramchandran have indepen-
dently worked on the same problem of designing filter banks
for MD Coding. The main difference between their work and the
one presented here in Section III is that we have moved the quan-
tization step before the transform and approximated the contin-
uous transform with a discrete one. In practical applications it
is very important to put the quantization before a nonorthog-
onal transform so that the square partition cells are maintained
(see, for instance, [12], [14], [22], [32]). This different approach
leads to a different formulation of the optimization problem and,
in our case, to the analytical solution presented in Theorem 2,
which is not present in [34].

In Section IV, we assess the performance of our system.
We compare it against the ideal bounds, the MDTC [2] and
the MD-DPCM system [18]. For this comparison we consider
two possible scenarios. The first one is high rates and infinite
delay/complexity. This first comparison is interesting because
it is under these hypotheses that the optimization problem is
stated and solved both in [2] and in this paper. The second
scenario is based on practical requirements of low rates and
finite delay/complexity. In this regime, performance of the
systems considered will not be predicted well by the theory, and
there is much to be learned by means of numerical simulations.
We conclude in Section V.

II. A SYMPTOTIC MD RATE REGION

For a memoryless Gaussian source with variance, Ozarow
[23] gave an explicit characterization of the set of achievable
distortions ( , , ) for a given pair of rates , :

(4)

(5)

(6)

where
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and

The inverse of these functions are the following [20], [23]:

(7)

(8)

(9)

where is defined by

(10)

where

(11)

and

Notice that depends on the three distortions (, , ) and
on the variance (see (10)) However, by rearranging(9), one
can see the relationship betweenand the rates and and
interpret as the excess rate that is used to reduce the central
distortion given the two side distortions or

Now, if then

and

This means that all the rate is used to minimize the side distor-
tions and in this case equals its maximum value ( ). If

it means that part of the rate is used to reduce the central
distortion which becomes smaller than . In particular,
decreases from to zero as increases from zero to infinity.
This is why is also called the excess marginal rate [35], [39].

Consider now the high rate situation, namely, the case where
the three distortions ( , , ) are very small compared to
the variance or, in other words, the case where the three ratios

, , go to zero. In this situation, the excess
marginal rate (see (10)) and the maximum central distortion

(see (11)) do not depend on the variance of the source
anymore. In particular, we have [20]

(12)

where

and

Now, based on these preliminary results we can state the fol-
lowing theorem.

Theorem 1: In the limit of small distortions (i.e., , ,
), the asymptotic multiple description rate region for a

stationary Gaussian source and mean square error (MSE) dis-
tortions is given by the following equations:

where is the power spectral density of the Gaussian source.
Proof: Let be a discrete-time sta-

tionary Gaussian source. We begin by consideringsuccessive
elements of this source and by calculating the asymptotic MD
rate region of this -sequence. Call the correla-
tion matrix related to any successive components of .
Since the source is stationary, is a symmetric Toeplitz ma-
trix. Apply a Karhunen–Loève transform (KLT) to the-se-
quence to get uncorrelated (and so independent) components.
Because the KLT is unitary and invertible and we are consid-
ering MSE as our distortion measure, the problem of finding the
MD rate region in the new coordinates is identical to that in the
original ones, except that the new components are statistically
independent. Call the -dimensional
vector with independent components obtained after applying the
KLT to the original -sequence and call , , the appro-
priate reproducing vectors at the three receivers. Moreover,
will represent theth component of the reproducing vector,

and is a vector with the first elements of .
Extending the El Gamal–Cover results [10] to the vector case,
we have that the MD rate region is given by

(13)

(14)

(15)

where the minima are over all the probability density functions
satisfying
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First notice that the term in (15)
can be equivalently expressed as

(16)

(17)

(18)

where in the last equality we have used the fact that, are
deterministic function of and thus ,

. In the rest of the proof we will use (18) rather than (16).
Now, the first thing we want to show is that the MD rate region of
this -vector reduces to the sum of the MD rate region of each
component of and that the problem of minimizing (13)–(15)
reduces to the problem of finding the right allocation strategy
of the rates , to the different components. Consider, first,
(13), it results [7]

(19)

(20)

(21)

(22)

(23)

where (20) follows from the independence of the components
and from the chain rule for entropy. The inequality in (21) fol-
lows from the fact that conditioning reduces entropy and we can
achieve equality by choosing . The
last inequality follows from the expression of the rate distortion
function of a Gaussian source and equality can be achieved by
choosing each , where is the variance
of the th component and is the distortion
related to that component. Hence, from (19)–(23), we get that
the minimization in (13) reduces to [7]

(24)

where the minimum, now, is over all the possible distortions
such that

Similar arguments apply to (14) and that minimization reduces
to

(25)

where the minimum is over all the distortions such that
. Consider now (15) and its alternative rep-

resentation in (18). Consider, first, the term ;
following the same procedure as in (19)–(23) we have

(26)

(27)

(28)

(29)

where inequality in (28) follows from the fact that conditioning
reduces entropy and equality is achieved if

For the second term of (18), we obtain

(30)

(31)

(32)

where inequality in (31) follows from (19)–(22) and we can
achieve equality by choosing

for

The last inequality in (32) follows from the fact that

and equality is achieved if

Thus, combining the results from (26)–(29) and (30)–(32), we
have

(33)

(34)

(35)
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where the last inequality comes from the Ozarow equations and
equality can be achieved by a correct choice of each triple (,

, ). This choice depends on the three distortions, ,
and for an explicit characterization refer to [23]. Equations

(33)–(35) show that minimization in (15) reduces to

(36)

where the minimum, now, is over all the distortions , ,
such that , . Now, com-

bining (24), (25), and (36), we can see that the MD rate region
of reduces, indeed, to the sum of the MD rate region of each
component and that the original minimization problem reduces
to

(37)

(38)

(39)

Thus, the problem now is to understand how each component
should contribute to the total distortion to minimize the quanti-
ties in (37)–(39) or, stated in a different way, the problem is to
understand how the rates , should be allocated to the var-
ious components to minimize (37)–(39). Using Lagrange mul-
tipliers we can construct the following three functionals:

(40)

(41)

(42)

The problem of minimizing the first two functionals is equiv-
alent to the problem of finding the optimal allocation strategy
for the single description case. Differentiating with respect to

and and setting equal to zero, we have

(43)

(44)

and

(45)

(46)

where and are constants. Hence, the optimum allocation
of the rates to the various components results in equal distortion
for each component [3], [7]. This is due to the fact that the slopes
of the curves (40), (41) are independent of the variances. This
argument is not valid for the third functional (42) since the slope
of depends on the variance. However, in the limit of small
distortions, becomes independent of the variance
and the minimization strategy for the third functional becomes
the same as for the first two functionals (i.e. ,

, , ). Then the MD rate region
becomes

Notice that, since the Ozarow’s MD rate region is achievable
and tight [23], then also our MD rate region is (asymptotically)
achievable and tight. Indeed, we have seen that the MD rate-dis-
tortion functions (13)–(15) of the vector are lower-bounded
by the sum of the MD rate-distortion functions of each compo-
nent and this lower bound is achieved by coding each com-
ponent independently. Now, since the direct and converse part
of the Ozarow theorem apply to each component, the minima in
(37)–(39) not only represent an achievable region, but they also
represent a tight region.

Now, using the result of the Toeplitz distribution theorem [3],
[16] (see the Appendix), we can go to the limit of infiniteand
find the MD rate region of the complete source

A similar result in terms of the entropy rate power of the
Gaussian source can be found in [35], [36]. In these papers,
Zamir extended the Shannon bounds [3] to the MD case and
then showed that the outer bound is asymptotically tight. His
results are valid either for a memoryless source or for a source
with memory.

Theorem 1 shows that at high rates the single description al-
location strategy is also optimal in the MD case. That is because
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Fig. 2. Two-channel filter bank.

Fig. 3. The polyphase representation of the analysis stage.

the slopes of the three functionals (40)–(42) are independent of
the source. At low rates, this last assumption is not valid. The
functional (42) has a slope dependent on the input source vari-
ance and, in general, it is not minimized with a single description
allocation strategy. So we can state the following corollary.

Corollary 1: Under a high rate assumption, and for sta-
tionary Gaussian sources, the single description rate allocation
strategy is also optimal in the MD case. At low rates it is, in
general, suboptimal.

III. OPTIMAL TWO-CHANNEL FILTER BANKS FORMD CODING

A. Problem Formulation and Notation

Consider the classical two-channel filter bank scheme shown
in Fig. 2. Here, the input is assumed to be a stationary
Gaussian random process with known statistics and is fed
through an analysis filter bank. The two output sequences are
then separately quantized and sent over two different erasure
channels. We suppose that the channels are independent, that
they have the same erasure probability and that .1 For
convenience, we will formulate our problem in the polyphase
domain [26], [31]. In this case, the analysis stage can be
equivalently represented by the block scheme shown in Fig. 3.

First we move the quantization step before the transform and
approximate our continuous polyphase transform with a discrete
one.2 The discrete transform can be obtained by factoring the
continuous one into a product of lifting steps and then sequen-
tially rounding all these intermediate factors [4], [8]. It can be
shown that the error due to this approximation can be bounded
and that it goes to zero at high rates [12], [14]. The reason why
we use this kind of structure is that if the quantization is per-
formed before the transform, then the square partition cells are
maintained. This enables the use of nonorthogonal transforms
without increasing the quantization error. The importance of
performing quantization before the transform in the MD case
was pointed out for the first time in [22] (see also [32]). Since at

1This last hypothesis, although reasonable, is not strictly necessary; but it
simplifies the solution.

2By continuous transform we mean a generic linear operator inl (Z). The
discrete transform is a perfectly invertible operator that converts quantized se-
quences into quantized sequences [4], [17], [37].

high rates the difference between the discrete and the continuous
transforms is small, our analysis will be based on properties of
the continuous transform.

Now consider again Fig. 3. The input–output relation can be
expressed in matrix notation introducing the analysis polyphase
matrix

(47)

Call the polyphase power spectral density (p.s.d.)
matrix of the input process. Likewise, is the p.s.d. matrix
of the outputs. The system response has the following form:

(48)

where denotes the Hermitian transpose of .
The synthesis part of the system can be analyzed in a

similar fashion. Recall that, given the analysis matrix, the
synthesis polyphase matrix is uniquely defined (up to a
phase factor). In fact, must be such that the condition

is satisfied [31].
Now, assume that the target central distortion isand that

both channels are coded independently. Since , are
stationary Gaussian sources and quantization is fine, the min-
imum bit rates necessary to scalar code the two sequences is [3]

(49)

In case we do not use any filter decomposition, the bit rate
necessary to get the same central distortionis [3]

(50)

where is the p.s.d. of the input process. We call redundancy
the difference rate between these two cases

(51)



2042 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 7, JULY 2002

Fig. 4. The complete MD system in the polyphase domain.

Note that (49) holds because the transform is performed after the
quantization. If the transform were performed before the quanti-
zation, the shape of the quantization cells would be affected and
one should also consider this effect to compute the correct rates.
This is one of the limitations of the approach taken in [34].

Now consider the case when one channel (i.e., channel 1) is
cut off and must be estimated from the received sequence

. The optimal estimation is obtained by Wiener filtering

(52)

Call the error in predicting from

(53)

Since we have used a nonorthogonal transform, we must return
to the original space in order to compute the distortion (MSE
distortion in our case); therefore (see also Fig. 4)

(54)

and

(55)

Considering the fact that the erroris still a Gaussian process
with p.s.d.

and using Parseval’s relation we obtain

(56)

and, finally, using the biorthogonal relations, we can express the
distortion as a function of the analysis filters

(57)

Likewise, we can obtain an expression for the distortion
associated with the loss of . Since the two channels have the

same erasure probability, the expected distortion due to erasure
(side distortion) is

(58)

Note that in our formulation we have only considered the dis-
tortion due to erasure and have neglected the one due to quanti-
zation, since at high rates, it is much smaller.

Our target is to find a perfect reconstruction filter bank which
minimizes the side distortion . The perfect reconstruction con-
dition is realized by the constraint .3 The design
of the filter bank is also constrained by the redundancy through
(48) and (51). Thus, our optimization problem is to find a perfect
reconstruction filter bank which minimizes the side distortion
for a given, fixed redundancy.

B. Optimal Solution

As a first step, we decompose the matrix into the
product of two matrices and

(59)

is a unitary decorrelating matrix that diagonalizes the
input covariance matrix . Thus,

where is a diagonal matrix which contains the spectral
eigenvalues of

(60)

For a stationary input process, the decorrelating matrix can be
found analytically and has the following form [25]:

(61)

the filter bank related to is usually called principal com-
ponent filter bank [25]. Now, this factorization does not reduce
the generality of the solution, since is a unitary invertible
matrix independent of and we are considering square error
distortions. So it is enough to solve the simpler problem of op-
timally designing the matrix for the two input sequences
with p.s.d. matrix . Then, the final solution will be repre-
sented by the product between this matrix and the decorrelating
matrix . From now on, we will always assume that the
two sequences have already been decorrelated
and are represented by the diagonal p.s.d. matrix . Notice

3Strictly speaking, the perfect reconstruction condition is satisfied if and only
if det[H(!)] 6= 0 on the unit circle. However, a factorization into lifting steps
is possible only ifdet[H(!)] is a monomial [8]. Since the side distortion (57)
does not depend on the value of the determinant, we can assume, without loss
of generality,det[H(!)] = 1.



DRAGOTTI et al.: OPTIMAL FILTER BANKS FOR MULTIPLE DESCRIPTION CODING 2043

that these two sequences are still a realization of a stationary
Gaussian process.

To develop our formulation we need to briefly review the re-
sults presented in [13], [14]. Here, Goyalet al. focus on the
problem of designing an optimal block transform to transmit
two Gaussian decorrelated variables over two independent era-
sure channels.4 In the case the two channels have the same era-
sure probability and the two components are coded at the same
rate , they show that the optimal MD transform, also
called correlating transform, is

(62)

where the value of depends on the redundancy

(63)

and are the variances of the two Gaussian components,
with the usual assumption that . Finally, the side dis-
tortion is given by5

(64)

We can now state the following theorem:

Theorem 2: Assume that and that the two p.s.d.
, of the two decorrelated input sequences ,
are such that , where is the essential infimum

of and is the essential supremum of . Then the
optimal analysis filters for MD coding of and are
represented by the following polyphase matrix:

where

and

Proof: Consider only consecutive elements of the first
channel sequence , and consecutive elements of the
second channel sequence which are located at the same
temporal interval. Call and the two corre-
sponding correlation matrices. Apply a KLT to each of the two

-sequences to get independent components and nameand
the two -sequences after the transformation. Call,

, the variances related to the-sequence and

4Actually, they consider also the case of larger vectors. For the two-channel
case their work is an extension of the results presented in [22], [33].

5It is interesting to notice that if the Gaussian source has a circularly sym-
metric probability density, i.e.,� = � , then the distortion is independent of
�. In this case, the side distortion cannot be reduced with the addition of redun-
dancy, so the approach based on correlating transforms is useless.

, , the variances related to the second-se-
quence . Since and are Hermitian–Toeplitz ma-
trices the result is (see the Appendix) that

(65)

and that

(66)

where and , , are the essential suprema and the es-
sential infima of the power spectral densities and .
Equations (65) and (66) imply that ,
since we assumed .

Now, consider the genericth couple of element .
We can apply the results of [13] to this pair and say that if we
are allowed to use a redundancythen the optimal correlating
transform for that pair is

(67)

where is given by

(68)

and that the side distortion is

(69)

However, we want to minimize the global side distortion

(70)

given a global redundancy budget

(71)

This is a typical problem of constrained minimization, so we
define a new cost function which combines the distortion and
the redundancy through a positive Lagrange multiplier

(72)

Finding a minimum of amounts to finding minima for each
(because the costs are additive). Writing distortion as a function
of the redundancy and taking the derivative we get

(73)

Thus, for a solution to be optimal, the set of chosen redundancy
has to correspond to constant-slope points on their respec-

tive distortion–redundancy curves. Uniqueness follows from the
convexity of these curves and from the use of the Kuhn–Tucker
conditions when necessary [5]. A constant-slope solution is ob-
tained for any fixed value of. To enforce the constraint (71) ex-
actly, one has to search over all the values ofuntil the budget
is met. However, if we suppose thatis sufficiently large then
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it is possible to give a closed form for the allocation problem. In
fact, it follows that

(74)

The constant-slope solution forces the redundancies to be of the
following form:

(75)

Using the redundancy constraint (71)

(76)

we find

(77)

and finally

(78)

The approximation in (74) holds if is sufficiently large. Its
value depends on the total redundancy budgetand on the dif-
ference . The difference influences the slope
of the distortion–redundancy curves (74). Now, the global dis-
tortion is minimized when the set of chosen redundancycor-
responds to constant slope points. If , the slope
of the th curve is zero and the optimal solution is always found
imposing the Kuhn–Tucker condition: . For this reason,
the approximation in (74) holds only when both the conditions

and are verified ( implies ,
). In general, we can say that the difference influ-

ences the allocation strategy of the redundancy. The redundancy
is mainly allocated in the region where this difference is higher.

Now we can let go to infinity and find, in this way, the
optimal spectral distribution of the redundancy

(79)

Once is known, we can obtain the expression of the side
distortion

(80)

where

(81)

and the expression of the polyphase matrix :

(82)

where

(83)

When the approximation (74) is not verified, namely, when at
least one of the two hypotheses and is not sat-
isfied, the optimal allocation of the redundancy over frequency
can only be found numerically. This means that, for any fixed

, one has to numerically solve (74) and then has to search over
all the values of until the constraint (71) is met.

Consider, now, (80) and (81). They express the side distortion
in function of the spectral distribution of the redundancy. The
side distortion is maximum when we are not allowed to allocate
any redundancy over the frequency and its maximum value is

(84)

Its minimum value occurs when we can allocate an infinite
amount of redundancy over the frequency and it is equal to

(85)

This value represents thesystematic errordue to the estimation
of one subsequence with the other one and cannot be eliminated
even at infinite redundancy. The systematic error typically oc-
curs in MD systems based on correlating transforms [14], [32].
This is in contrast with the performance of other systems (i.e.,
MDTC), where at high rates both side and central distortions
decrease with the rate. Thus, this result gives us a first insight
about the performance of the filter bank system.

Corollary 2: The filter bank system is not useful at high rates
since, independently of the amount of redundancy allocated, the
side distortion has a constant factor (the systematic error) that
cannot be eliminated.

C. Approximate Finite Impulse Response (FIR) Solutions

Usually, the filters obtained with the optimization algorithm
of the previous section are of infinite length. However, in some
applications it is important to approximate them with FIR fil-
ters. Let us call the polyphase matrix related to the FIR
filter bank and the corresponding side distortion obtained
with this set of filters. Clearly, , where is the ideal
side distortion given by (58), since the best performance is usu-
ally achieved with infinite length filters. Now, the problem is to
design a perfect reconstruction FIR filter bank that minimizes
the performance gap for each fixed redundancy.

We solve this problem numerically by running a constrained
minimization algorithm using a gradient descendent approach.
The convex function to minimize is , while the con-
straints are the perfect reconstruction condition
and the maximum allowed redundancy.

Recall that given an FIR analysis filter bank, perfect recon-
struction with FIR filters is possible if and only if is
a monomial [31]. So, once we have designed FIR analysis filters
with the constraint , we know that it is possible
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to reconstruct the signal with FIR synthesis filters. These syn-
thesis filters are obtained in the usual way

Finally, recall that once the FIR filter bank is obtained, it can
always be factored into a finite number of lifting steps. These
steps can be sequentially rounded and, in this way, one can ob-
tain the discrete version of the continuous transform.

D. Application to a Gauss–Markov Process

To conclude this section, we apply our filter design tech-
niques to a Gaussian source and analyze the filter responses.

We consider a Gauss–Markov source ,
where the regression coefficient has magnitude less than
and where is a zero mean, unit variance, independent and
identically distributed (i.i.d.) Gaussian source. The p.s.d. of this
process is

(86)

Now, the polyphase matrix of the optimal filter bank is
given by the product of the matrix with the matrix .
This second one is known and is given by (61). To design

we need to compute the spectral eigenvalues of the input
p.s.d. matrix. First notice that the two subsequences obtained
by downsampling are still Gauss–Markov processes, but
with the regression coefficient replaced by and the i.i.d.
original Gaussian source replaced by a new i.i.d. Gaussian
source with zero mean and variance . Hence, the power
spectral densities for these two processes are given by

(87)

The cross p.s.d. is given by

(88)

with . Finally, the p.s.d. matrix after decor-
relation is shown in (89) at the bottom of the page. Observe that
the two spectral eigenvalues are equal only at(and, of course,
at ). As previously stated, at the points closest to the fre-
quency values where it is not possible to use the
closed-form (79) even in the high redundancy hypothesis. So,
for the Gauss–Markov source, (and, consequently, )
can only be found numerically.

In Fig. 5, we show the frequency responses of the two anal-
ysis filters as a function of the redundancy for the case .
It is interesting to notice that the amplitude of the two frequency

responses is exactly the same, the two filters differ only for the
phase response. This is due to the presence of the principal com-
ponent filter bank given by and to the constraint
which forces the matrix to have the shape given by (82).
Moreover, notice that at high redundancies the two filters tend to
be low-pass. In the case of , the Gauss–Markov process
is a low-pass process; thus, the frequency responses of the two
filters tend to preserve the frequency region where the p.s.d. of
the input process is mostly concentrated. This is valid in gen-
eral, that is, at high redundancies the analysis filters better pre-
serve the region where most of the p.s.d. of the input process is
concentrated. It is also of interest to note that, at low redundan-
cies, the two filter responses do not tend to be that of a principal
component filter bank, that is an ideal low-pass and an ideal
high-pass filter. This is because, if quantization is performed be-
fore the transform, the principal component filter bank does not
represent the only solution that gives minimum coding rates.
The same phenomenon happens in the block transform case,
where the KLT does not represent the only transform that gives
minimum rates if quantization is performed before the trans-
form [12], [13]. Thus, this additional degree of freedom makes
it possible to have a filter bank (or a block transform [13]) that
achieves, at the same time, minimum coding rates and balanced
rates. This is the solution that we have at low redundancies.

Finally, in Fig. 6 we show the frequency response of the two
FIR analysis filters obtained with the minimization algorithm
presented in Section III-C. The filters are all of length. It is
interesting to compare these frequency responses with the ones
in Fig. 5. In the FIR case, the amplitude responses of the two
filters are not equal, but they tend to be close to each others at
high redundancies. Moreover, in the high-redundancy region,
the two frequency responses tend to be low-pass as in the ideal
case.

IV. PERFORMANCEANALYSIS

In order to assess the performance of the filter bank proposed
in the previous section, we compare it with the asymptotic ideal
bounds found in Section II and with other two systems: the MD
transform coder [2] and the MD-DPCM system [18]. In the next
subsection, we briefly review these two systems. In the simula-
tions, we consider two different Gaussian input sources: a clas-
sical Gauss–Markov source and a low-pass Gaussian source ob-
tained as illustrated in Fig. 7, where and are two
i.i.d. Gaussian sources with variances, , and is an
ideal low-pass filter. Moreover, we consider two different sce-
narios: high rate, infinite delay/complexity and low rate, finite
delay/complexity. In the first scenario, the analysis and the re-
sults presented in the first part of this paper are valid. The second
more realistic simulation is important, because we do not have

(89)
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Fig. 5. Frequency response of the analysis filters in function of the redundancy�.

clear theoretical answers on the behavior of the considered sys-
tems in this particular context.

A. Other MD Coding Systems

The MDTC [2] is illustrated in Fig. 8. It is represented by two
main elements: a linear transform which turns out to be a KLT

and a set of entropy-constrained MDSQ. Recall that an MDSQ
produces a pair of indexes for each input scalar sample. The be-
havior of an MDSQ is characterized by two elements: the rate
at which it operates and the strategy in the assignment of the
two output indexes. This second element defines the tradeoff
between side and central distortion. That is, it defines if the in-
dexes are assigned in a way to mainly minimize the central or the
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Fig. 6. Frequency response of the analysis FIR filters in function of the redundancy�.

Fig. 7. A low-pass Gaussian source.G(!) is an ideal low-pass filter and
x [n], x [n] are two i.i.d. Gaussian sources.

side distortion. The system works in the following way: it takes
a block of consecutive elements of the input sequence
and applies a KLT to them. Then each of the decorrelated com-
ponent is encoded with a different entropy-constrained MDSQ
and the pair of indexes produced by the MDSQ are transmitted
over two separate channels. The result is that in case of Gaussian
input sources and at high rates optimal performance is achieved
if the index assignment strategy is the same for each MDSQ
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Fig. 8. The multiple description transform coder.

Fig. 9. The MD-DPCM system.

and bits are allocated to each component according to a single
description allocation strategy [2]. Finally, letting to go to
infinity and in the case of high rates, the performance of this
system is given by [2]

(90)

where is the central distortion, is the side distortion, is
the average rate per sample per channel, is the input power
spectral density and .

The analysis part of the MD-DPCM system [18] is illustrated
in Fig. 9.

is a second-order predictor filter. The quantized predicted se-
quence is separated into two subsequences containing the
even and the odd samples and these subsequences are sent over
two different channels. If one subsequence is lost, it is linearly
estimated using the received one. Now, if the input source is
Gauss–Markov with regression coefficient, it turns out that
the estimating filters present in the synthesis part of the system
are realizable filters. Moreover, in this case, the side distortion
is given by [18]

(91)

while the central distortion is [18]:

(92)

where depends on the kind of quantizer used and are
related by the following equation:

The interesting element to note is that, as for our system, the side
distortion of the MD-DPCM system does not go to zero even at
infinite rate.

B. High-Rate, Infinite-Complexity Performance

We consider a first-order Gauss–Markov source. In the
high-rate and infinite-complexity hypothesis, the performance
of the MDTC is given by (90) where is given by (86).
The side and central distortions of the MD-DPCM are given
by (91) and (92). For the filter bank case, the filter responses
are obtained numerically as shown in Section III-D. Given the
filter responses, the side distortion at high rates is given by
(57) and (58). The central distortion is obtained by numerically
inverting the equations in (49).

In Fig. 10, we compare the four performances: MDTC,
MD-DPCM, MD filter bank, and ideal bounds, for the case
of and 6 bit/sample/channel. As we can see,
the MDTC outperforms the other two systems. This is not
astonishing since in the MDTC both the central and the side
distortions decrease exponentially with the rate. The side
distortions of the MD-DPCM system and of our system suffer
of the systematic estimation error that becomes dominant at
high rates and that does not reduce with the rate. It is also
interesting to note that the gap between the ideal bounds and
the MDTC is constant and equal to 3.06 dB. This confirms that
this system attains asymptotically optimal performance.
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Fig. 10. Asymptotic performance for a Gauss–Markov input source. Abscissa: central distortion, Ordinate: side distortion. Dotted: ideal bounds, dashed–dotted:
MDTC, dashed: filter banks for MD coding, line: MD-DPCM.

Fig. 11. Comparison between MDTC, filter banks for MD coding, and MD-DPCM system. Input source: Gauss–Markov. Line: MDTC, dashed: filter banks for
MD coding, dashed–dotted: MD-DPCM.
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Fig. 12. Comparison between MDTC, filter banks for MD coding, and MD-DPCM system. Input source: low-pass Gaussian source. Line: MDTC, dashed: filter
banks for MD coding, dashed–dotted: MD-DPCM.

C. Low-Rate, Finite Delay/Complexity Performance

In practical settings, we are more interested in low-rate be-
haviors and we have to deal with finite delay/complexity con-
straints. That means that either the KLT or the filters in the filter
bank have finite length . The FIR filters are designed using the
numerical optimization presented in Section III-C.6 The MDTC
is the same shown previously except that the KLT operates on
blocks of finite length . Bits are still allocated according to
a single description allocation strategy and the MDSQs are de-
signed such that the index assignment strategy is the same for
each of the components. The MD-DPCM system is made of
realizable filters and does not need to be approximated.

In the first simulation, we consider again a first-order
Gauss–Markov process with memory . Numerical
results are shown in Fig. 11. Here, we consider two bit rates

and bit/sample/channel and two different length
constraints: and . The graphs show the tradeoff
between side and central distortion for the three systems. The
first interesting thing to note is that, in the low rate regime,
the MDTC, which is optimal at high rates, is generally out-

6For simplicity, we did not decompose the filters into lifting steps. Doing the
decomposition would slightly improve the filter bank scheme.

performed by the other two systems. The MD-DPCM system
is the best system in this context. Moreover, comparing the
results of Figs. 10 and 11, one can conclude that, in this case,
our system can attain the same performance of the MD-DPCM
system only at the price of infinite delay/complexity (i.e., with
infinite length filters).

It seems that one of the reasons why the MD-DPCM system
is superior to the other two is because it has been designed as-
suming that the input source is Gauss–Markov and, thus, it well
exploits the particular structure of this source. The other two
systems do not take particular advantage of the characteristics
of the input source. For this reason, it is of interest to run sim-
ilar simulations with a different Gaussian source. Numerical re-
sults are shown in Fig. 12. In this case, the input source is a
low-pass Gaussian source obtained as illustrated in Fig. 7, where

and are two i.i.d. Gaussian sources with variances
and , respectively. We consider two bit-rates

and bit/sample/channel and two different length
constraints: and . We can see that, in this con-
text, our system is the best system in the medium–low redun-
dancy region. It is also of interest to note that the performance
gap between our system and the MDTC reduces with the rate;
in particular, we have noticed that for rates greater than
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Fig. 13. Comparison between MDTC, filter banks for MD coding, and MD-DPCM system in the case ofR = 4 bits/sample/channel. Input source: low-pass
Gaussian source. Line: MDTC, dashed: filter banks for MD coding, dashed–dotted: MD-DPCM.

bit/sample/channel the MDTC performs better also at low re-
dundancies (see Fig. 13). Finally, the performance of these two
systems slightly increases with the lengthbut, the length,
does not changes the performance gap between them.

In conclusion, this set of experiments indicates that, in the
low bit-rate regime and at low and medium redundancies,
MD-DPCM and filter bank system perform better than the
MDTC. Moreover, in this regime and for some classes of
Gaussian sources, our system outperforms the other two.

V. CONCLUSION

In this work, we have addressed the problem of MD coding
in a subband framework. We have shown how to design per-
fect reconstruction filter banks that can minimize the side dis-
tortion given a certain amount of redundancy. Two other impor-
tant contributions of this paper are: a) the characterization of a
region which is asymptotically the MD rate-distortion region for
general stationary Gaussian sources, and b) experimental results
showing conditions under which our method outperforms other
MD methods.

APPENDIX

TOEPLITZ DISTRIBUTION THEOREM

For a proof of this theorem refer to [16].

Theorem 3 (Toeplitz Distribution Theorem):Let be an
infinite Toeplitz matrix with entry on the th diagonal. The
eigenvalues of are contained in the interval
where and are the essential infimum and supremum,7 re-
spectively, of the function

7The essential supremum of a functionf(x) is theinf sup f(x) where
E ranges over all sets of Lebesgue measure zero. Likewise, the essential in-
fimum is sup inf f(x).

Moreover, if both and are finite and is any continuous
function of , then

where the are the eigenvalues of theth-order matrix
centered about the main diagonal of .
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