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Optimal Placement of Training for
Frequency-Selective Block-Fading Channels
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Abstract—The problem of placing training symbols optimally enough to be mathematically tractable. The key parameter in
for orthogonal frequency-division multiplexing (OFDM) and  this model is the coherence inter&l The channel is assumed
single-carrier systems is considered. The channel is assumed torg stay constant fof” samples and change to a new value. The
be quasi-static with a finite impulse response of lengt{ Z + 1) . .
samples. Under the assumptions that neither the transmitter nor capaC|t.y of a single antenna system for the unkpown Chan_nel
the receiver knows the channel, and that the receiver forms a Scenario where the channel under goes Rayleigh flat-fading
minimum mean square error (MMSE) channel estimate based channel withI’ = 1 has been addressed in [4]. The problem
on training symbols only, training is optimized by maximizing a  of finding the capacity for Rayleigh flat-fading model under
tight lower bound on the ergodic training-based independent and a more general setting of multiple antennas and a getéral

identically distributed (i.i.d.) capacity. For OFDM systems, it is . .
shown that the lower bound is maximized by placing the known was considered by Marzetta and Hochwald [15]. Their work

symbols periodically in frequency. For single-carrier systems, dives useful insights for the single antenna problem as well.
under the assumption that the training symbols are placed in It was shown that a§ — oo, the unknown channel capacity
clusters of Iengtha > (2L -|- 1), it is shown that the lower approaches the known channel capacity.
bound is maximized by a family of placement schemes called i s jmnortant to develop simple techniques that achieve the
QPP-«, where QPP stands for quasi-periodic placement. These . . .
placement schemes are formed by grouping the known symbols Capac't)/ of the_unk_nown_ chann_el. A paradigm thatis often em-
into as many clusters as possible and then placing these clustersPloyed in practice is to first estimate the unknown channel and
periodically in the packet. For both OFDM and single-carrier then use the estimate to perform decoding. The most popular
systems, the optimum energy tradeoff between training and data and practical technique of learning the channel is by insertion of
is also obtained. training symbols in the data stream. While insertion of known
Index Terms—Ergodic capacity, orthogonal frequency-division symbols can in general be suboptimal, itis mandatory in order to
multiplexing (OFDM), placement schemes, single-carrier systems, simplify the receiver implementation. This introduces the notion
training symbols, unknown channels. of training-based capacity, which is the maximum rate achiev-
able with codewords that consist of known and unknown sym-
l. INTRODUCTION bols. The question then arises about how close the training-

L . . .. based capacity is to the capacity of the unknown channel and
HE problem of achieving the capacity of a linear, time-in

: . _ how one should optimize training to maximize the training-
variant Gaussian channel under the assumption that bEgg b ¢ d

. . : ed capacity of a mobile wireless channel. This problem was
the transmitter and the receiver know the channel is mature ([8] i jered for a multiple-antenna system under Rayleigh block
and the references in it). For wireless communications, espe

X o . ) >iading scenario by Hassibi and Hochwald [2]. They obtained
cially mobile W|reles§, the chgnnel IS random and time-varyingo it lower bounds on the capacity of the training-based sys-
Hence, the assumption that either the receiver or the transmwé{_ls and optimized the fraction of training symbols, energy al-

knows the channel is unrealistic [3]. The rapid growth in mobilg, . 4 6 training and data to maximize this bound. Their paper

wireless applications has motivated the problem of finding t ffovides a useful framework for analyzing the capacity achiev-
capacity of a fading channel under the assumption that neit

h . h . K he ch | K Hle by training-based schemes in general. An important insight
the rec¢|a|ver nor the transmitter knows the channe (un NOWRthis analysis is that training is optimal at high signal-to-noise
channel scenario). ratio (SNR) and suboptimal at low SNR. Similar techniques for

. The block-faqling mode_l [3] prov?des afirst-order a_pprO)_(im%wer—bounding mutual information under imperfect knowledge
tion to the continuously time-varying channel, and it is Slmp|8f the channel have been proposed by Medard [9]

Demand for higher bit rate leads to frequency-selective
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For single-carrier systems, the design of training, namel i
the fraction of training, the choice of training symbols, and er
ergy tradeoff between training and data, for frequency selecti
fading model was addressed in [7] under the assumption tt
all the training symbols are placed at the start of the packet. z; Y,
was shown that at high SNR training-based schemes arecape — | hi
of capturing most of the channel capacity, whereas at low SN
they are highly suboptimal. The placement of training though
was assumed to be fixed. Fig. 1. System model.

The placement of training affects the capacity of the system
through channel estimation and detection. We have previously s
considered the problem of joint optimization of symbol place- — S/P  — IDFT [— AddCP — P/S —
ment and equalizer for a symbol-by-symbol decision feedback
receiver [11] under the assumption that the channel is known
at the receiver. The performance criterion used was averzfé%
mean-square error (AMSE). It turns out that the optimal symbol
placement is to separate the known symbols by at least the Wé-illustrate the ideas through simulations, and finally, conclude
tection delayd of the decision feedback receiver. The optimdn Section VI. The Appendix contains the proofs of lemmas and
placement of known symbols for single-carrier broadcast sy§eorems stated in the paper.
tems where the channel undergoes nonergodic fading was con-
sidered in [12]. The metric used was outage probability. It was Il. SYSTEM MODEL

shown that the outage probability is minimized by breaking the 11, system model is shown in Fig. 1. The channel
known symbols into small blocks and placing them periodically, _ [ho, h1, ... hr]T has a finite-impulse response of length

The problem of optimizing placement of training for mini 7, 4 1) samples (where the symb6l denotes the transpose
mizing the mean-square error (MSE) in channel estimate hgsthe vector). We assume that taps of the chainate inde-
been addressed for OFDM systems in [10]. Optimal trainingendent and identically distributed (i.i.d.) circularly symmetric
placement schemes were obtained for the more general setiigghplex Gaussian with zero mean and variance equgc_kgo
of block precoded transmissions with cyclic prefix in [14]. Therhe fading coefficients remain constant frsymbol periods
metric for optimization was again the MSE of the channel esting change to an independent value. We assume that neither
mate. However, as alluded to earlier, channel estimation is jygé receiver nor the transmitter knows the fading coefficients.
one facet of the problem. The placement of known symbols &fhe received signal is corrupted by additive white noise that
fects not only the channel estimate but also the detection of ygcircularly symmetric complex Gaussian with zero mean and
known symbols. In this paper, we take the holistic view and tariances2 . This model, described above, is an extension of
to optimize the placement of known symbols by maximizing the quasi-static flat fading to quasi-static frequency-selective
training-based capacity. fading.

In this paper, we first use the framework developed in [2]
to obtain a tight lower bound on the training-based capacity of ||| OpTiIMAL PLACEMENT SCHEME AND TRAINING EOR
OFDM and single-carrier systems. We then optimize the place- OFDM SYSTEM
ment of training by maximizing this lower bound. For OFDM
systems, under the assumption that all the training symbols have©FDM System
equal energy, we show that the lower bound is maximized byOrthogonal frequency-division multiplexing (OFDM) has
placing the training symbols periodically in the OFDM symbolemerged as an attractive modulation scheme for high-data-rate
That is, we pick equally spaced tones for training. This is ttammunication systems. It is presently being used in standards
placement scheme that was also obtained in [10], [14]. It is rike Digital Video Broadcast (DVB) and Digital Audio Broad-
markable that this placement not only gives the best channel east (DAB). Proposals for fourth-generation systems include
timate but also maximizes the tight lower bound on mutual ithose that use OFDM as the modulation scheme. Fig. 2 shows
formation. For single-carrier systems, under the assumption tkiz¢ processing performed at the transmitter of the OFDM
the training symbols are of length atleast (2.+1), we show system. The symbol stream is parsed into blocks of length
that the placement schemes in the class QP@PP stands (7 — L) by the serial-to-parallel (S/P) converters. These blocks,
for quasi-periodic placement) [12] are optimal. The placemecalled OFDM blocks, are then transformed by inverse discrete
schemes in QPR-are obtained by breaking the known symbol&ourier transform (IDFT). The cyclic prefix (CP) of length
into as many clusters as possible and placing them such thatithappended to each OFDM block to form a super block. We
unknown symbols blocks are as “equal” as possible. then perform a parallel-to-serial (P/S) conversion of the super

This paper is organized as follows. In Section Il, we introblocks and transmit them. We assume that the channel stays
duce the system model. In Section IlI, we first formulate theonstant over the duration of a super block.
optimization problem for OFDM systems and then determine Known symbols are introduced in frequency as is the norm for
optimal placement schemes. We consider the optimization mbst OFDM standards. We assume that each OFDM block is of
training for single-carrier systems in Section IV. In Section \fength( N+ P) whereN is the number of unknown symbols and

G

2. Transmitter side processing.
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Fig. 3. Receiver side processing.
Fig. 4. Receiver structure.

P is the number of known symbol$v(and P are chosen such
FhatN +P=T- L_)' The vectors - [s1, 82, .., S(N+P)]T We do not constrain the data and training powers to be the same.
is formed by collecting the symbols in each OFDM block. ¢ = LE{trsys!} andp, = 3 trs,s!’, then (4) can be

Fig. 3 illustrates the processing performed at the receivgfiiion as P
At the receiver, interblock interference (IBI), the output due to
symbols from two different OFDM blocks, is dropped. The re- Npq+ Pp:
maining data are parsed into blocks of lendfh— L) by the N+ P
S/P converter and passed through the discrete Fourier transfor
(DFT). The vectomy is formed by collecting the output corre-
sponding to the block.

=1 (5)

%e restrict ourselves to receivers of the structure given in
Fig. 4. We define ag, the output that is due to training. It is

The channel is completely specified by the relation betwedh®" by
the inputs and the outpuy. The channel law is given by dis o, -
" S o Y = N )
" - e ' " dpt Spt wpt
- . . +w (1) .
: ~ ~
e - N dvspd Loner Similarly, y, is defined as the output due to the data symbols. It

D is given by
whered; is theith Fourier coefficient of théN + P)-point DFT

of the channeh. That is, Ya = Dasq +wq ™
dy where D, = diag(dyq, dog, - - -, dya). We assume that the
do channel estimator forms the minimum mean-square error
=v(N+P)W_rh (2) (MMSE) estimate of the channel using only training. The

decoder then useg, and the MMSE estimat®, to perform
the decoding. There is no loss in the restriction to linear MMSE

estimators. This is due to the fact that for a channel with
where W, is the truncated unit norm DFT matrix of sizeGaussian statistics, we have

(N+P)x(L+1),ie,

dnvyp

1 —j27r(k _ 1)(l _ 1) I(ydv Yy Sd) = I(ydv Dd; sd)' (8)
[WL]M = \/ﬁ exp N+P : 3) . . L
+ + This follows from the fact that the input distribution is indepen-

Intuitively speaking, the OFDM transmission scheme conves@ént ofy, and thaty, is independent of, givens, andD,.

frequency-selective fading in time to flat fading on each tone. We assume that the receiver performs optimal decoding,

The vectorw is zero mean, circular, Gaussian with covariand®at is, in contrast to [1], the receiver does not assume that the

equal tos2 I. channel estimate is perfect. The i.i.d. training-based capacity
of the system is then equal to

B. Problem Statement

1]>3

max I(y,, Dy; 84) 9)

fiia.(sa)

We now formulate the problem of designing optimal training. C(P, pa, pt 8t)
Training symbols are introduced #to estimate the channal
We defineP as the set of indexes of the tones used for trainingnere the probability distributiof; ; 1. (s4) and the trainings;
and as seP.,, the indexes of the tones used for transmitting datare such that the input power constraint is satisfied. The notion
The placement scheme is completely specified by th®s@ée of i.i.d. capacity used here is similar to the one in [13]. We also
denote ass; = (s, ..., spe)’ the vector of symbols usednote that in this paper, by i.i.d. capacity, we in fact mean the
for training. We use the subscript to represent the smallesti.i.d. training-based capacity.
element of the seP, and so on. Les, be the vector of data  Our objective then is to obtain optimal placement sch&he

symbols, namelys; = (s14, ..., sya)?. optimal energy allocatiofp;, p;), and optimal training sym-
The power constraint on the system is formulated as bols s} as
1
—— (B{trs s} +trss) =1. 4 (P*, o pi, 80) =arg _max C(P, py, pt, 8¢). (10)

(N+P) P.pd;spt St
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C. MMSE Channel Estimate because the MMSE estimai2 is independent of,. The rela-
In this subsection, we obtain expressions for the MMSE estionship betweemw, ands, is given by
mate of the channel. The model for channel estimation is given dig S14 w1
by
Yo = S e . (18)
di S1t w1
_ _ _ 1 dyva| [ snd WNd
Y = - e : . (11) > o
dpy Spt wpt . .
. AN , This can be rewritten as
D, 8¢ wy A ~
. _ Yy = Dysy + Dysy +wy (19)
Equation (11) can be rewritten as \—;—/
d
=VN+PSI; W, h 12 o . - . .
* N e (12) whereDy is the estimate aD; andD,; the error in the estimate.
Wri It is difficult to evaluate the i.i.d. capacity because the distri-

where the matrixS is given bydiag (s1¢, ..., sp¢), the matrix bution ofy, is difficult to characterize. Therefore, we obtain a
I, is a selection matrix of siz€ x (N + P)withalinrow: lowerbound on the i.i.d. channel capacity and then reformulate
at the position given thé&h index in? and withO's elsewhere. the problem of optimization in terms of this lower bound.

Using the fact that hh' = L+1 I, we can write the MMSE  The lower bound is obtained as follows. Givén.q.(s4), we

estimate as defineQ(fi:.4.(84)), the set of all the conditional probability
VN +PWE g% distributions for a random variable that has the same first- and
= PL

second-order properties ag. That is,

Q(fiia(sq4) = {p(na/sq, ) E{'nd/D} E{Vd/D}
We also note that the covariance matrix of the efree b — b E{nanll /D} = E{vw] /D}, E{nys] /D} = E{vys} /D}.
is given by (20)

-1
: ((N +P)SWr WH, 87 4 (L + 1)03)1) v,.

E{iiﬁH} _ 1 I N+P WPLSHSWPL - (13) Due to the properties of the MMSE estimator for Gaussian chan-
L+1 nels, we have

whereo? = (L + 1)o7, The covariance matrix of the estimate E{v,/D} =0
h is given by E{wyus’ /D} = 0.
~AH I ~~H
Ehh = o1 Ehh" . (14)  Now consider the new model
From the estimate o, we can obtainD,,. If d, = diag (D) 24 = Dysq+ny. (21)

is the vector formed by collecting the diagonal element®gpf
thend,, the MMSE estimate od;, can be written as

= «/(N —+ P) IPCWLiL (15) Clb(Pv 8¢, Pd, pt) .
= Sup inf I(z4, Dg; 84). (22)

wherelp_ is a selection matrix of siz& x (N + P) matrix o (82) P(na/sa, Da)
with al in row ¢ at the position given by th&h index inP. and
with 0’s elsewhere. The covariance of the error in the estlmalt
of the data toned,; = d; — dd is given by

N+P
IPFWL BRSNS - |

L+1 Cu(P, 81, pa pr) = B logdet (14 paR, " DaD; ) (293)

N+P . oy [N+P

<I +—5— W5, SWPL) Wilp |77 (16) whereR, isthe autocorrelation of, and the expectation s with

respect to the random variablesfl)y.
Proof. Please refer to Appendix I.

For this model, we consider the following quantity:

jseasytosee thai‘flb( )is alowerbound o6’(-). This method
of lower bounding is similar to the one used in [2].

I Theorem 1: We have
E{dsd, } =

D. Lower Bound on Training-Based Capacity

In this section we obtain a tight lower bound for Therefore, we have

C(P, pa,pt,8:) and optimize training with respect to this c(
bound. We have

C(Pv Sty Pds pt) max I(y(h sd|D) + I(D Sd)
fiia.(sa) T At low SNR, v, is close to Gaussian and the bound is tight.
We conjecture, that using the same arguments as in [2], [7], the

- f;_fﬂaé@ Hya; 24/ D) (17) bound is tight at high SNR.

7) Pd, Pty St) > Clb(Pv Pd, Pty St)
~ ~H
—E log det (I + puR; DyD, ) . (24)
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The conditional autocorrelation of; is given by We obtain the optimal values of placement and energy
tradeoff(P*, p3, p7) as
RV IE{Vde/Dd}

=E {DdsdsdHDdH} + E{w,wl}

N 1—k
=paR. + 03)1' =g 7’15137); i=1 / <’Vd + kz) ' (29)

(P*v p:(iv p:) = arg 1max Clb(Pv Pd, pt)
Pipa,pt

The matrixR. is diagonal since the symbolg, ands;q are  We attack the problem of joint optimization, by first fixing the
independent fok # {. Thesth diagonal entry inR. denoted as energy tradeoff and maximizing the lower bound with respect to
k; is the MSE of theth data tone. It can be obtained as the placement. We first have the following lemma.

k; = p,E {3(135}1)51 (25) Lemma 1: For any given energy tradedfbq, p:), we have

N
1 1

wherep, is a row vector with al in the index of theith data ~ Ci(P, pa, pr) < Nf <—1 + —ij_\;yd max Z k) .

tone and)’s elsewhere. In terms of the MSE of the data tones, 3 Y TR 30)

Cn(P can be written as .
(P pas i, 81) Proof: Refer to Append|x I.

al padiad? Next, we maX|m|zeZ over the set of all possible
dWid%; g =1 =, -|-
Ow(P: pas pro 82) = ) | E {108 <1+ ki +o2 )} (26)  placements and obtain an upper bound ON(P, pa, o),

w
=1 which is a function of only, andp;.

whered,, is the estimate of thith data tone. We normalize the | emma 2: The lower bound satisfies

Gaussian random variabie, by dividing by the standard devi- p

ation and obtain the zero mean, unit variance Gaussian random Cw(P, pa, p1) S Nf < ) (31)
variabled,y. That is,d;q = V1 — k; d;4. The lower bound can Ye(va + 1) + Py

be rewritten as

wherev, = == is the inverse training SNR.
( ) Proof: E{efer to Appendix IlI.
Cw(P, pa, pr, E log iad ] ) _
(P, pas i, 81) Z < paki+o2 d d) We now show that a simple placement scheme achieves this

upper bound and is thus optimal for any energy tradeoff. Con-
al sider the placemerf?* obtained by selecting the training tones
Z <’7d +k; ) (27) periodically. We assume thaf is a multiple of P so that such
= a selection is possible. It is easy to verify thatif> (L + 1),
then for this placement, the matﬁ'l(gLWpL is a multiple of
the identity matrix. From (16) and (25), we find that

whereyy = ‘;—i is the inverse data SNR. The functigi-) is
defined as

. Yt p
f(n) =E log (1 + n|a:|2) (28) k; = Py’ Vi. (32)

wherez is a complex Gaussian random variable with zero me&om (27) we have

and unit variance. We observe that the capacity lower bound is . P

a function of the MSE of the data tones alone and not those of  C(P*, pa, pt) = N f < N+ P ) (33)
ini n(ye +1) + Pya

the training tones.

and from Lemma 2 we conclude th&t is optimal. We hence
E. Optimal Placement of Training have the following theorem.

In this section, we optimize the placement by maximizing Theorem 2: For any energy tradeoffpq4, p:), under the as-
the lower bound on capacity. At the outset, we assume all teemption thatV = mP(m > 1), andP > (L + 1), all of the
training symbols are constrained to be of equal energy, thatfisllowing placements are optimal:
|sit|> = pr, i = 1, , P. This is the case for most of the cur- )
rent OFDM systems We however, do not claim the optimality” = {¢; i+m+1, i+2(m+1), ..., i+(P-1)(m+1)} (34)

of equal energy allotment where¢ can take values fron to (m + 1). For any of these

lacements, the lower bound is given b
Clb(Pv Pd, Pt, st) = Clb(Pv Pd, Pt, |st|)' p g y

Cw(P*, pa, pt)
From (25) and (27), we note that the lower bound Ppidd*
=NE1 1
Cw(P, pd, p+, 8:) depends only on the magnitude of the 0g< + = 2 Ppt—l—(L—i—l)(pd—i—JQ)) (35)

training symbolss; and hence’y,(P, pa, p+, 8:) is a function
of only P, ps and p;. For equal energy training schemes, wevhered is a complex Gaussian random variable with zero mean
therefore exclude; as an argument afy,. and unit variance.
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It was shown in [10], [14] that the same set of placements

Append
minimizes the MSE in the estimate &f Their performance — /P kS = ps [
metric is hence) .~ " k;, the sum of MSE of both data and Clusters

training tones. Our performance metric is quite different. In fact,

the capacity lower bound depends explicitly only on the MSEg. 5. Processing performed at the single-carrier transmitter.
of data tones and not on those of training tones. To prove the

optimality of periodic tone placement with respect to MSE, it is t=1 t=T

only necessary to show that this placement minimizes the aritI-:E-:-:E
metic mean (AM) of the MSE of the data tones. But, in order tc

show optimality with respect to i.i.d. capacity, we show that the \ \ f / /
optimal placement minimizes the harmonic mean (HM) of the

MSE of data tones. This is a stronger result than the previous o Known Symbol Clusters

because for every placement scheme other than the optimal one,

the HM of the MSEs is smaller than their AM. For the optimal'9- 8- The period over which the channel stays constant.
placement, the HM is equal to the AM because the MSE for all

the data tones is equal. It is, therefore, quite surprising that tt, "™ 2
same set of placements is optimal for this metric as well.
The obtained placement is optimal for any energy allocatior - s e
—
my moy

We assume that the training symbols are placed in optimal p - ' |
sitions and optimize the energy allocation. m; my

Theorem 3: Under the assumption tha = mP (m 2 1) Fig.7. Representation of placement schemes.
andP > (L + 1), the optimal energy distribution is given by

ot = (ﬁ o 1) ﬂ conversion is then performed on these superblocks and they
¢ g are then transmitted through the channel. We have already
1 mentioned that the channel stays constantifasamples and
;= —vV7-1) — 36) . ) . .
Pr (ﬁ i ) Vhk (36) jumps to a new independent value (block-fading model). It is
also necessary to specify over which part of the packet, the
where
p channel stays constant. As shown in Fig. 6, we assume that the
h= NP channel stays constant froimm= 1to ¢ = 7'. Over the period
( ; ) for which the channel stays constant we have
g:(N—i—P) (1 ] (hy -+ ho 11 s 1
b - P(N-L-1) Yo hy - ho s1
(L+1)((N+P)+ No2) .
and =
h . . :
7:E+1. : . - SN4P
Proof: Refer to Appendix IV. Lyr] L hp - hol L Sk
The ratio of power in data to that in training is given by y H o
wy
9r; N-L-1
=,/1+ . 37 w2
hoi \/ L+ D{+602) 57 |
. . . : 38
At low SNR, we find that this ratio is equal io Hence, half the + (38)
energy is spentin training. Similar conclusions were reached in
[2]. | wr |
IV, OPTIMAL PLACEMENT FOR SINGLE-CARRIER SysTEms ~ Whereh = [ho, ..., hr]" is a realization of the channel. We
) ) note that the output vectaris a function of both the symbols
p Y/
A. Single-Carrier System in the current packet = [s, s;, ..., sp]” and the known

Fig. 5 shows the processing performed at the transmit®rmbol clustess; at the start of the next packet.
of the single-carrier system. We assume that the symbols aré&ach packes consists ofV unknown and P+ L) known
parsed into packets of lengti”’ — L) by the S/P converters. symbols. The known symbols are placed in clusters of length
A known symbol clustems;, of length L is appended to the equal toee > L. Fig. 7 shows the placement scheme of the
beginning of each block to form a super block. These knowrector[s? s7]7. In general every placement can be specified
symbol clusters serve to remove the IBlI between consedwy two tuples(m, n) wherem = (my, ..., my) andn =
tive blocks and facilitate block-by-block processing. A P/$nq, ..., ny41). The tuplem gives the lengths of unknown
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Vi Yd tive then is to obtain the optimal placement sché?igoptimal
- MMSE g energy tradeoffp}, p;), and optimal training symbols' as
—
s | Chamd [ | Decodr (P, 0, o}, 87) = arg_max_ C(P, pu, pr, 3).  (42)

P.pd.pt,St

Estimator h

C. Training-Only Based MMSE Channel Estimate

In this subsection, we give properties of the channel estimator
symbol blocks anek gives the lengths of known symbol clus-block. We assume that the estimator forms the MMSE estimate
ters. Since every packet starts with at ledakhown symbols, we of the channel. The model for channel estimation is given by
know thatn; is at least as big ak. We also note that the known —Shiw (43)
symbol cluster/ + 1 includes the first. known symbols at the Y ¢ ¢
start of the next packet. Heneg . is also at least as big aswhere
L. The minimum value of is equal tal, which corresponds to S1,
placing all the training at the ends of the packet. We note that the
number of elements in each tuple is a function of the placement S - Sat (44)
scheme. We refer to the symbols between any two consecutive b : )
known symbol clusters as unknown symbol blocks. Let the set '

P be the set of all possible placement schemsn). Sty

As shown in Fig. 8, the receiver consists of a channel egne matrixs;, is a Toeplitz matrix of sizén; — L) x (L +1).

timator block followed by a decoder. The channel estimatgyis formed by the training symbols in thith training cluster as
forms an estimate of the channel based on training only. Since

Fig. 8. Receiver structure.

) (L+1)

the channel varies from block to block, we can only form a Sit Siy
block-by-block estimate of the channel.f, denotes théth S = . . . (45)
training symbol in theth cluster, then we define the vector of ' '
training symbols S

8 =[sl, st 'S%J-i—l)t . S?fﬁ)t]T- It is easy to see that the mati$k is of size
We note again that (P—(J-1)L) x (L+1).

nyp1—L+1 . The MMSE estimate can then be written as
Sk = [S%t .. Sft]T = [S(.}Jil)t + ... S(.}]—:l)t]T A
h=8/(88] +(L+1)o2D) "y, (46)

We define asy, the part of the output vectog that is due
to training alone. The remaining part of the output vector iBhe covariance of the errdris given by
grouped ag,. The channel estimator block forms the estimate = 1
of the channeh = ¢(y,, 8,). As before, due the assumption B {%H} _ 1 <I S, St) (7)
that the channel is Gaussian, there is no loss in the restriction (L+1) o?

to linear MMSE estimators. The decoder uggsh, ands, to

perform the decoding.

wheres? = (L + 1)o2. The covariance matrix of the estimate

We define ass, the vector containing all the data symbols{1 Is given by
; ; . R I .
The power constraint on the system is formulated as follows: E {hhH} _ _E {hhH} . (48)
1 L+1

H HY _
(N+P+1L) (Eftrsasy} +tras’) =1 (39) e restrict ourselves to the case of orthogonal training that
We do not train the data and traini tobe th is the matrix§, S, = I wherec is a constant. This restriction

€do n<1) cons ra',? € dataan 1 ralnlngbp{)owers obethe Sa'?geprimarily motivated by simpler receiver implementation and
If pg = & E{trsqs; } andp, = 527 trs;8;", then (39) can be

itt P+L mathematical tractability and we do not claim that this choice is
wnitten as optimal. The power constraint on training implies that
Npa+ (P + L)p,
=1. 40 < .
N+P+L (40) c<(P+L)p (49)
Orthogonal training also imposes the upper bound on the
B. Problem Statement number of clusterg. The matrixS; has to be tall and hence
We now formulate the problem of optimal placement of P—L(J-1)>(L+1).

training for single-carrier systems. The i.i.d. capacity of t
system [13] can be defined as

/ . P-1
C(Pv Pds Pt St) é IHEL(X I(ydv h7 sd) (41) J < \‘TJ : (50)
ii.d.(8d

h"Iehis implies that

where the probability distributioff; ; 4. (s4) and the training,  Further,” > (L+1). The restriction to orthogonal training also
are such that the input power constraint is satisfied. Our objériplies that the taps df are independent.
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D. Lower Bound on Training-Based Capacity fact that the first_ and the lasi. samples of,, are affected by
e training symbols.

In this subsection, since the problem of evaluating the ii.fp g L N
We can expresg, in terms of the estimatk and the erroh

capacity is complicated, we obtain a tight lower bound for
C(P, pa, pt, 8;) and optimize training for this bound. As@S

earlier, we have A v, = ffdsd +Tf1 I Hdsd L Th +w,. (54)
CP, pas pr 8:) = fml%();) H(ya; salh). (51) We subtrach from y, to obtainy/,. We thus have

The relationship betweeg, ands, is given by Y, = Hys,+ Hysy +Th+w,. (55)
Y1y H,, o - 0 814 va
Yoy 0 H,, 0 824 It is easy to see that

- I(yy; salh) = 1y salh). (56)

Y4 0 H,, $74 But it is difficult to obtain the latter analytically. As in Sec-
b ~ Ps ‘—;:—’ tion 111, we obtain a lower bound on the i.i.d. channel capacity

by varying the conditional distribution of the noise among those

T that have the same first- and second-order properties;as
T namely,E{v,;/h} = 0, the conditional autocorrelation is given
+1 . [h+ws (52) py
. ? T H | 2
T E{vyw! /h}=p, £ H,H, =TT 40,1
—= (L+1) (1+32)
T (57)
The matrixH ,,,. is a Toeplitz matrix of sizé€m; + L) x m; a R, (58)
given by R
B _ We also note thak{rv,s /h} = 0 due to the property of the
o 0 -0 MMSE estimator.
We obtain a lower bound on the training-based capacity by
hl ho L .
an argument similar to one in Theorem 1. It can be shown that
hy 0 the worst case noise is zero mean Gaussian with autocorrelation
H, = . E " (53) R, and is independent a&f;. Therefore, we have
’ C(Pa Pd;s Pty St) Z Clb(P’ Pd;s Pty St)
0 hg hy i o H
Cu(P: pas prs 3:) =E{logdet(I+ puR, " HoH, )} (59)
0
where the expectation is with respect to the random variable
L0 e e B (ms+L)x (m;) h. The same lower bound was also proposed in [7]. As in [7],

The fact that each training symbol cluster is at least as lomg a¥/€ Propose a lower bound that is looser than the one given
wherea > L leads to the matrisH, being block-diagonal with @P0ve but is simpler to handle. From (58), the mafiixis a

H.,,. having the structure shown above. The mafiiy is not SUM of three matrices. The first matrix is given b}/ (69), shown
block-diagonal if the training symbol clusters are allowed to & the bottom of the page. Each of the matiikHd,, H,,, }
smaller tharl.. The vectors;, is of lengthm; and is composed is a diagonal matrix, since errors in the estimates of the taps
of data symbols in théth unknown symbol block. The matrix are uncorrelated. The diagonal elements are each smaller than

T; is composed of the training symbo(s]; ~%** ... s7) trE{ﬁﬁH} = 7= Asin [7], we define a matrixR,, as
and (s{;y 1y, - > S(i11))- That'is, T is a function of theL ”2
training symbols immediately before and after teunknown _ pd L2 V14 1 TT". (61)
symbol block. These matrices are introduced to account for thé ™" 1+5 " (L+1)(1+ %) )

[ paE {IErmlfIfh } 0 0 ]

-~ -~ H 0 pdE {HWQHZQ } 0
oE {Hde } - (60)
- -
i 0 puB{Hu,H,,}




2346 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 8, AUGUST 2002

SinceR,, > R, andA > B with A andB both being positve = Lemma 3:

definite, implies thatA™| < [B™'| [6, p. 471], it follows that
Clb(Pa Pds Pt st)

Jo
< Z E{log
i=1

g sl “1g i
I+ R HoHy | < |+ puBS HaH | (62) 14 P (P + Lyp,

02 (P4 L)py + (L + 1)(pa + 02)

} (65)

} (63) wherem;, = (my, ..., my, ) is the unknown symbol block
length tuple for the QPIe- scheme withV unknown andP
known symbols.
Proof. Refer to Appendix V.

This is used to propose the lower bound

oH O
Clb(Pa pda pta st) HﬁliHrni

= E{log

where f{d is obtained by normalizingfId. Specifically, the
channelh that generate#l ; is normalized to zero mean, i.i.d.

C

a2 —lg gH
I+pd1+ﬁR,,1Hde

Gaussian with variance of each tap equajtg . The following theorem shows that under the assumption that
a > 2L + 1, the placement schemes belonging to QP&e
E. QPP Schemes optimal. Furthermore, an optimal choice of training symbols is

In this subsection, we introduce a family of placemerdlso given.
schemes called QPP schemes. This family is divided iNtOr o orem 4: Given any energy tradeoffoy, p:), under the

different classes based on the minimum allowable cluster Si%\%wmption thatr > (2L + 1) and P > «, the placement
The class of schemes for whiehis the minimum cluster size schemeP* and trainings; is optimal if

is denoted as QPR:- Intuitively, the QPPa scheme is formed
by first breaking the known symbols into as many clusters 1) 7" belongs to QPRe.
as possible each of length at leastand then placing these
clusters such that the unknown symbol blocks are as “equal” as (P+ L)p,
a-
0,

possible. We give the formal definition as follows. fh=(L+1),i=2...,J

J—1 7
Definition 1: Givena and a frame withV unknown symbols otherwise.
andP > « known symbols, let/, = [£] + 1. A placement (66)
schemeP = (n, m) belongs to QPR if and only if If (L +1) < P < «, the known symbols are placed at the
1) n € N’= where beginning and the end of the packet such that at [dast1) are

at one of the ends. That is, a placement sch&hand training
symbolss; are optimal if

Jo
J(\ _ . . —
NYe = {(nl, ceey ”JG+1)-ZZ:;TL% =r 1) P = (m, n) where

&ny =ng, 41 =1L m=(N),n=Q2L+1+5, P-1-73)
&Inin({ng,...,nJa)za}. ando < g < P—(L+1).
2)
2) m € M”> where | = { VP + Ly, ifk=(L+1),i=1 67)
‘ 0, otherwise.

Mo = {(ml, e mJG):Zmi =N
i In either case we have

&mi c { {%J) <\‘%J —+ 1)}} Clb(rpjv Pd, Pt, 8:)
° (P+ L)p:

=Y E 10g<1+ L

Any element of the se¥/’~ isdenoted as ;. = (Ay, ..., s, ) P 02 (P+L)p, + (L+1)(pa+02)
and similarly any element of the sét’~ is denoted agm; = o
(ml,...,mjn). 'HgiHﬁzi>~ (68)
F. Optimality of QPPa Schemes for Unknown Channel Proof: Refer to Appendix VI.
We obtain optimal trainingP*, o5, pi, 8;) as We find that QPP« placement schemes that were found to be

P optimal in the known channel scenario [12] are optimal for this
(P, pas i, ) = are P papirs: Cin(P; pas Pt 8¢)- (64)  scenario too. From (66) and (67), we find that for the optimal
o choice of training symbols, the symbols at the beginning and
We first obtain an upper bound @, (P, pa, pt, 8¢) thatis a the end of each known symbol cluster are zero. If these symbols
function of onlypq, p¢, N, andP. are nonzero, we find that these symbols contribute additional
1Given two Hermitian matriced and B, we sayA > B if and only it the NOISe to the received data because of the error in the channel esti-
matrix (A — B) is positive semidefinite. mate. Also we find that in each cluster, there is only one nonzero
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Fig. 9. \Variation of lower bound with percentage of known symbolsifor 155 andL = 3 at different SNRs.

training symbol. This design makes sure that the training is di-s easy to see that the mutual information is not a function of
ways orthogonal. FoE < « < 2L, itis difficult to analytically s, andp,. GivenN andP, the upper boun@y;, (P, py) is given
obtain the optimal placement schemes. by

The minimum known symbol cluster sizeis also a design

parameter. The following theorem gives the optimal value.of Cun(P, pa) = jmax I(yy, h; sa) (71)

Theorem 5: Forae > 2L+1, Cyw(P*, pa, pt, 8;) IS a@amono-
tonically decreasing function af.
Proof: Refer to Appendix VII.

wherefi; 4.(s4) isani.i.d. probability distribution satisfying the
energy constraint. It is easy to see that
} (72)

1+ mna,
a

The obtained placement schemes are optimal for any energy Cun(P, pa) IE{IOg
allocation. The following theorem gives the optimal energy al-

J
location between training and data under the assumption that the _ Bl log|T + Pl gH g 73)
optimal placement scheme and training symbols are used. — g2 T
Theorem 6: The optimal energy distribution is given by We now consider optimize placement of training with respect
N VY to this upper bound. Givem;, we find out the optimal placement
Pag = (\/’7 - m) 7 as
* 1 *
pr = (\/’7 - VY- 1) ik (69) P*(pq) = arg max Cun(P; pa)- (74)
where P Upon comparing (72) and (63), we note that both the lower
h=_— ound and the upper bound depend on placement in exactly
bound and th bound d d I [ |
jj\; the same way. Hence, it can be shown thatdor (2L + 1)
g=— and P > «, the placemenP*(p,) is optimal if it belongs to
(IJD FLYN—L—1) a QPPa scheme. The optimal placement is therefore indepen-
k= dent of p;. We can now try to fix this placement and optimize
2
(L+1)(T+Nag) pq @andp,. The optimum value of, is in fact equal to zero and

k

Proof: The proof is similar to the one for Theorem 3. V. SIMULATION

G. An Upper Bound on the Training-Based Capacity In this section, we explore the properties of training-based
We obtain an upper bound on the training-based capac pacity for b.Oth OFDM and singl_e-carri_er systems through
by assuming that the receiver estimates the channel perfe ulations. First, we present the S|mula_t|0ns for .OFDM Sys-

tems followed by the simulations for the single-carrier systems.

from training. In other words, we assume thats h. Clearly, ; .
the maximum i.i.d. mutual information in this case is an uppé/ye conclude with some comparisons between the OFDM and
ts:mgle-carner systems.

bound onC (P, p4, p:, 8:). (Note that the upper bound may no
be tight.) The relation between the input and output now b@- ~rpp System

comes ] o . .
Fig. 9 shows the variation of lower bound given in (35) for

y=Hysy +wy. (70) training-based capacity with the percentage of known symbols
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Variation of Lower Bound with Coherence Time, SNR=0dB, L=3 Variation of Lower Bound with Coherence Time, SNR=20dB,1L=3
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Fig. 10. Variation of lower bound with coherence interval foe= 3 at different SNRs with optimized® at eachT".

1007 ‘The coherence intervdl is equal tol55. We assume that : _[Fficlency of Trainng-Based Systems L = 3,7 = 155

T . : : : . . T e Py P, Optimized
the channel is of lengtd. Plots are shown for 0- and 20-dB ; ;
SNR. Curves are plotted for boyly = p, = 1 and (pd, pt) Q9 SETSS SNSRI oo - S

optimized cases. We assume that the optimal placement schem§
was used in all cases. We find that for the equal energy allo-
cation case, the bound increases and then falls. The optimun
percentage of known symbols is approximately equal to 15%
for SNR = 0 dB and 6% for SNR= 20 dB. It is natural to
expect the optimum percentage of known symbols to decrease¢
with SNR since the quality of the estimate improves with SNR.
For the optimized energy-allocation case, the bound decrease §
monotonically. From simulations we find th& = (L + 1) is
always optimal. For single-carrier systems with single known S e
symbol cluster and optimized energy tradeoff, it is indeed true .l . ¢ i i S ¢
that P = (L + 1) is optimal [7]. We conjecture that this can
be shown to be true for OFDM systems as well. At high SNR, _ . : :
L . . e Fig. 11. Fraction of known channel capacity achieved at different SNRs for

the gain in optimizing, p; is minimal. We also note that for 7°2 155 andz. = 3 with optimizedP at each.
the equal energy allocation scenario, the bound rises rapidly but
falls at the smaller rate. B. Single-Carrier Systems

In order to evaluate the asymptotic performance of the train-

0.9

o
@
&

ion of Known Channel Capacity Achi
o
[

0.75

10
SNR

ina-based svst lot th iati D N In this subsection, we study the training-based capacity for
ing-based systems, we plot the variatiort{(P", pa; pt, 8) single-carrier systems through simulations. We evaluate the

with the coherence intervar in_ F.ig. 10. The plots are shown asymptotic performance of training-based systems in Fig. 12.
for both equal energy and optimized energy allocation for boflye piot the lower bound versus the coherence intefival

low SNR (0 dB) and high SNR (20 dB). At each valuelaiwe oy |0y SNR (0 dB) and high SNR (20 dB). The value bf
evaluate the optimum number of known symbols and calculgig s set ta3. The minimum cluster size: was made equal to
the lower bound by setting the number of known symbols t9 | 1. For each value of’, the optimum number of known
this value. We find that at h|gh SNR, the CapaCity of trainin%ymbcﬂs was used. The p|acement scheme used was mQPP_
based system approaches that of the known channel faster thaifeme. Like in OFDM systems, we find that at high SNR,
at low SNR. We also note that at small valuesIofthe gain asymptotically training-based capacity approaches the known
from optimizingpq, p: is minimal. channel capacity. In order to characterize the efficiency of the
In order to judge the efficacy of training-based scheme training-based system with respect to SNR, we plot the fraction
achieving the capacity of the unknown channel, we plot thef known channel capacity achieved with SNR (see Fig. 13).
fraction of known channel capacity achieved versus SNR (sAs earlier, we find that training-based systems achieve most of
Fig. 11). We find that afl” = 155 and SNR= 20 dB, the ca- the unknown channel capacity at SNR20 dB andl’ = 155.
pacity of the trsining-based scheme is close to that of the known . ) .
channel and we can thus conclude that training-based meth&dsComparison of OFDM and Single-Carrier Systems
achieve most of the unknown channel capacity at high SNR andn this subsection, we compare the performance of OFDM
largeT". Similar conclusions were reached in [2], [7]. systems with single-carrier systems in different scenarios.
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Fig. 12. Variation of lower bound with coherence interval for single-carrier systéms155 andL = 3 for different SNRs.

Efficacy of Training-based Schemes - Single Carrier, T = 155, L =3
T

0.9 T T T T

that at intermediate values ©f, single-carrier systems can out-
T perform OFDM systems by as much as 10%.

o4
o
[

VI. CONCLUSION

The problem of designing optimal training symbol placement
schemes for block frequency-selective fading channels is pre-
sented. It is assumed that the receiver forms an MMSE estimate
of the channel based on only training. The problem is addressed
_ : : : : : : for both OFDM and single-carrier systems separately since the
paradigm for channel estimation is different for each system.
S : ; : é The metric used for optimization was a tight lower bound on

3 : 3 5 : 5 5 the i.i.d. capacity of the system.
: : 5 : : : : Itis shown that for OFDM systems, under the assumption that
s ; ; L ; ; i ; the training tones are of equal energy, the optimal placement
° s\ scheme is that for which the training tones are selected peri-
odically. We also present expressions for optimal energy allo-
Fig. 13. Fraction of known channel capacity achieved at different SNRs feixtion between training and data. For single-carrier system, we
T = 155 andL = 3. .
assume that the known symbols are placed in clusters of length
a > 2L 4 1. Forae > (2L + 1), we show that the placement
Fig. 14 compares the variation of the training-based lowsechemes belonging to the QRPfamily are optimal. Further-
bound with percentage of known symbols for OFDM anthore, a choice of optimal training symbols is presented. Expres-
single-carrier systems with the coherence inteiivat 155 and sions for optimal energy allocation between data and training
the channel length equal tb We find that the training-basedare given.
capacity for single-carrier systems is consistently better thanFrom simulations, we find that at large valuesZofand at
that of OFDM systems. For optimizéd,, p:), we find that the high SNR, training-based systems achieve most of the unknown
percentage difference is less than 5%. For equal energy casennel capacity. At low SNR, however, this is not true. The
at low SNR, we find that the single-carrier system perfornmomparison of the lower bound for OFDM and single-carrier
considerably better than the OFDM system at small percentaystems shows that the single-carrier system performs better
of known symbols. This difference becomes smaller witthan the OFDM systems. This is to be expected because the
the number of known symbols. At high SNR, the percentageFDM system drops some received data for simpler receiver
difference between OFDM and single-carrier systems beconiegplementation. We find that for optimal energy allocation, the
much smaller. percentage difference between the two systems is quite small.

Fig. 15 compares the variation of the training-based low€or equal energy case, on the other hand, the single-carrier
bound with the coherence tiniE for OFDM and single-car- system might be considerably better than the OFDM system
rier systems with the channel length equalitoAs expected, for some values of” and P.
the known channel capacity for OFDM converges to that for We list some related issues that are beyond the scope of this
single-carrier systems at largé We find that for optimized paper but have both theoretical and practical interest. In this
(pa, pt), the difference between OFDM and single-carrier sypaper, we assume that the channel taps are i.i.d. A more re-
tems is quite small. For equal energy allocation, though, we firdistic assumption is to let channel taps be correlated and not

b
13

Fraction of Known Channel Capacity Achieved
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e
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Fig. 15. Comparison of the variation of training-based lower bound with the coherence iffeiaaOFDM and single-carrier systems fér= 3 at different
SNRs.

necessarily identically distributed. This model turns out to b&e next obtain a lower bound ony, by fixing s; ~
quite difficult to analyze. Nevertheless, it is definitely a inter€ A’(0, paI) and then taking the infimum among the distri-
esting problem. The extension of the single-carrier results foutions in (fii.4.(s4)). We then know that the worst case
equal energy training is also an open problem. The extensidatistribution is independent Gaussian [2]. Therefore,

of these placement schemes to multiple antenna systems is an

interesting research topic. Another interesting problem is opti- Cy, 2 E log det (I + paRR, lDde ) (77)
mizing training for receivers that assume that the channel esti-
mate is perfect. where the expectation is with respectBo From (77) and (76)
we have the theorem.
APPENDIX |
PROOF OFTHEOREM 1 APPENDIX I

The following proof is similar to the one in [2]. Note PROOF OFLEMMA 1

thatn, ~ CN(0, R,,) belongs to(f;;.4.(s4)) for every We have
fiia.(84). It can be seen that

O, £ fi,is,;lll,}zsd) I (Dde +mng, Dy; Sd) (75)  Cw(P, pa, pt) ; f <’Yd+k ) (78)
wheren, ~ CA(0, R,,). Therefore, we have

S <
O, < E log det (I + paRS DDY ) . (76) sNJ NZWM (79)
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14+g 1 application of the matrix inversion lemniaNow using some
=Nf{-1 N ;WJF,% (80) simple manipulations, the above can be rewritten as
N N (N+P) < " )1
1 = | [+ —<V5,V
<NF{ =1+ maxd" LB vt (LA wlya+1) PEOTE
P vatki 1
The first inequality holds because the functifip) is concave. + Yalva+ (L + 1)
The second inequality follows becaugé) is monotonically -1 Y
decreasing. O | V I+ vyiy ) 14 88
g < PL < Y+ 1) rLY PL pL> (88)
APPENDIX |lI N (N+P) -t
=— - {1+ — 14 yHy
PROOF OFLEMMA 2 v va(va+ DL +1) r< + (,y 1) PL PL)
We define the metrid (P, pa, pr) = Yi; 4. From P, Yt 7 Vo v -t
Lemma 1, we have that Ty 7§(L+1) R +1) PLEPL
Clb(Pv Pd, Pt, S:() I (89)
1+ 94 N (N + P) Nt -
SNf(—l—i— max M(P,pd,p)>. 82 =—4 = _— +
N Ppap ' Yoo 75 \va(a+D(L+1) AL+ ;
From (25), we have 1
: (90)
M(Pv Pd, pt) )\Z +1
N 1 where {\;}/' are the eigenvalues of the matrix 4+

oV “1\ yip (83) - VB, Vpyr. Equation (89) follows from the matrix inversion
=1 \/—<’7d1+(1+ VPIVPL) ) VETT lemma. Equation (90) follows from the fact tHét- . V5, has

only (L + 1) nonzero eigenvalues and they are the same as
whereVy = VN +PWi, Vpr = VN+PWpr, andy,  oce ofV'Z, V. We now note that

is the inverse training SNF\’— By the Cauchy-Schwartz in-

equality2 we have Li:l \ = Yd i (V v )
T = 7 | 1\ PL
M(P, pd, pt) i=1 n(ra+1) o
o yaP(L+1)
v p? = 91
< al+ <—’+ VPLVPL> ) \/ET (e + 1) ©D
(84) Under the constraint (91), it is easy to see that
L+1
N (L +1)
1 (92)
S Z > =
Yya(L +1) ; B )\ + 1 M cr=sy

-1 with equality if and only if all the); are equal or, equivalently,
. <1 _ <(’Yd + DI+ Jd VgLVP L) ) V;’pff (85) the matringLVpL must be equal to a constant times identity.
T Combining (90) and (92), we have

N

N 1 N
L M(P, pus pr) = ———— (93)

Vd ’Yd(fﬂrl)iz:;pZ L t ’Vd+ﬁ

-1
We then have that
g <(’Yd + DI+ %VgLVPL> prff (86)
t ]_ _|_

_ N 1 Cw(P, pa; pt, 8t) <N ,yd T W
e vl +1) i

-1
Yd v H H
. vd 94
tr <VL <(’7d + DI+ ” VPLVPL> VL) < Yo+ 1)+ P’Yd) 4)

1 r O
+ —— Ve
va(L + 1) ; APPENDIX IV
-1 PROOF OFTHEOREM 3
YdyrH H
. +DI+ =V, V Via; 87 L .
<(7d ) Ny PLTPE L4 87) The objective is to maximize
whereg; is a unit row vector with & in the index of theith IN Pp.pqg 95
training tone and’s elsewhere. Equation (85) follows from the Peff = 02(Pp; + (L + 1)(pg + 02)) (95)
2f 2 is a unit norm row vector and is a matrix then—Lp < 2A~'2". S(A+BCD)"'=A'—-A'B(C '+DA 'B)"'DA"'.See, eqg.,

See, e.g., [6]. . [5].
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under the power constraint wherem;_ = (m4, ..., my, ) is the unknown symbol block
N P length tuple for the QPR- scheme with’Y unknown andP
Npa+Lpr known symbols [12]. I/ < J, then
N+P
J Ja
This is a simple optimization problem similar to one performedz 9(pas pe, mi) Z 9(pas pr, mi)+ Z 9(pa, pt, 0)
in 2], [7]. i=1 i=J+1
0
APPENDIX V J.,
PROOF OFLEMMA 3 — 9(pa, pr, M)
We have i=1
Ja
(P, pas prs 51) = {log I+pa -2 R,'H.H } < 2 9o puo ) (100)
0'2 =
(96) wherem/ = m; fori =1, ..., Jandm/, = 0fori = (J +
where 1), ..., J,. The inequality follows from (99). The properties
(99) and (100) together withh < .J,, imply that
Pd 2 H J J,
R :< - +aw>I+TT . (97) o
T\t 5 > glpas pr, mi) £ glpas pe, ). (101)
=1 =1

We obtain an upper bound @h\,(P, p4, p+, 8:) thatis a func-

tion of only the energy tradeoffsa, p; ). We have Finally, we note that under the constraint that each known

symbol cluster is at least as big asthe number of unknown

Cw(P, pa, pr, 3,) data blocks/ < .J,. Hence
c Jo
= E{log I+ o c+ (L+1)(pa+02) H.H Cu(P, pa, pt, 8t) < g(pa; pt, Mi)- 0
(P+L)p 1B =
< oslI4 B i e BB )
J (P+L)p: APPENDIX VI
;E{bg o2 (P+Lpe+(L41)(patol) PROOF OFTHEOREM 4
We first assume that > (2L + 1) andP > «. Let the
H,IZLHW } placement schem®* belong to QPRx. The particular choice
P of training symbolss; implies that every packet starts with
A exactly L zeros. Moreover, each known symbol cluster starts
- Z 9(pa pr; mi)- and ends withl. zeros. Each known symbol cluster has only
=1 one nonzero training symbol. The energy in training is divided
The first inequality follows because equally among all these symbols. For this choice of training, it
is easy to see that the matix as defined in (52) is equal to
R, > <1 Pd__ 4 U;) I zero. FurthesS;’ S, = (P + L)p,1. This implies that matrix
1 — + U_c2 w

Rm = ﬁidw I
andA > B with A and.B both being positive definite, implies L

that|B~'| > |A™'| [6, p, 471]. The second inequality followsand the lower bound can be easily evaluated as
from (49) and the fact thdf + AB| = |I 4 BA|. The matrices

H Hm are positive definite and Toeplitz. This can be used ) Ja
to show that the functiop(-) has the property [12] Cw(P*, pa, pt, 8;) 9(pa, pt, Mi)- (102)
=1
29(pa, pe, 1) > g(pa, pe, n + k) + g(pa, pr, n — k), From Lemma 3, we can conclude that the choice of the place-
Vne Zt&ke{0,1,...,n}. (98) mentscheme and training symbols is optimal. The proof for the

case wherfL + 1) < P < « is similar.
It is easy to see that the above property implies that given

J = Ja APPENDIX VII
7 J. PROOF OFTHEOREM 5
> 9pas pr, mi) < glpas pr, i) (99)  Fora > 2L + 1, we have
i=1 i=1
Ja
4Given two Hermitian matriced andB, we sayA > B if and only if the Cw,(P*, pa, pt, 87) Z 9{pa, pr, ™). (103)

matrix (A — B) is positive semidefinite. im1
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Hence, the lower bound depends @ronly through the value  [4]
of J,. Itis easy to see thak, increases aa decreases. Given

oy > g such that/,, > J,,, we have [5]
Ja, Jay (6]
> 9(par prs mi) <Y 9(pa, pr, Mi).  (104) 0
=1 =1
This follows from (101). O
(8]
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