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Abstract—The problem of placing training symbols optimally
for orthogonal frequency-division multiplexing (OFDM) and
single-carrier systems is considered. The channel is assumed to
be quasi-static with a finite impulse response of length( + 1)
samples. Under the assumptions that neither the transmitter nor
the receiver knows the channel, and that the receiver forms a
minimum mean square error (MMSE) channel estimate based
on training symbols only, training is optimized by maximizing a
tight lower bound on the ergodic training-based independent and
identically distributed (i.i.d.) capacity. For OFDM systems, it is
shown that the lower bound is maximized by placing the known
symbols periodically in frequency. For single-carrier systems,
under the assumption that the training symbols are placed in
clusters of length (2 + 1), it is shown that the lower
bound is maximized by a family of placement schemes called
QPP- , where QPP stands for quasi-periodic placement. These
placement schemes are formed by grouping the known symbols
into as many clusters as possible and then placing these clusters
periodically in the packet. For both OFDM and single-carrier
systems, the optimum energy tradeoff between training and data
is also obtained.

Index Terms—Ergodic capacity, orthogonal frequency-division
multiplexing (OFDM), placement schemes, single-carrier systems,
training symbols, unknown channels.

I. INTRODUCTION

T HE problem of achieving the capacity of a linear, time-in-
variant Gaussian channel under the assumption that both

the transmitter and the receiver know the channel is mature ([8]
and the references in it). For wireless communications, espe-
cially mobile wireless, the channel is random and time-varying.
Hence, the assumption that either the receiver or the transmitter
knows the channel is unrealistic [3]. The rapid growth in mobile
wireless applications has motivated the problem of finding the
capacity of a fading channel under the assumption that neither
the receiver nor the transmitter knows the channel (unknown
channel scenario).

The block-fading model [3] provides a first-order approxima-
tion to the continuously time-varying channel, and it is simple
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enough to be mathematically tractable. The key parameter in
this model is the coherence interval. The channel is assumed
to stay constant for samples and change to a new value. The
capacity of a single antenna system for the unknown channel
scenario where the channel under goes Rayleigh flat-fading
channel with has been addressed in [4]. The problem
of finding the capacity for Rayleigh flat-fading model under
a more general setting of multiple antennas and a general
was considered by Marzetta and Hochwald [15]. Their work
gives useful insights for the single antenna problem as well.
It was shown that as , the unknown channel capacity
approaches the known channel capacity.

It is important to develop simple techniques that achieve the
capacity of the unknown channel. A paradigm that is often em-
ployed in practice is to first estimate the unknown channel and
then use the estimate to perform decoding. The most popular
and practical technique of learning the channel is by insertion of
training symbols in the data stream. While insertion of known
symbols can in general be suboptimal, it is mandatory in order to
simplify the receiver implementation. This introduces the notion
of training-based capacity, which is the maximum rate achiev-
able with codewords that consist of known and unknown sym-
bols. The question then arises about how close the training-
based capacity is to the capacity of the unknown channel and
how one should optimize training to maximize the training-
based capacity of a mobile wireless channel. This problem was
considered for a multiple-antenna system under Rayleigh block
fading scenario by Hassibi and Hochwald [2]. They obtained
tight lower bounds on the capacity of the training-based sys-
tems and optimized the fraction of training symbols, energy al-
located to training and data to maximize this bound. Their paper
provides a useful framework for analyzing the capacity achiev-
able by training-based schemes in general. An important insight
of this analysis is that training is optimal at high signal-to-noise
ratio (SNR) and suboptimal at low SNR. Similar techniques for
lower-bounding mutual information under imperfect knowledge
of the channel have been proposed by Medard [9].

Demand for higher bit rate leads to frequency-selective
fading in mobile wireless channels. This motivates the question
of designing training for frequency-selective fading channels
with block fading. A new degree of freedom that is specific
to frequency-selective channels is the placement of training.
The performance for the flat fading scenario turns out to be
independent of the placement of known symbols. Furthermore,
the problem of training-symbol placement has to be addressed
for both single-carrier and multicarrier systems separately since
the paradigm for training is different for the two transmission
systems.
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For single-carrier systems, the design of training, namely,
the fraction of training, the choice of training symbols, and en-
ergy tradeoff between training and data, for frequency selective
fading model was addressed in [7] under the assumption that
all the training symbols are placed at the start of the packet. It
was shown that at high SNR training-based schemes are capable
of capturing most of the channel capacity, whereas at low SNR
they are highly suboptimal. The placement of training though
was assumed to be fixed.

The placement of training affects the capacity of the system
through channel estimation and detection. We have previously
considered the problem of joint optimization of symbol place-
ment and equalizer for a symbol-by-symbol decision feedback
receiver [11] under the assumption that the channel is known
at the receiver. The performance criterion used was average
mean-square error (AMSE). It turns out that the optimal symbol
placement is to separate the known symbols by at least the de-
tection delay of the decision feedback receiver. The optimal
placement of known symbols for single-carrier broadcast sys-
tems where the channel undergoes nonergodic fading was con-
sidered in [12]. The metric used was outage probability. It was
shown that the outage probability is minimized by breaking the
known symbols into small blocks and placing them periodically.

The problem of optimizing placement of training for mini-
mizing the mean-square error (MSE) in channel estimate has
been addressed for OFDM systems in [10]. Optimal training
placement schemes were obtained for the more general setting
of block precoded transmissions with cyclic prefix in [14]. The
metric for optimization was again the MSE of the channel esti-
mate. However, as alluded to earlier, channel estimation is just
one facet of the problem. The placement of known symbols af-
fects not only the channel estimate but also the detection of un-
known symbols. In this paper, we take the holistic view and try
to optimize the placement of known symbols by maximizing the
training-based capacity.

In this paper, we first use the framework developed in [2]
to obtain a tight lower bound on the training-based capacity of
OFDM and single-carrier systems. We then optimize the place-
ment of training by maximizing this lower bound. For OFDM
systems, under the assumption that all the training symbols have
equal energy, we show that the lower bound is maximized by
placing the training symbols periodically in the OFDM symbol.
That is, we pick equally spaced tones for training. This is the
placement scheme that was also obtained in [10], [14]. It is re-
markable that this placement not only gives the best channel es-
timate but also maximizes the tight lower bound on mutual in-
formation. For single-carrier systems, under the assumption that
the training symbols are of length at least , we show
that the placement schemes in the class QPP-(QPP stands
for quasi-periodic placement) [12] are optimal. The placement
schemes in QPP-are obtained by breaking the known symbols
into as many clusters as possible and placing them such that the
unknown symbols blocks are as “equal” as possible.

This paper is organized as follows. In Section II, we intro-
duce the system model. In Section III, we first formulate the
optimization problem for OFDM systems and then determine
optimal placement schemes. We consider the optimization of
training for single-carrier systems in Section IV. In Section V,

Fig. 1. System model.

Fig. 2. Transmitter side processing.

we illustrate the ideas through simulations, and finally, conclude
in Section VI. The Appendix contains the proofs of lemmas and
theorems stated in the paper.

II. SYSTEM MODEL

The system model is shown in Fig. 1. The channel
has a finite-impulse response of length

samples (where the symbol denotes the transpose
of the vector). We assume that taps of the channelare inde-
pendent and identically distributed (i.i.d.) circularly symmetric
complex Gaussian with zero mean and variance equal to.
The fading coefficients remain constant forsymbol periods
and change to an independent value. We assume that neither
the receiver nor the transmitter knows the fading coefficients.
The received signal is corrupted by additive white noise that
is circularly symmetric complex Gaussian with zero mean and
variance . This model, described above, is an extension of
the quasi-static flat fading to quasi-static frequency-selective
fading.

III. OPTIMAL PLACEMENT SCHEME AND TRAINING FOR

OFDM SYSTEM

A. OFDM System

Orthogonal frequency-division multiplexing (OFDM) has
emerged as an attractive modulation scheme for high-data-rate
communication systems. It is presently being used in standards
like Digital Video Broadcast (DVB) and Digital Audio Broad-
cast (DAB). Proposals for fourth-generation systems include
those that use OFDM as the modulation scheme. Fig. 2 shows
the processing performed at the transmitter of the OFDM
system. The symbol stream is parsed into blocks of length

by the serial-to-parallel (S/P) converters. These blocks,
called OFDM blocks, are then transformed by inverse discrete
Fourier transform (IDFT). The cyclic prefix (CP) of length
is appended to each OFDM block to form a super block. We
then perform a parallel-to-serial (P/S) conversion of the super
blocks and transmit them. We assume that the channel stays
constant over the duration of a super block.

Known symbols are introduced in frequency as is the norm for
most OFDM standards. We assume that each OFDM block is of
length where is the number of unknown symbols and
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Fig. 3. Receiver side processing.

is the number of known symbols (and are chosen such
that ). The vector
is formed by collecting the symbols in each OFDM block.

Fig. 3 illustrates the processing performed at the receiver.
At the receiver, interblock interference (IBI), the output due to
symbols from two different OFDM blocks, is dropped. The re-
maining data are parsed into blocks of length by the
S/P converter and passed through the discrete Fourier transform
(DFT). The vector is formed by collecting the output corre-
sponding to the block.

The channel is completely specified by the relation between
the input and the output . The channel law is given by

...
...

...
(1)

where is the th Fourier coefficient of the -point DFT
of the channel . That is,

...
(2)

where is the truncated unit norm DFT matrix of size
, i.e.,

(3)

Intuitively speaking, the OFDM transmission scheme converts
frequency-selective fading in time to flat fading on each tone.
The vector is zero mean, circular, Gaussian with covariance
equal to .

B. Problem Statement

We now formulate the problem of designing optimal training.
Training symbols are introduced into estimate the channel.
We define as the set of indexes of the tones used for training
and as set , the indexes of the tones used for transmitting data.
The placement scheme is completely specified by the set. We
denote as the vector of symbols used
for training. We use the subscript to represent the smallest
element of the set , and so on. Let be the vector of data
symbols, namely, .

The power constraint on the system is formulated as

(4)

Fig. 4. Receiver structure.

We do not constrain the data and training powers to be the same.
If and , then (4) can be
written as

(5)

We restrict ourselves to receivers of the structure given in
Fig. 4. We define as the output that is due to training. It is
given by

...
...

... (6)

Similarly, is defined as the output due to the data symbols. It
is given by

(7)

where . We assume that the
channel estimator forms the minimum mean-square error
(MMSE) estimate of the channel using only training. The
decoder then uses and the MMSE estimate to perform
the decoding. There is no loss in the restriction to linear MMSE
estimators. This is due to the fact that for a channel with
Gaussian statistics, we have

(8)

This follows from the fact that the input distribution is indepen-
dent of and that is independent of given and .

We assume that the receiver performs optimal decoding,
that is, in contrast to [1], the receiver does not assume that the
channel estimate is perfect. The i.i.d. training-based capacity
of the system is then equal to

(9)

where the probability distribution and the training
are such that the input power constraint is satisfied. The notion
of i.i.d. capacity used here is similar to the one in [13]. We also
note that in this paper, by i.i.d. capacity, we in fact mean the
i.i.d. training-based capacity.

Our objective then is to obtain optimal placement scheme,
optimal energy allocation , and optimal training sym-
bols as

(10)
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C. MMSE Channel Estimate

In this subsection, we obtain expressions for the MMSE esti-
mate of the channel. The model for channel estimation is given
by

...
...

... (11)

Equation (11) can be rewritten as

(12)

where the matrix is given by , the matrix
is a selection matrix of size with a in row

at the position given theth index in and with ’s elsewhere.
Using the fact that , we can write the MMSE
estimate as

We also note that the covariance matrix of the error
is given by

(13)

where . The covariance matrix of the estimate
is given by

(14)

From the estimate of, we can obtain . If
is the vector formed by collecting the diagonal elements of
then , the MMSE estimate of , can be written as

(15)

where is a selection matrix of size matrix
with a in row at the position given by theth index in and
with ’s elsewhere. The covariance of the error in the estimate
of the data tones is given by

(16)

D. Lower Bound on Training-Based Capacity

In this section we obtain a tight lower bound for
and optimize training with respect to this

bound. We have

(17)

because the MMSE estimate is independent of . The rela-
tionship between and is given by

...
...

... (18)

This can be rewritten as

(19)

where is the estimate of and the error in the estimate.
It is difficult to evaluate the i.i.d. capacity because the distri-
bution of is difficult to characterize. Therefore, we obtain a
lower bound on the i.i.d. channel capacity and then reformulate
the problem of optimization in terms of this lower bound.

The lower bound is obtained as follows. Given , we
define , the set of all the conditional probability
distributions for a random variable that has the same first- and
second-order properties as. That is,

(20)

Due to the properties of the MMSE estimator for Gaussian chan-
nels, we have

Now consider the new model

(21)

For this model, we consider the following quantity:

(22)

It is easy to see that is a lower bound on . This method
of lower bounding is similar to the one used in [2].

Theorem 1: We have

(23)

where is the autocorrelation of and the expectation is with
respect to the random variables in .

Proof: Please refer to Appendix I.

Therefore, we have

(24)

At low SNR, is close to Gaussian and the bound is tight.
We conjecture, that using the same arguments as in [2], [7], the
bound is tight at high SNR.
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The conditional autocorrelation of is given by

The matrix is diagonal since the symbols and are
independent for . The th diagonal entry in denoted as

is the MSE of theth data tone. It can be obtained as

(25)

where is a row vector with a in the index of the th data
tone and ’s elsewhere. In terms of the MSE of the data tones,

can be written as

(26)

where is the estimate of theth data tone. We normalize the
Gaussian random variable by dividing by the standard devi-
ation and obtain the zero mean, unit variance Gaussian random
variable . That is, . The lower bound can
be rewritten as

(27)

where is the inverse data SNR. The function is
defined as

(28)

where is a complex Gaussian random variable with zero mean
and unit variance. We observe that the capacity lower bound is
a function of the MSE of the data tones alone and not those of
the training tones.

E. Optimal Placement of Training

In this section, we optimize the placement by maximizing
the lower bound on capacity. At the outset, we assume all the
training symbols are constrained to be of equal energy, that is,

, . This is the case for most of the cur-
rent OFDM systems. We, however, do not claim the optimality
of equal energy allotment

From (25) and (27), we note that the lower bound
depends only on the magnitude of the

training symbols and hence is a function
of only and . For equal energy training schemes, we
therefore exclude as an argument of .

We obtain the optimal values of placement and energy
tradeoff as

(29)

We attack the problem of joint optimization, by first fixing the
energy tradeoff and maximizing the lower bound with respect to
the placement. We first have the following lemma.

Lemma 1: For any given energy tradeoff , we have

(30)
Proof: Refer to Appendix II.

Next, we maximize over the set of all possible
placements and obtain an upper bound on ,
which is a function of only and .

Lemma 2: The lower bound satisfies

(31)

where is the inverse training SNR.
Proof: Refer to Appendix III.

We now show that a simple placement scheme achieves this
upper bound and is thus optimal for any energy tradeoff. Con-
sider the placement obtained by selecting the training tones
periodically. We assume that is a multiple of so that such
a selection is possible. It is easy to verify that if ,
then for this placement, the matrix is a multiple of
the identity matrix. From (16) and (25), we find that

(32)

From (27) we have

(33)

and from Lemma 2 we conclude that is optimal. We hence
have the following theorem.

Theorem 2: For any energy tradeoff , under the as-
sumption that , and , all of the
following placements are optimal:

(34)

where can take values from to . For any of these
placements, the lower bound is given by

(35)

where is a complex Gaussian random variable with zero mean
and unit variance.



ADIREDDY et al.: OPTIMAL PLACEMENT OF TRAINING FOR UNKNOWN CHANNELS 2343

It was shown in [10], [14] that the same set of placements
minimizes the MSE in the estimate of. Their performance
metric is hence , the sum of MSE of both data and
training tones. Our performance metric is quite different. In fact,
the capacity lower bound depends explicitly only on the MSE
of data tones and not on those of training tones. To prove the
optimality of periodic tone placement with respect to MSE, it is
only necessary to show that this placement minimizes the arith-
metic mean (AM) of the MSE of the data tones. But, in order to
show optimality with respect to i.i.d. capacity, we show that the
optimal placement minimizes the harmonic mean (HM) of the
MSE of data tones. This is a stronger result than the previous one
because for every placement scheme other than the optimal one,
the HM of the MSEs is smaller than their AM. For the optimal
placement, the HM is equal to the AM because the MSE for all
the data tones is equal. It is, therefore, quite surprising that the
same set of placements is optimal for this metric as well.

The obtained placement is optimal for any energy allocation.
We assume that the training symbols are placed in optimal po-
sitions and optimize the energy allocation.

Theorem 3: Under the assumption that
and , the optimal energy distribution is given by

(36)

where

and

Proof: Refer to Appendix IV.

The ratio of power in data to that in training is given by

(37)

At low SNR, we find that this ratio is equal to. Hence, half the
energy is spent in training. Similar conclusions were reached in
[2].

IV. OPTIMAL PLACEMENT FORSINGLE-CARRIER SYSTEMS

A. Single-Carrier System

Fig. 5 shows the processing performed at the transmitter
of the single-carrier system. We assume that the symbols are
parsed into packets of length by the S/P converters.
A known symbol cluster of length is appended to the
beginning of each block to form a super block. These known
symbol clusters serve to remove the IBI between consecu-
tive blocks and facilitate block-by-block processing. A P/S

Fig. 5. Processing performed at the single-carrier transmitter.

Fig. 6. The period over which the channel stays constant.

Fig. 7. Representation of placement schemes.

conversion is then performed on these superblocks and they
are then transmitted through the channel. We have already
mentioned that the channel stays constant forsamples and
jumps to a new independent value (block-fading model). It is
also necessary to specify over which part of the packet, the
channel stays constant. As shown in Fig. 6, we assume that the
channel stays constant from to . Over the period
for which the channel stays constant we have

...

...

.. .
. . .

. ..
.. .

...

...

...

(38)

where is a realization of the channel. We
note that the output vector is a function of both the symbols
in the current packet and the known
symbol cluster at the start of the next packet.

Each packet consists of unknown and known
symbols. The known symbols are placed in clusters of length
equal to . Fig. 7 shows the placement scheme of the
vector . In general every placement can be specified
by two tuples where and

. The tuple gives the lengths of unknown
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Fig. 8. Receiver structure.

symbol blocks and gives the lengths of known symbol clus-
ters. Since every packet starts with at leastknown symbols, we
know that is at least as big as. We also note that the known
symbol cluster includes the first known symbols at the
start of the next packet. Hence is also at least as big as

. The minimum value of is equal to , which corresponds to
placing all the training at the ends of the packet. We note that the
number of elements in each tuple is a function of the placement
scheme. We refer to the symbols between any two consecutive
known symbol clusters as unknown symbol blocks. Let the set

be the set of all possible placement schemes .
As shown in Fig. 8, the receiver consists of a channel es-

timator block followed by a decoder. The channel estimator
forms an estimate of the channel based on training only. Since
the channel varies from block to block, we can only form a
block-by-block estimate of the channel. If denotes the th
training symbol in theth cluster, then we define the vector of
training symbols

We note again that

We define as the part of the output vector that is due
to training alone. The remaining part of the output vector is
grouped as . The channel estimator block forms the estimate
of the channel . As before, due the assumption
that the channel is Gaussian, there is no loss in the restriction
to linear MMSE estimators. The decoder uses and to
perform the decoding.

We define as the vector containing all the data symbols.
The power constraint on the system is formulated as follows:

(39)

We do not constrain the data and training powers to be the same.
If and , then (39) can be
written as

(40)

B. Problem Statement

We now formulate the problem of optimal placement of
training for single-carrier systems. The i.i.d. capacity of the
system [13] can be defined as

(41)

where the probability distribution and the training
are such that the input power constraint is satisfied. Our objec-

tive then is to obtain the optimal placement scheme, optimal
energy tradeoff , and optimal training symbols as

(42)

C. Training-Only Based MMSE Channel Estimate

In this subsection, we give properties of the channel estimator
block. We assume that the estimator forms the MMSE estimate
of the channel. The model for channel estimation is given by

(43)

where

...
(44)

The matrix is a Toeplitz matrix of size .
It is formed by the training symbols in theth training cluster as

...
... (45)

It is easy to see that the matrix is of size

The MMSE estimate can then be written as

(46)

The covariance of the error is given by

(47)

where . The covariance matrix of the estimate
is given by

(48)

We restrict ourselves to the case of orthogonal training that
is the matrix where is a constant. This restriction
is primarily motivated by simpler receiver implementation and
mathematical tractability and we do not claim that this choice is
optimal. The power constraint on training implies that

(49)

Orthogonal training also imposes the upper bound on the
number of clusters . The matrix has to be tall and hence

This implies that

(50)

Further, . The restriction to orthogonal training also
implies that the taps of are independent.
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D. Lower Bound on Training-Based Capacity

In this subsection, since the problem of evaluating the i.i.d.
capacity is complicated, we obtain a tight lower bound for

and optimize training for this bound. As
earlier, we have

(51)

The relationship between and is given by

...
...

.. .
...

...
(52)

The matrix is a Toeplitz matrix of size
given by

...
...

...

...
...

(53)

The fact that each training symbol cluster is at least as long as
where leads to the matrix being block-diagonal with

having the structure shown above. The matrix is not
block-diagonal if the training symbol clusters are allowed to be
smaller than . The vector is of length and is composed
of data symbols in theth unknown symbol block. The matrix

is composed of the training symbols
and . That is, is a function of the
training symbols immediately before and after theth unknown
symbol block. These matrices are introduced to account for the

fact that the first and the last samples of are affected by
the training symbols.

We can express in terms of the estimate and the error
as

(54)

We subtract from to obtain . We thus have

(55)

It is easy to see that

(56)

But it is difficult to obtain the latter analytically. As in Sec-
tion III, we obtain a lower bound on the i.i.d. channel capacity
by varying the conditional distribution of the noise among those
that have the same first- and second-order properties as,
namely, , the conditional autocorrelation is given
by

(57)

(58)

We also note that due to the property of the
MMSE estimator.

We obtain a lower bound on the training-based capacity by
an argument similar to one in Theorem 1. It can be shown that
the worst case noise is zero mean Gaussian with autocorrelation

and is independent of . Therefore, we have

(59)

where the expectation is with respect to the random variable
. The same lower bound was also proposed in [7]. As in [7],

we propose a lower bound that is looser than the one given
above but is simpler to handle. From (58), the matrix is a
sum of three matrices. The first matrix is given by (60), shown

at the bottom of the page. Each of the matrix
is a diagonal matrix, since errors in the estimates of the taps
are uncorrelated. The diagonal elements are each smaller than

. As in [7], we define a matrix as

(61)

...
...

(60)
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Since 1 and with and both being positive
definite, implies that [6, p. 471], it follows that

(62)

This is used to propose the lower bound

(63)

where is obtained by normalizing . Specifically, the
channel that generates is normalized to zero mean, i.i.d.
Gaussian with variance of each tap equal to .

E. QPP Schemes

In this subsection, we introduce a family of placement
schemes called QPP schemes. This family is divided into
different classes based on the minimum allowable cluster size.
The class of schemes for whichis the minimum cluster size
is denoted as QPP-. Intuitively, the QPP- scheme is formed
by first breaking the known symbols into as many clusters
as possible each of length at leastand then placing these
clusters such that the unknown symbol blocks are as “equal” as
possible. We give the formal definition as follows.

Definition 1: Given and a frame with unknown symbols
and known symbols, let . A placement
scheme belongs to QPP- if and only if

1) where

2) where

Any element of the set is denoted as
and similarly any element of the set is denoted as

.

F. Optimality of QPP- Schemes for Unknown Channel

We obtain optimal training as

(64)

We first obtain an upper bound on that is a
function of only , , , and .

1Given two Hermitian matricesAAA andBBB, we sayAAA � BBB if and only if the
matrix (AAA �BBB) is positive semidefinite.

Lemma 3:

(65)

where is the unknown symbol block
length tuple for the QPP- scheme with unknown and
known symbols.

Proof: Refer to Appendix V.

The following theorem shows that under the assumption that
, the placement schemes belonging to QPP-are

optimal. Furthermore, an optimal choice of training symbols is
also given.

Theorem 4: Given any energy tradeoff , under the
assumption that and , the placement
scheme and training is optimal if

1) belongs to QPP-.
2)

if

otherwise.
(66)

If , the known symbols are placed at the
beginning and the end of the packet such that at least are
at one of the ends. That is, a placement schemeand training
symbols are optimal if

1) where

and .
2)

if

otherwise.
(67)

In either case we have

(68)

Proof: Refer to Appendix VI.

We find that QPP- placement schemes that were found to be
optimal in the known channel scenario [12] are optimal for this
scenario too. From (66) and (67), we find that for the optimal
choice of training symbols, the symbols at the beginning and
the end of each known symbol cluster are zero. If these symbols
are nonzero, we find that these symbols contribute additional
noise to the received data because of the error in the channel esti-
mate. Also we find that in each cluster, there is only one nonzero
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Fig. 9. Variation of lower bound with percentage of known symbols forT = 155 andL = 3 at different SNRs.

training symbol. This design makes sure that the training is al-
ways orthogonal. For , it is difficult to analytically
obtain the optimal placement schemes.

The minimum known symbol cluster sizeis also a design
parameter. The following theorem gives the optimal value of.

Theorem 5: For , is a mono-
tonically decreasing function of.

Proof: Refer to Appendix VII.

The obtained placement schemes are optimal for any energy
allocation. The following theorem gives the optimal energy al-
location between training and data under the assumption that the
optimal placement scheme and training symbols are used.

Theorem 6: The optimal energy distribution is given by

(69)

where

Proof: The proof is similar to the one for Theorem 3.

G. An Upper Bound on the Training-Based Capacity

We obtain an upper bound on the training-based capacity
by assuming that the receiver estimates the channel perfectly
from training. In other words, we assume that . Clearly,
the maximum i.i.d. mutual information in this case is an upper
bound on . (Note that the upper bound may not
be tight.) The relation between the input and output now be-
comes

(70)

It is easy to see that the mutual information is not a function of
and . Given and , the upper bound is given

by

(71)

where is an i.i.d. probability distribution satisfying the
energy constraint. It is easy to see that

(72)

(73)

We now consider optimize placement of training with respect
to this upper bound. Given , we find out the optimal placement
as

(74)

Upon comparing (72) and (63), we note that both the lower
bound and the upper bound depend on placement in exactly
the same way. Hence, it can be shown that for
and , the placement is optimal if it belongs to
a QPP- scheme. The optimal placement is therefore indepen-
dent of . We can now try to fix this placement and optimize

and . The optimum value of is in fact equal to zero and
thus .

V. SIMULATION

In this section, we explore the properties of training-based
capacity for both OFDM and single-carrier systems through
simulations. First, we present the simulations for OFDM sys-
tems followed by the simulations for the single-carrier systems.
We conclude with some comparisons between the OFDM and
single-carrier systems.

A. OFDM System

Fig. 9 shows the variation of lower bound given in (35) for
training-based capacity with the percentage of known symbols
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Fig. 10. Variation of lower bound with coherence interval forL = 3 at different SNRs with optimizedP at eachT .

. The coherence interval is equal to . We assume that
the channel is of length. Plots are shown for 0- and 20-dB
SNR. Curves are plotted for both and
optimized cases. We assume that the optimal placement scheme
was used in all cases. We find that for the equal energy allo-
cation case, the bound increases and then falls. The optimum
percentage of known symbols is approximately equal to 15%
for SNR 0 dB and 6% for SNR 20 dB. It is natural to
expect the optimum percentage of known symbols to decrease
with SNR since the quality of the estimate improves with SNR.
For the optimized energy-allocation case, the bound decreases
monotonically. From simulations we find that is
always optimal. For single-carrier systems with single known
symbol cluster and optimized energy tradeoff, it is indeed true
that is optimal [7]. We conjecture that this can
be shown to be true for OFDM systems as well. At high SNR,
the gain in optimizing is minimal. We also note that for
the equal energy allocation scenario, the bound rises rapidly but
falls at the smaller rate.

In order to evaluate the asymptotic performance of the train-
ing-based systems, we plot the variation of
with the coherence interval in Fig. 10. The plots are shown
for both equal energy and optimized energy allocation for both
low SNR (0 dB) and high SNR (20 dB). At each value of, we
evaluate the optimum number of known symbols and calculate
the lower bound by setting the number of known symbols to
this value. We find that at high SNR, the capacity of training-
based system approaches that of the known channel faster than
at low SNR. We also note that at small values of, the gain
from optimizing is minimal.

In order to judge the efficacy of training-based scheme in
achieving the capacity of the unknown channel, we plot the
fraction of known channel capacity achieved versus SNR (see
Fig. 11). We find that at and SNR 20 dB, the ca-
pacity of the trsining-based scheme is close to that of the known
channel and we can thus conclude that training-based methods
achieve most of the unknown channel capacity at high SNR and
large . Similar conclusions were reached in [2], [7].

Fig. 11. Fraction of known channel capacity achieved at different SNRs for
T = 155 andL = 3 with optimizedP at eachT .

B. Single-Carrier Systems

In this subsection, we study the training-based capacity for
single-carrier systems through simulations. We evaluate the
asymptotic performance of training-based systems in Fig. 12.
We plot the lower bound versus the coherence interval
for low SNR (0 dB) and high SNR (20 dB). The value of
was set to . The minimum cluster size was made equal to

. For each value of , the optimum number of known
symbols was used. The placement scheme used was a QPP-
scheme. Like in OFDM systems, we find that at high SNR,
asymptotically training-based capacity approaches the known
channel capacity. In order to characterize the efficiency of the
training-based system with respect to SNR, we plot the fraction
of known channel capacity achieved with SNR (see Fig. 13).
As earlier, we find that training-based systems achieve most of
the unknown channel capacity at SNR20 dB and .

C. Comparison of OFDM and Single-Carrier Systems

In this subsection, we compare the performance of OFDM
systems with single-carrier systems in different scenarios.
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Fig. 12. Variation of lower bound with coherence interval for single-carrier systemsT = 155 andL = 3 for different SNRs.

Fig. 13. Fraction of known channel capacity achieved at different SNRs for
T = 155 andL = 3.

Fig. 14 compares the variation of the training-based lower
bound with percentage of known symbols for OFDM and
single-carrier systems with the coherence interval and
the channel length equal to. We find that the training-based
capacity for single-carrier systems is consistently better than
that of OFDM systems. For optimized , we find that the
percentage difference is less than 5%. For equal energy case,
at low SNR, we find that the single-carrier system performs
considerably better than the OFDM system at small percentage
of known symbols. This difference becomes smaller with
the number of known symbols. At high SNR, the percentage
difference between OFDM and single-carrier systems becomes
much smaller.

Fig. 15 compares the variation of the training-based lower
bound with the coherence time for OFDM and single-car-
rier systems with the channel length equal to. As expected,
the known channel capacity for OFDM converges to that for
single-carrier systems at large. We find that for optimized

, the difference between OFDM and single-carrier sys-
tems is quite small. For equal energy allocation, though, we find

that at intermediate values of, single-carrier systems can out-
perform OFDM systems by as much as 10%.

VI. CONCLUSION

The problem of designing optimal training symbol placement
schemes for block frequency-selective fading channels is pre-
sented. It is assumed that the receiver forms an MMSE estimate
of the channel based on only training. The problem is addressed
for both OFDM and single-carrier systems separately since the
paradigm for channel estimation is different for each system.
The metric used for optimization was a tight lower bound on
the i.i.d. capacity of the system.

It is shown that for OFDM systems, under the assumption that
the training tones are of equal energy, the optimal placement
scheme is that for which the training tones are selected peri-
odically. We also present expressions for optimal energy allo-
cation between training and data. For single-carrier system, we
assume that the known symbols are placed in clusters of length

. For , we show that the placement
schemes belonging to the QPP-family are optimal. Further-
more, a choice of optimal training symbols is presented. Expres-
sions for optimal energy allocation between data and training
are given.

From simulations, we find that at large values ofand at
high SNR, training-based systems achieve most of the unknown
channel capacity. At low SNR, however, this is not true. The
comparison of the lower bound for OFDM and single-carrier
systems shows that the single-carrier system performs better
than the OFDM systems. This is to be expected because the
OFDM system drops some received data for simpler receiver
implementation. We find that for optimal energy allocation, the
percentage difference between the two systems is quite small.
For equal energy case, on the other hand, the single-carrier
system might be considerably better than the OFDM system
for some values of and .

We list some related issues that are beyond the scope of this
paper but have both theoretical and practical interest. In this
paper, we assume that the channel taps are i.i.d. A more re-
alistic assumption is to let channel taps be correlated and not
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Fig. 14. Comparison of the variation of training-based lower bound with the percentage of known symbols for OFDM and single-carrier systems with atT = 155

andL = 3 for different SNR’s.

Fig. 15. Comparison of the variation of training-based lower bound with the coherence intervalT for OFDM and single-carrier systems forL = 3 at different
SNRs.

necessarily identically distributed. This model turns out to be
quite difficult to analyze. Nevertheless, it is definitely a inter-
esting problem. The extension of the single-carrier results for
equal energy training is also an open problem. The extensions
of these placement schemes to multiple antenna systems is an
interesting research topic. Another interesting problem is opti-
mizing training for receivers that assume that the channel esti-
mate is perfect.

APPENDIX I
PROOF OFTHEOREM 1

The following proof is similar to the one in [2]. Note
that belongs to for every

. It can be seen that

(75)

where . Therefore, we have

(76)

We next obtain a lower bound on by fixing
and then taking the infimum among the distri-

butions in . We then know that the worst case
distribution is independent Gaussian [2]. Therefore,

(77)

where the expectation is with respect to. From (77) and (76)
we have the theorem.

APPENDIX II
PROOF OFLEMMA 1

We have

(78)

(79)
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(80)

(81)

The first inequality holds because the function is concave.
The second inequality follows because is monotonically
decreasing.

APPENDIX III
PROOF OFLEMMA 2

We define the metric . From
Lemma 1, we have that

(82)

From (25), we have

(83)

where , , and
is the inverse training SNR . By the Cauchy–Schwartz in-
equality,2 we have

(84)

(85)

(86)

(87)

where is a unit row vector with a in the index of the th
training tone and ’s elsewhere. Equation (85) follows from the

2If xxx is a unit norm row vector andAAA is a matrix then � xxxAAA xxx .
See, e.g., [6].

application of the matrix inversion lemma.3 Now using some
simple manipulations, the above can be rewritten as

(88)

(89)

(90)

where are the eigenvalues of the matrix

. Equation (89) follows from the matrix inversion
lemma. Equation (90) follows from the fact that has
only nonzero eigenvalues and they are the same as
those of . We now note that

(91)

Under the constraint (91), it is easy to see that

(92)

with equality if and only if all the are equal or, equivalently,
the matrix must be equal to a constant times identity.
Combining (90) and (92), we have

(93)

We then have that

(94)

APPENDIX IV
PROOF OFTHEOREM 3

The objective is to maximize

(95)

3(AAA+BBBCCCDDD) = AAA �AAA BBB (CCC +DDDAAA BBB) DDDAAA . See, e.g.,
[5].
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under the power constraint

This is a simple optimization problem similar to one performed
in [2], [7].

APPENDIX V
PROOF OFLEMMA 3

We have

(96)

where

(97)

We obtain an upper bound on that is a func-
tion of only the energy tradeoff . We have

The first inequality follows because4

and with and both being positive definite, implies
that [6, p, 471]. The second inequality follows
from (49) and the fact that . The matrices

are positive definite and Toeplitz. This can be used
to show that the function has the property [12]

(98)

It is easy to see that the above property implies that given

(99)

4Given two Hermitian matricesAAA andBBB, we sayAAA � BBB if and only if the
matrix (AAA �BBB) is positive semidefinite.

where is the unknown symbol block
length tuple for the QPP- scheme with unknown and
known symbols [12]. If then

(100)

where for and for
. The inequality follows from (99). The properties

(99) and (100) together with imply that

(101)

Finally, we note that under the constraint that each known
symbol cluster is at least as big as, the number of unknown
data blocks . Hence

APPENDIX VI
PROOF OFTHEOREM 4

We first assume that and . Let the
placement scheme belong to QPP-. The particular choice
of training symbols implies that every packet starts with
exactly zeros. Moreover, each known symbol cluster starts
and ends with zeros. Each known symbol cluster has only
one nonzero training symbol. The energy in training is divided
equally among all these symbols. For this choice of training, it
is easy to see that the matrix as defined in (52) is equal to
zero. Further . This implies that matrix

and the lower bound can be easily evaluated as

(102)

From Lemma 3, we can conclude that the choice of the place-
ment scheme and training symbols is optimal. The proof for the
case when is similar.

APPENDIX VII
PROOF OFTHEOREM 5

For , we have

(103)
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Hence, the lower bound depends ononly through the value
of . It is easy to see that increases as decreases. Given

such that , we have

(104)

This follows from (101).
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