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Quasi-Cyclic Dyadic Codes in the Walsh—-Hadamard linear cyclic code has the additional structure of being closed under
Transform Domain all cyclic shifts apart from linearity. Similarly, a dyadic code has the
additional structure of being closed under all dyadic shifts in addition
B. Sundar RajanSenior Member, IEEEand to the linearity of the code.

Moon Ho Lee Senior Member, IEEE . . . )
Definition 2: We define a dyadic code of length = 2" to be a

quasi-cyclic dyadic (QCD) codéthere is an integet such that every
Abstract—A code is s-quasi-cyclic (s-QC) if there is an integer s such  cyclic shift of a codeword by places is also a codeword. #fis the
that cyclic shift of a codeword by s-positions is also a codeword. Fos = 1,  smallest such integer, say= 2° for somes = 0, 1, ..., r — 1, we

cyclic codes are obtained. A dyadic code is a code which is closed under all s_ 90 ;
dyadic shifts. An s-QC dyadic (s-QCD) code is one which is boths-QC call the code 2°-QCD code. A2°-QCD code will be referred as a

and dyadic. QCD codes withs = 1 give codes that are cyclic and dyadic CYclic-dyadic (CD) code

(CD). In this correspondence, we obtain a simple characterization of all . . . .
QCD codes (hence of CD codes) over any field of odd characteristic using Example 1: Consider the following ternary lengthcodeCo with

Walsh-Hadamard transform defined over that finite field. Also, itis shown ~ Nine codewords:
that dual a code of ans-QCD code is also ans-QCD code ands-QCD codes
for a given dimension are enumerated for all possible values of. Co = {(0000), (1122), (2211), (1212),

Index Terms—Discrete Fourier transform (DFT), dyadic codes, quasi- (2001), (0120), (2121), (0210), (1002)}.
cyclic (QC) codes, Walsh—Hadamard transform (WHT). T T ’ ’

By inspection(, is closed under all dyadic shifts but not closed under
|. INTRODUCTION cyclic shift, whereas cod&s andC, in Table Il are codes with identical
. . . . _ parameters and are closed under all dyadic shifts as well as cyclic shifts.
An s-quasi-cyclic 6-QC) cod_e_ isa che with the property that Cyc'_'CThat is,C, is a dyadic code whereads andCs are CD codes.
shift of any codeword by positions gives another codeword. Cyclic
codes ard-QC codes. The class of QC codes contains asymptotically The transform domain characterization of cyclic codes over a finite
good codes in the sense of meeting a version of Varshamov-Gilbiégtd is given in terms of the discrete Fourier transform (DFT) defined

bound [1] and includes several well-known codes [2]. over an extension of that field [9]. Extension of this transform domain
Dyadic codes are defined only for lengtha power of, sayn = 2", ~ characterization to the general class of Abelian codes [8] and to cyclic
as follows. For any integere {0, 1, ..., 2" — 1}, let codes over integer residue rings have been studied [10], [11]. The trans-
form domain description of codes is useful for encoding and decoding
[i1 = [ir—1, ir—2, «.v i1, 90 [9], [12]. The DFT approach for cyclic codes of arbitrary length is dis-
cussed in [13] and for repeated-root cyclic codes [14], [15] in [16]. QC
denote its radix2 representation, where codes over finite fields have been studied using a slightly modified ver-
L —t . - ) ) sion of DFT by Tanner [17].
P=ipa2 a2 T+ a2 o In this correspondence, we characterize all QCD codes (hence CD

codes) in the Walsh—-Hadamard transform (WHT) domain. Our char-
. . S - ) acterization does not need extension of the field. Notice that if a cyclic
numbers' and; denoted by @ j or [i] @ [j] is defined by code overF, of lengthn is to be described in the transform domain
iej= o] =¥ using the DFT then it is necessary that the DFT is defined in the exten-
sion field F,~, wherem is the least integer such thatividesqg™ — 1.
wherek; = (4, + j;) mod 2,for/ = 0, 1..., » — 1. Them-dyadic Similarly, the DFT domain study of QC codes by Tanner is also carried

andi; = 0,1forj = 0,1, ..., — 1. Radix2 addition of two

shift, m = 0,1, ..., n — 1, of a vector(ao, a1, ..., a.—) is the outusingan extension field. The main result of this correspondence is
vector that if such a QC code is dyadic as well, i.e., if the code is QCD, then
using the WHT it can be described without field extension. As a special
(Q0@ms Q1@ms - - s An—1)3m) case, CD codes also get described using the WHT without field exten-
sion. Since algebraic decoding generally takes place in the extension
[3], [4] field, such an approach may lead to simpler/more efficient decoding.

Definition 1: We call a linear code of length = 2" over a field a The content of this correspondence is organized as follows. In Sec-
dyadic codéftﬁe m-dyadic shift of every codeword is also a codewor(gon I, we review the well-known DFT characterization of cyclic codes,

forallm = 0. 1 n o1 riefly discuss dyadic codes as a special case of Abelian codes, and
o e ' the WHT as a special case of the generalized DFT, used in [8] to study

The class of dyadic codes is a special case of the class of Abelfipelian codes, and present the WHT domain characterization of dyadic
group codes [5]-[8], which is briefly discussed in the next section. podes. In Section Ill, we present the main result which is a transform
domain characterization of QCD codes using the WHT and discuss sev-
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1) anda € Fy- be an element of multiplicative order The DFT of under this generalized convolution. When the gréts an elemen-

@ is defined to bel = (Ao, A1, ..., A,1) € FJ-, where tary Abelian group which is a direct product ofcyclic groups each
- of order2, the resulting convolution is the dyadic convolution and the
A= Z ala;, J=0,1,....n—1. ) corr.eislpondlng Abelian ques are pregsely the .dyadlc codes given in
s Definition 1. To be explicit, the dyag|c convolution of two length-
. i .. } vectorsd = ((10,(“, ..../Cl,n_l) andb = (bo,bl,...,bn_l) is the
Aj is called thejth DFT coefficient or thg'th transform component of S . :
o ] ok a vectoré = (co, ¢1, ..., Cn—1) given by
d. The following restriction on the values of DFT coefficients holds:
n—1
qumodn = A'j’ cp = Z a,ib]' = Z (1,‘[),‘,@1‘», k= 0,1,....,n—1.
1, 7;1Ppj=k =0

This constraint impliesd; € F,~; C Fyr, wherer; is the smallest

positive integer such thaly™> = j mod n. So, the set of transform In terms of dyadic convolution, dyadic codes can be defined as linear

codes with the property that dyadic convolution of a codeword with an

component§A;, A,;, A2, ..., A ._1y .} are related. . .
Lert)C C }j{ t]>e ai:]o,dqu;/len th g\(/érlyj{Ne say,A; takes values arbitrary vector results in another codeword.
=4 9 a Yo The well-known WHT [3], [4] transforms a length real vector
from
(ao, a1, ..., an—1) to another length: real vector(Ao, 41, ...,
n—1 B r’ln_] ), and iS giVen by
Za;”aiw €Cp C Fyr.
=0

n—1
A=>-DY%,  j=0,1....n-1
For anyj € [0, n — 1], thecyclotomic coset module of j is de- i=0
fined aslj]% = {i € [0, n — 1]|j = ig" mod n for some nonnegative where the modul@ inner productj, i) is given by
integert}. Notice that the conjugacy constraint relates only the com-
ponents of the transform vector indexed by elements of the gatye (. 9) = jr—rir—1 + jr—2ir—2+--- 4+ joio (mod?2). (3)

clotomic coset. Now, the extensively studied linear cyclic codes oV@fq transform kernel-1 is an element of ordet in the complex and
F, are characterized in the transform domain as follows. real field, and in our case, since we will be working with vectors over

« A cyclic code is the set of inverse DFT vectors of all the vec? field F; of characteristip, an odd prime, the elemept— 1 in the
tors of anF,-subspace of DFTF}") C F-, in which transform field is an element of orde, and can be used as the transform kernel.

components ifj]Z, j = 0, 1, ..., n — 1, either take only the We will continue to use-1 to denote an element of ord2in F,.

zero value or all the values df,-; , and transform components  pefinition 3 (WHT): Let@ = (ao. a1. .... a.—1) be a lengtin
in disjoint[j;]2 and[j:]3 take values independently. vector overFy, a field with odd characteristje, andn = 2". The WHT
From the above characterization, it is clear that to specify a cycfé @ is defined to be the length-vectorA = (Ao, A, ..., An—1)

code, it is sufficient to specify the set of cyclotomic cosets in which tHever Fy, given by
transform components of all the codewords is zero. n—1 N
Itis important to notice that this characterization demands extension A; = Z (—1)<"”‘>a,-7 i=0,1,....n-1 4)
of the field (unless: = ¢ — 1) over which the code is defined and this i=0
is also true for the case of QC codes [17]. Now we proceed to pres@iMere(;, i) is given by (3).4; will be referred to as thgth transform
similar characterization for dyadic codes viewing them as a special cagnponent or thgth spectral component af
of Abelian group codes. ) - _ o
Let G be an Abelian group of order and F,, the finite field withg It can be easily verified that the inverse transform is given by
elements. The group algebra@fover F,, denoted by, G, is the set n—1 o
a;:;Z(—1)<“>A» i=0,1 n—1
"7 (nmodp) gt 7 T )

F,G = {Z‘h[ﬂk‘y € Fq}
geG Notice that since is an odd prime and is a power o2, n cannot
be zero modul@ and since every nonzero element is invertible in a
field, the inverse transform exists. This is the reason for restricting our
> agg+ Y bgg=> (a,+by)g discussion to codes over fields with odd characteristic. _
pr=re pr=re pr=re] The WHT given in Definition 3 is a special case of the generalized
DFT given in [8] and consequently the following properties hold.
Convolution Property: The WHT defined ove#;, given by (4) es-

with addition and multiplication operations, defined by

and

tablishes an algebra isomorphismigf to itself where addition oper-
STagg [ D]k | =D ek (2)  ation is mapped onto addition and dyadic convolution is mapped onto
g€l heG kea point-wise product, i.e., i, b, and@ aren-tuples overF, such that

wherec, = 37, _, (aghn). n—|

There is a natural-1 correspondence betweéif , the set ofe-tu- ci= Y aiprbr,  i=0,1,...,n-1
ples overF,, andI,G. The subsets of;' that correspond to ideals k=0
of F,G are called Abelian codes [5]-[7]. It is easily seen that whetlhen their WHT coefficients satisfy the relatiary, = A;B;, j =
G is a cyclic group, the multiplication i, G given by (2) represents 0, 1, ..., n — 1.
the cyclic convolution of two length vectors overF;; and ideals of =~ Conjugate Symmetry PropertyFrom the conjugate symmetry
F,G are cyclic codes. For general Abelian groups, the multiplicatiqoroperty of the generalized DFT proved in [8] there is no extension of
given by (2) represents a generalized convolution determined by the field required for (4) and, consequently, all transform components
structure of the Abelian group and accordingly Abelian codes éyer are independent. Combining this observation with [8, Theorem 1 and
are linear codes with the property that the set of codewords is clodaefinition 2] gives the following theorem.
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Theorem 1: LetC be alength» = 2" linear code oveF, wherey is Note thatj*) is equaltq if j,41 is zero, otherwisg,'® andj; differ
apower ofan odd primgandfori € {0, 1, ..., n — 1},letC; denote by 2°:if j, = 0, then;¥) — j = 2° and ifj, = 1, thenj — j*) = 2°.
the set of values taken by tlith WHT component of all the codewords Also observe that;*))®*) = ;.
of C.If C; = Oforalli € Z,asubsetof0, 1, ..., n — 1}andC; = . ., ) -
F,foralli ¢ Z with values fromF, taken independently thehis ~ 1heorem 2: All length n = 2" dyadic codes arg”~ -QCD codes.
dyadic and, conversely, for every linear dyadic code there is Z set ‘Proof: _Thls fpllows from the fact that cycllc _shlft of a codeword
{0,1,...,n — 1} suchthaCC; = Oforalli € Z and for all other by 2" ! positions is the same as tB& ' -dyadic shift of the codeword

values ofi ¢ Z, C; = F, with values fromF,, taken independently. ~and a dyadic code is closed under all dyadic shifts. .

Notice that in Theorem 1, if is dyadic, then it is completely char- Next, we consider the case= r — 2. This can be made part of
acterized by the subsgt of {0, 1, ..., n — 1}. Henceforth, we will Theorem 4, but we discuss it separately so that the idea in the main

refer to this subset abe defining set of . theorem leading to a certain constrained set (Definition 7) of spectral
components characterizirgj-QCD codes can be seen without nota-
@ional complications. Furthermore, this case will be used as the induc-
{6n base in the main theorem.

Remark 1: It is important to notice the terimdependentlyn The-
orem 1 as well as in the transform domain characterization of cyc
codes (bullet) in Section II. This essentially means that;ifand A ;
are two spectral components taking all values frBpthen for every  Theorem 3: A length-» = 2" dyadic code i2"~2-QCD, if it satis-
particular value ford;, sayA; = =, the set of values!; takes is the fies the constraint
entireF;,. In other words, the value taken bl does not determine the

value taken by4; andvice versaRecently, it has been shown that if 27t

two nonzero spectral components are related (do not take values inde= | J {s} U {I, x, jres, ..., jollz =0, 1}
pendently) say, byl; = o(A;) whereo is an appropriate map that 7=0 (Jr—5:Jr—a, - Jo)

determines the relation, then the code is not cyclic and can be a QC or

a group code depending upon the naafi8]. In other wordsj is free for0 < j < 2"~' — 1 and forall2"™"' <

< 2" — 1, any two spectral components differing onlyjin_, form
constrained set of spectral components.
Proof: For any codeword we have

From Theorem 1 it follows that corresponding to every subset éf
{0, 1, ..., n—1} there is adyadic code with that subset as the defining
set of the code. Hence we have the following corollary.

. H HVH n n—1
Corollary 1: Including thg two trivial codes}(q and the all-zero 4T _ Z(_l)(j‘ i) ,27 )
codeword) there ar2’ dyadic codes of length". J _ i
1=0
The main result of this correspondence (Theorem 4) and Theorem 6 n—1 o
i i - = —1 <]’1> S X s
answer the following question: Z( ) Ay _or—2
« Among these??” dyadic codes how many as-QC, and how :L:,Ul
can they by recognized (characterized) for every 0, 1, ..., — Z(_l)o} i+2“2>di
r= 17 =0

n—1
_ Z(_l)jpl(iplfbipz)‘:ﬁjpz(ipzfm) ®D,._. ., it
Ill. QCD CoDES IN THEWHT DOMAIN =
i i H i n—1
In this section, we present the main result of this correspondence :(_1)].7“722(_1)]-7“71iT7IQ(]»TilTijz)iTiz DB, i,
which gives the constraints among the spectral components to be sat- i
isfied for a dyadic code to beZ-QCD code. =0

Definition 4: For a vectori, @ will denote the2'-cyclic shifted =(=1)" A . (5)
version ofd@ and the corresponding WHT vector will be denoted by
AW, From (5), it follows thatd; and A (._z, do not differ if j, 1 is zero,
Definition 5: A constraintD = Dy UD», U --- U Dy is a partition  in which casej is a free spectral f:omponent, ang,if , is 1 then they
of {0, 1, ..., n —1}.Ifi € D; and|D;| = 1, theni is called a free differ only in j, -, in which casg and;j" ~2) form a constrained set
spectral component. If not, it is said to be a constrained spectral cogfspectral components. O
ponent. The spectral components belongin®@ioj = 1,2, ..., 1,
are said to form a constrained set of spectral components? beta 10 extend Theorem 3 to cases< r — 3, we generalize the con-
length# = 2" linear code oveF, wherey is a power of an odd prime strained se{[1, «, jr—s, ..., jo|l# = 0, 1} of Theorem 3 as fol-
pandfori € {0, 1, ..., n — 1}, letC; denote the set of values takenlows.

by theith WHT component of all the codewords 6f The code’ is
said to satisfy the constraifi? if C;; = C;, wheneveri, iz € D;
for somel < j < /. EquivalentlyC is said to satisfy the constraif?
if its defining set is a union of somB;.

Definition 7: For agivens,0 < s < r — 2, for everyp, (s +1 <
p <r—1),andafixedj,—1, js—2, ..., jo), the set oR*~° spectral
components consisting of thoges where

Remark 2: It is important to notice that the above definition meansj = [0, 0,...,0, 1 = ., Ju—1, Ju—2s---sJst1> Jss Jo—ts---5J0]
that if two spectral components, sayandi» are in a constrained set
then eithelC;, = C;, =0orC;, = C;, = F, and it does not mean s denoted bW (12, 8, Fomty Jom2y v vy Jo).

that they are related as mentioned in Remark 1. )
Example 2: For eachr = 2,3, and4 corresponding to each =

Definition 6: For everyj = [jr—1, jr—2, ..., jol and0 < s < 0,1, ..., r—1,thesets/ (. 5, js_1. ..., jo) for all possible values
r—2 of . are shown in Table I. The set ¢ for which the entry is the same
[Jr s Jree ennn Jatts Jo 5 Jotts Joets Jo—2s envs Jo] letter amongd, B, C, ... form one such set.

()

will be denoted byj The main result of this correspondence follows.
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TABLE |
CONSTRAINED SETS OF SPECTRAL COMPONENTS FORnR = 27, r = 2, 3, AND 4 CORRESPONDING TOEXAMPLE 2
Constrained sets of spectral components for n = 22.
Jj—= | <00> <01> <10> <11>
s=0 A B C c
s=1 A B C D

Constrained sets of spectral components for n = 23.

j— {<000> <00l> <010> <O0ll> <100> <101> <110> < 111>
s=0 A B C C D D D D
s=1 A B C D E F E F
s=2 A B C D E F G H

Constrained sets of spectral components for n = 24.
< 0000 > <0001 ><0010><0011><0100><0101><0110><0111><1000>< 1001 ><1010><1011><1100><1101 ><1110>< 1111 >

7 =

s =0 C D D E E E

s =1 A B C D E F E F G H G H G H G H
s =2 A B C D E F G H I J K L 1 J K L
s = 3 A B C D B F G H I J K L M M o] P

Theorem 4: A dyadic code’ of lengthn = 2" is2*-QCD,0 < s <  the bottom of this page. f < j < 2°7' —1,we havej,_| = j._» =

r — 2, if it satisfies the constraint .-+ = js41 = 0, and (6) becomes
n—1
os+1_ 1 r—1 AS'S) = (_1)]5 Z (_1)(]’0("1' = (_1)]5‘41’-
1=0
D = ; ] 4 5y '.s— s .s— ..... o). . . . . L . .
J-L:JD {J}(j ].U ; )H_UH (b8 Ju1s ey - Jo) The preceding equation implies that for al0 < j < 2°T! —1 the
= Js—1:Js—25---,J0) =95

spectral componentis free. This proves condition i).
For2*t!' < j < 2" —1, we continue with (6) and obtain (7) and (8)
In other words( is 2°-QCD, if also displayed at the bottom of this page.
i) forall 0 < j < 2°t' — 1, the spectral componeyitis free; alll:lﬁéec?rii)g\nfg{go(;epends OnlYy 0B -1, jr—2; .-, je4> AMONG
i) among allj > 2°*', every.J (i, s, js—1, jo—2, .., jo) forms et u be the largest integes,+ 1 < < r — 1, such thay, = 1;
a constrained set of spectral components. thatis,j,—1 = j,—2 = --- = j.+1 = 0. Then, after a few manipula-
Proof for the “Only if” Part: LetC be a2*-QCD code andi = tions, (7) reduces to (9) and (8) reduces to (10), both displayed at the
(ao, a1, ...an_1) € C. Then, we have&fjs) given by (6) displayed at bottom of this page. Equation (9) shows t t is related tod (o

1

n—1 n

A = T (=1)9 V0,00 = 3 (=)0,
1=0 1=0
r—2 s+1
n—1 Jre1(iro1® [ i@ @iagalioro® [ ia)Bist1(Goq1Bis)Bis(is®l)Ba_1is— 1B Sioio
= Z(_D A=s A=s a;. (6)

1=0

] n—1 () ] n—1 ()

A= Y ()Y e Y ()Y P
=050, 4qis#1 =054 1is=1
n—1

) ) (o)

=(=D" A+ (=D > (=pYTY [(—1)D - 1] ai @)

1=03i5411s=1

where

r—2 r—3
D= <(j7’—17 Jr=2s -y Jsta, Jot3, Jot2), < H ix, H ixy ens foqalogn, tora, 1>> (8)

A=s+2 A=s+2

outl_y

Ags) — (_1)1'.@‘4]“) + Z (_1)]#77»‘1%%71iuqGﬁ“'%]ﬂwzi.wz‘%ﬁjsqisq‘%ﬁ“'@joio [(_1)1-) _ 1:| a;. (9)
1=05é541is=1

n—1 n—2
D= ( H A D Ju—1 H I B D Jotatorstora B Jogatogo %jerQ) . (20)
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and the second term on the right-hand side (RHS) is independent oFor 2°t* < j < 2" — 1, letA; € J(u, s, js—1, ..., jo). Then
Js+1 andj,. (15) can be written as (17) shown at the bottom of this page.
We will prove condition ii) by induction ors. To be specific, we  Now if A; = 0, thenA;, = 0forall Ay € J(u, s, js—1, ..., Jo)

assume that the condition is true for- 1 and show that it is true for and from (17) we ge14§-°') = 0. It remains to show that ift; takes

5. Since even2”-QC code i2"*'-QC as well, and Theorem 3 showsg|| values fromF, then so doeslgvs). Suppose, on the contrary, that
that the condition is true for = » — 2, we will be through. Toward this  4(*) {5kes only the value zero any} takes all values fronf,. This is

end, consider the following set of four equations obtained from (9) oy possible, since then the code and2itscyclic shifted version will

all possible values of..1 andj. for afixed(ju—1, ..., jot2): have different dimensions, for all zero spectral components remain zero
4() » » » spectral components whereas a nonzero spectral component becomes
(0 001 s 07542 0.0, s ms o J0) a zero spectral component. This completes the proof for the “if part”
= A0, 0.1, Gy 1y 2000, o1 go) T B (1) of the theorem. O
(s)
A<0- 0L Gy 1 Jeg2s 1505 Js 1 s o) Example 3: Consider the length = 4 ternary codes. Since= 2
= A0, 0,1, jy—1y o dogzs 1o 1y daers o) T (12)  the only nontrivial QCD codes are the CD codes. From Theorem 3, the
402 spectral componentsandl are free and2, 3} form a constrained set
SO0, Gt T2, 00 L ds— 1, - J0)

A X 13 of spectral components. Hence there are, in total, eight CD codes, of
= A0, 0t Geg2s 0,1 e o) T (13) which six are nontrivial. Table Il shows all the codewords of these six

AEE) 0,1, i1+ aton 1oL do1seons o) codes along with their spectra.

= = A0, 01 st e 1.0y, o) T IO (14) Example 4: Among all length8 dyadic codes over any field of odd
o . . .characteristic, there aB¥ = 16 CD codes corresponding to the fol-

fowing four constrained sets of spectral components:
(0} {1} {23} {4.5.6.7)

independent of ., andj,. Since,

J 5 -’5—7’5—47---q' 3 . . .
(s 5: Jomts Jom o Jo) ) ) ' and2® = 64 2-QCD codes corresponding to the following six con-
=T 5+ 1,0, jumts s Jo) | J T (s s+ 1,1, jemis ooo5 Jo)  strained sets of spectral components:

and by the induction hypothesi&(y:, s + 1, 0, jo_1. ..., jo) and {0y {1} {2} {3} {4.6} {5 7}

J(po s+ 1,1, js—1, ..., jo) are constrained sets of spectral compo- Example 5: Among all length+6 dyadic codes over any field of

nents, if any of the four terms on the left-hand side of (11)—~(14) is zetgyq characteristic, there a2é¢ CD codes2® 2-QCD codes, and'?

then itis easily checked that we g&t= 0 and then all four terms be- 4.QCD codes corresponding to the constrained sets shown in Table 1.
come zero. Hencé(u, s, js—1, js—2, ..., jo) iS a constrained set of

spectral components. This completes the proof for the “only if” part of
the theorem.

Proof for the “if Part”: Let C satisfy the constrairnD, i.e., the  In this section, we enumerate the numbe2dfQCD codes for a
conditions i) and ii) in the statement of the theorem holdfotsing ~SPecified dimension and also show that the dual code of a QCD code
a; = XY= (—1)%9 4, in (6), it can be brought to the form shownis also QCD and it is easily identified in the transform domain.

IV. ENUMERATION OF QCD CODES AND DUAL QCD CODES

k=0
by (15) at the bottom of this page. )
0 < j <2 —1,thenjy_; = jo—s = -+ = joyr = 0and (15) A. Enumeration of QCD Codes

becomes (16) also displayed at the bottom of this page. Equation (16f-or a specified length, say= 2", and0 < s < r—1, the size of the
proves that thg'th spectral component of the code anditscyclic constrained sets and the number of such constrained sets determine the
shifted version both either take only the value zero or take all valupsssible dimensions fat’-QCD codes. The following theorem pro-

from F,,if 0 < j < 2°Ft — 1. vides this information.
1 “1:[1 1
o n—1 | n—1 @2t i [] el Gudka)ial
(s (_1)JS o Hu=st1 u=0 )
4(7 ) - Z Z(_l) X Ap. (15)
k=0 =0

;on—1 n—1
. —1)Is U k)
AR (=0r > { Y (—1)Fumoliushe) “]}Ak = (=1): 4. (16)

n -
k=0 1=0

u—1
Bl i (@i, i [T A l@@IZi G ®k)in I [@] 5 (Gu Bk )in]
s —1)? n=s41 n=s u=0
AP = (=1 (-1) A=e Ay
J n
k=0 (=0
u—1
(=1 nol (Bl iu [[ 8B IZiGudkwiul}

= > > (-1 A=s Ay (17)

n ;
k|ALET (1, 8, 5—-1,----J0) | =0
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TABLE I
THE CODEWORDS OF THESIX NONTRIVIAL TERNARY CD CODES OFLENGTH4 WITH THEIR SPECTRUM

Ao A1 A2 A3 ” I g Ao A1 A2 A3 I
Ca

Q
=)
Q
-
Q
)
Q
)
>
iy
]
X}
Q
w

Gy

C 3 C4

C5 CS

ONEFF N R OFEONNMEOMRONONEMFEONONM NSO ODNONFNFH OIN = O
N OO NNOMNORMNOOMCFINOFRLNNOHFHRFRPNOIOHFNNOREMNOIF-NOS
N ONOF OFENOMNMENONOFFNOFORFRNFEFNOINOMFOMNMENOIN—O
HONNRFRFOONHFHFNFRFOONHFHONONMFFONNRFRODOONEFEFEONNEOFNO
O OO OO0 OO OO OO OO OO OO0 OOOCODDO0O OO0 OoOIoOoC
NNNNNNNNDNEFFEFERER RO ODOQODODOODOOCIOCOOO OO0 OO =O
MO~ HEHFOOONNNKFMREREFEROOONNNEFEHEFERODODINNINHHEFEOOOOOO
W= ONFONFONFONFONFONFONRMKRONFOINFONMRONMROOOO
ON = N = O ONN - OR ONONE R ONONDNMEOIFHONONMENMFEOIN —= O
NOHEFENOOFRNENOOFRNNOFEOFEINNOMMFNOIOF NN O M NOINMF-O
HNONOMFEOMEINOMNMRNONOMINOMEOMENENO = ONONENEOIN =O
NP OONEFEFEFONEFEONNE QONMF ONR R ONNEROOFNNOMRFNOIN —=O
NN NN NNNRMEEEEEE - OO0 OOOININNNEFEF~OOON—~O
O C OO0 HONEHONROIOCOO
NN EOOONNNEMEFEFOODONNN KR IHFOOOOO O ODODODOODOOOo OO
N ONHFONFONFEFONFEONFEFONFEFONFONFROIOOOOODODODODODODOOIOoOOO

Theorem 5: For a givenr and0 < s < » — 1, there are2*™' Proof: This follows from Theorem 5 since, when spectral com-
constrained sets of siZeand2® constrained sets of siz¥, for all ponents of a constrained set take all values from the field, its contribu-
1 <t < r—1- s.Hence, the total number of constrained sets ion to the dimension of the code is equal to the size of the constrained
2°(r —s+1). set. O

Proof: Consider the constrained set The following is immediate from Theorem 6.

s 8 a1, » Jo) Corollary 2: For everyr and0 < s < r — 1, QCD codes exist for

=00, 0y G = L Ju—ts ooy Jss Js=1sev0 o) g dimensionk, wherel < k& < 2" — 1.
For every fixed value of ands, wherer —1 < pu < s+1,theabove  cqpoiiary 3: There are exactly two CD codes of each dimension
constrained set h&s elements corresponding to eaeh j1, - .. js—1 0< k<2 —1.
taking two values. Since there @& free spectral components, each ~ Proof: Puts = 0 in (18). 0
one of them is a constrained set of sizeve have the total number of
constrained setg' — 1 — 5)2° +2°T! = 2°(r — 5 + 1). O

. ) . B. Dual QCD Codes
Theorem 6: For1 < k < 2" — 1, the number ofc-dimensional

2°-QCD codes of lengtB” is the number of ways in which can be Two vectorsi = (ag, a1, «. .y dn—1) andb = (bg, b1, ..oy bnz1)
expressed as overF, are orthogonal i5""~' a;b;, = 0. For a linear cod€ overF,,
beda24a (18) th(_e set ofn-tuples overF, that are orthogonal to all the codt_avx{ords of
C is called the dual code af. Theorem 2 of [8], when specialized to
where0 < ag < 2°F'and0 < a; < 2°fori=1,2,...,r—1—s. dyadic codes, becomes the following.

gr—s—1 r—s—2
k=ar_ s 12 +ar—s—2a
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Theorem 7: For a dyadic code with spectral componeAtstaking
only the value zero, wherge Z C {0, 1, ..., n — 1}, its dual code
takes only the value zero in spectral componehtsvherej ¢ Z.

[15]

[16]
An immediate consequence is the following statement.

Corollary 4: Self-dual dyadic codes do not exist. [17]

The following corollary follows from combining Theorems 4 and 7. [18]
Corollary 5: The dual of 2°-QCD code is also 2°-QCD code.

V. CONCLUSION [19]
In this correspondence, we have extended the well-known transforf@”]
domain characterization of cyclic codes to dyadic codes which are alsgq
QC, called QCD codes, in the WHT domain. The class of QCD codes
enjoy the advantage that if the codes were only QC and not dyadic then
extension of the field is required to characterize them in the transforri?2]
domain. It will be interesting to investigate decoding algorithms tha
make use of the presence of both the QC structure and the dyadic struc-
ture. Generalizations of WHTSs such as Reverse Jacket transforms and
Cocyclic transforms have been investigated in [19]-[24]. The approack?4]
of this correspondence may be extended to some other classes of codes
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using these generalized transforms. Extension of QCD codes over fi-
nite fields to QCD codes over integer residue class rings is straight-
forward using the approach followed for the extension of cyclic codes
over fields to these rings in [10] and [11].

Variable-Length Integer Codes Based on the Goldbach
Conjecture, and Other Additive Codes
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Abstract—This correspondence introduces a new family of vari-
able-length codes for the integers, initially based on the Goldbach
) ) o conjecture that every even integer is the sum of two primes. For an even
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