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Quasi-Cyclic Dyadic Codes in the Walsh–Hadamard
Transform Domain

B. Sundar Rajan, Senior Member, IEEE,and
Moon Ho Lee, Senior Member, IEEE

Abstract—A code is -quasi-cyclic ( -QC) if there is an integer such
that cyclic shift of a codeword by -positions is also a codeword. For = 1,
cyclic codes are obtained. A dyadic code is a code which is closed under all
dyadic shifts. An -QC dyadic ( -QCD) code is one which is both -QC
and dyadic. QCD codes with = 1 give codes that are cyclic and dyadic
(CD). In this correspondence, we obtain a simple characterization of all
QCD codes (hence of CD codes) over any field of odd characteristic using
Walsh–Hadamard transform defined over that finite field. Also, it is shown
that dual a code of an -QCD code is also an -QCD code and -QCD codes
for a given dimension are enumerated for all possible values of.

Index Terms—Discrete Fourier transform (DFT), dyadic codes, quasi-
cyclic (QC) codes, Walsh–Hadamard transform (WHT).

I. INTRODUCTION

An s-quasi-cyclic (s-QC) code is a code with the property that cyclic
shift of any codeword bys positions gives another codeword. Cyclic
codes are1-QC codes. The class of QC codes contains asymptotically
good codes in the sense of meeting a version of Varshamov–Gilbert
bound [1] and includes several well-known codes [2].

Dyadic codes are defined only for lengthn, a power of2, sayn = 2r ,
as follows. For any integeri 2 f0; 1; . . . ; 2r � 1g, let

die = dir�1; ir�2; . . . ; i1; i0e

denote its radix-2 representation, where

i = ir�12
r�1 + ir�22

r�2 + � � �+ i12 + i0

and ij = 0; 1 for j = 0; 1; . . . ; r � 1. Radix-2 addition of two
numbersi andj denoted byi� j or die � dje is defined by

i� j = die � dje = dke

wherekl = (il + jl) mod 2, for l = 0; 1 . . . ; r � 1. Them-dyadic
shift, m = 0; 1; . . . ; n � 1, of a vector(a0; a1; . . . ; an�1) is the
vector

(a0�m; a1�m; . . . ; a(n�1)�m)

[3], [4].

Definition 1: We call a linear code of lengthn = 2r over a field a
dyadic codeif them-dyadic shift of every codeword is also a codeword
for all m = 0; 1; . . . ; n � 1.

The class of dyadic codes is a special case of the class of Abelian
group codes [5]–[8], which is briefly discussed in the next section. A
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linear cyclic code has the additional structure of being closed under
all cyclic shifts apart from linearity. Similarly, a dyadic code has the
additional structure of being closed under all dyadic shifts in addition
to the linearity of the code.

Definition 2: We define a dyadic code of lengthn = 2r to be a
quasi-cyclic dyadic (QCD) codeif there is an integert such that every
cyclic shift of a codeword byt places is also a codeword. Ift is the
smallest such integer, sayt = 2s for somes = 0; 1; . . . ; r � 1, we
call the code a2s-QCD code. A20-QCD code will be referred as a
cyclic-dyadic (CD) code.

Example 1: Consider the following ternary length-4 codeC0 with
nine codewords:

C0 = f(0000); (1122); (2211); (1212);

(2001); (0120); (2121); (0210); (1002)g:

By inspection,C0 is closed under all dyadic shifts but not closed under
cyclic shift, whereas codesC3 andC4 in Table II are codes with identical
parameters and are closed under all dyadic shifts as well as cyclic shifts.
That is,C0 is a dyadic code whereasC3 andC4 are CD codes.

The transform domain characterization of cyclic codes over a finite
field is given in terms of the discrete Fourier transform (DFT) defined
over an extension of that field [9]. Extension of this transform domain
characterization to the general class of Abelian codes [8] and to cyclic
codes over integer residue rings have been studied [10], [11]. The trans-
form domain description of codes is useful for encoding and decoding
[9], [12]. The DFT approach for cyclic codes of arbitrary length is dis-
cussed in [13] and for repeated-root cyclic codes [14], [15] in [16]. QC
codes over finite fields have been studied using a slightly modified ver-
sion of DFT by Tanner [17].

In this correspondence, we characterize all QCD codes (hence CD
codes) in the Walsh–Hadamard transform (WHT) domain. Our char-
acterization does not need extension of the field. Notice that if a cyclic
code overFq of lengthn is to be described in the transform domain
using the DFT then it is necessary that the DFT is defined in the exten-
sion fieldFq , wherem is the least integer such thatn dividesqm�1.
Similarly, the DFT domain study of QC codes by Tanner is also carried
out using an extension field. The main result of this correspondence is
that if such a QC code is dyadic as well, i.e., if the code is QCD, then
using the WHT it can be described without field extension. As a special
case, CD codes also get described using the WHT without field exten-
sion. Since algebraic decoding generally takes place in the extension
field, such an approach may lead to simpler/more efficient decoding.

The content of this correspondence is organized as follows. In Sec-
tion II, we review the well-known DFT characterization of cyclic codes,
briefly discuss dyadic codes as a special case of Abelian codes, and
the WHT as a special case of the generalized DFT, used in [8] to study
Abelian codes, and present the WHT domain characterization of dyadic
codes. In Section III, we present the main result which is a transform
domain characterization of QCD codes using the WHT and discuss sev-
eral examples. Using this characterization, in Section IV, we discuss
dual codes of QCD codes and carry out enumeration of QCD codes of
all possible dimensions. Section V consists of a summary of the results
and concluding remarks.

II. TRANSFORMDOMAIN CHARACTERIZATION OF DYADIC CODES

We start by describing the well-known transform domain character-
ization of cyclic codes. Let~a = (a0; a1; . . . ; an�1) 2 Fn

q , where
(n; q) = 1. Also letr be the smallest positive integer such thatnj(qr�
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1) and� 2 Fq be an element of multiplicative ordern. The DFT of
~a is defined to be~A = (A0; A1; . . . ; An�1) 2 Fn

q , where

Aj =

n�1

i=0

�
ij
ai; j = 0; 1; . . . ; n� 1: (1)

Aj is called thejth DFT coefficient or thejth transform component of
~a. The following restriction on the values of DFT coefficients holds:

Aqjmodn = A
q
j :

This constraint impliesAj 2 Fq � Fq , whererj is the smallest
positive integer such thatjqr � j mod n. So, the set of transform
componentsfAj ; Aqj ; Aq j ; . . . ; Aq j

g are related.
Let C � Fn

q be a code of lengthn overFq . We say,Aj takes values
from

n�1

i=0

�
ij
aij~a 2 C � Fq :

For anyj 2 [0; n � 1], thecyclotomic coset modulon of j is de-
fined as[j]qn = fi 2 [0; n� 1]jj � iqt mod n for some nonnegative
integertg. Notice that the conjugacy constraint relates only the com-
ponents of the transform vector indexed by elements of the sameq-cy-
clotomic coset. Now, the extensively studied linear cyclic codes over
Fq are characterized in the transform domain as follows.

• A cyclic code is the set of inverse DFT vectors of all the vec-
tors of anFq-subspace of DFT(Fn

q ) � Fn
q , in which transform

components in[j]qn, j = 0; 1; . . . ; n � 1, either take only the
zero value or all the values ofFq , and transform components
in disjoint [j1]qn and[j2]qn take values independently.

From the above characterization, it is clear that to specify a cyclic
code, it is sufficient to specify the set of cyclotomic cosets in which the
transform components of all the codewords is zero.

It is important to notice that this characterization demands extension
of the field (unlessn = q� 1) over which the code is defined and this
is also true for the case of QC codes [17]. Now we proceed to present
similar characterization for dyadic codes viewing them as a special case
of Abelian group codes.

LetG be an Abelian group of ordern andFq the finite field withq
elements. The group algebra ofG overFq , denoted byFqG, is the set

FqG =
g2G

aggjag 2 Fq

with addition and multiplication operations, defined by

g2G

agg +
g2G

bgg =
g2G

(ag + bg)g

and

g2G

agg

h2G

bhh =
k2G

ckk (2)

whereck =
gh=k

(agbh).
There is a natural1–1 correspondence betweenFn

q , the set ofn-tu-
ples overFq , andFqG. The subsets ofFn

q that correspond to ideals
of FqG are called Abelian codes [5]–[7]. It is easily seen that when
G is a cyclic group, the multiplication inFqG given by (2) represents
the cyclic convolution of two lengthn vectors overFq and ideals of
FqG are cyclic codes. For general Abelian groups, the multiplication
given by (2) represents a generalized convolution determined by the
structure of the Abelian group and accordingly Abelian codes overFq

are linear codes with the property that the set of codewords is closed

under this generalized convolution. When the groupG is an elemen-
tary Abelian group which is a direct product ofr cyclic groups each
of order2, the resulting convolution is the dyadic convolution and the
corresponding Abelian codes are precisely the dyadic codes given in
Definition 1. To be explicit, the dyadic convolution of two length-n

vectors~a = (a0; a1; . . . ; an�1) and~b = (b0; b1; . . . ; bn�1) is the
vector~c = (c0; c1; . . . ; cn�1) given by

ck =
i; j; i�j=k

aibj =

n�1

i=0

aibi�k; k = 0; 1; . . . ; n� 1:

In terms of dyadic convolution, dyadic codes can be defined as linear
codes with the property that dyadic convolution of a codeword with an
arbitrary vector results in another codeword.

The well-known WHT [3], [4] transforms a lengthn real vector
(a0; a1; . . . ; an�1) to another lengthn real vector(A0; A1; . . . ;
An�1), and is given by

Aj =

n�1

i=0

(�1)hj; iiai; j = 0; 1; . . . ; n� 1

where the modulo-2 inner producthj; ii is given by

hj; ii = jr�1ir�1 + jr�2ir�2 + � � �+ j0i0 (mod 2): (3)

The transform kernel�1 is an element of order2 in the complex and
real field, and in our case, since we will be working with vectors over
a fieldFq of characteristicp, an odd prime, the elementp � 1 in the
field is an element of order2, and can be used as the transform kernel.
We will continue to use�1 to denote an element of order2 in Fq .

Definition 3 (WHT): Let ~a = (a0; a1; . . . ; an�1) be a length-n
vector overFq , a field with odd characteristicp, andn = 2r. The WHT
of ~a is defined to be the length-n vector ~A = (A0; A1; . . . ; An�1)
overFq , given by

Aj =

n�1

i=0

(�1)hj; iiai; j = 0; 1; . . . ; n� 1 (4)

wherehj; ii is given by (3).Aj will be referred to as thejth transform
component or thejth spectral component of~a.

It can be easily verified that the inverse transform is given by

ai =
1

(nmod p)

n�1

j=0

(�1)hj; iiAj ; i = 0; 1; . . . ; n� 1:

Notice that sincep is an odd prime andn is a power of2, n cannot
be zero modulop and since every nonzero element is invertible in a
field, the inverse transform exists. This is the reason for restricting our
discussion to codes over fields with odd characteristic.

The WHT given in Definition 3 is a special case of the generalized
DFT given in [8] and consequently the following properties hold.

Convolution Property: The WHT defined overFq given by (4) es-
tablishes an algebra isomorphism ofFn

q to itself where addition oper-
ation is mapped onto addition and dyadic convolution is mapped onto
point-wise product, i.e., if~a,~b, and~c aren-tuples overFq such that

ci =

n�1

k=0

ai�kbk; i = 0; 1; . . . ; n� 1

then their WHT coefficients satisfy the relationCj = AjBj , j =
0; 1; . . . ; n � 1.

Conjugate Symmetry Property:From the conjugate symmetry
property of the generalized DFT proved in [8] there is no extension of
the field required for (4) and, consequently, all transform components
are independent. Combining this observation with [8, Theorem 1 and
Definition 2] gives the following theorem.
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Theorem 1: LetC be a length-n = 2r linear code overFq whereq is
a power of an odd primep and fori 2 f0; 1; . . . ; n� 1g, letCCCi denote
the set of values taken by theith WHT component of all the codewords
of C. If CCCi = 0 for all i 2 ZZZ , a subset off0; 1; . . . ; n � 1g andCCCi =
Fq for all i =2 ZZZ with values fromFq taken independently thenC is
dyadic and, conversely, for every linear dyadic code there is a setZZZ �
f0; 1; . . . ; n � 1g such thatCCCi = 0 for all i 2 ZZZ and for all other
values ofi =2 ZZZ ,CCCi = Fq with values fromFq taken independently.

Notice that in Theorem 1, ifC is dyadic, then it is completely char-
acterized by the subsetZZZ of f0; 1; . . . ; n � 1g. Henceforth, we will
refer to this subset asthe defining set ofC.

Remark 1: It is important to notice the termindependentlyin The-
orem 1 as well as in the transform domain characterization of cyclic
codes (bullet) in Section II. This essentially means that ifAi andAj

are two spectral components taking all values fromFq then for every
particular value forAi, sayAi = x, the set of valuesAj takes is the
entireFq . In other words, the value taken byAi does not determine the
value taken byAj andvice versa. Recently, it has been shown that if
two nonzero spectral components are related (do not take values inde-
pendently) say, byAj = �(Ai) where� is an appropriate map that
determines the relation, then the code is not cyclic and can be a QC or
a group code depending upon the map� [18].

From Theorem 1 it follows that corresponding to every subset of
f0; 1; . . . ; n�1g there is a dyadic code with that subset as the defining
set of the code. Hence we have the following corollary.

Corollary 1: Including the two trivial codes (Fn
q and the all-zero

codeword) there are22 dyadic codes of length2r.

The main result of this correspondence (Theorem 4) and Theorem 6
answer the following question:

• Among these22 dyadic codes how many are2s-QC, and how
can they by recognized (characterized) for everys = 0; 1; . . . ;
r � 1?

III. QCD CODES IN THEWHT DOMAIN

In this section, we present the main result of this correspondence
which gives the constraints among the spectral components to be sat-
isfied for a dyadic code to be a2s-QCD code.

Definition 4: For a vector~a, ~a (l) will denote the2l-cyclic shifted
version of~a and the corresponding WHT vector will be denoted by
~A (l).

Definition 5: A constraintD = D1 [ D2 [ � � � [ Dl is a partition
of f0; 1; . . . ; n � 1g. If i 2 Dj andjDj j = 1, theni is called a free
spectral component. If not, it is said to be a constrained spectral com-
ponent. The spectral components belonging toDj , j = 1; 2; . . . ; l,
are said to form a constrained set of spectral components. LetC be a
length-n = 2r linear code overFq whereq is a power of an odd prime
p and fori 2 f0; 1; . . . ; n� 1g, letCCCi denote the set of values taken
by theith WHT component of all the codewords ofC. The codeC is
said to satisfy the constraintD if CCCi = CCCi wheneveri1; i2 2 Dj

for some1 � j � l. Equivalently,C is said to satisfy the constraintD
if its defining set is a union of someDj .

Remark 2: It is important to notice that the above definition means
that if two spectral components, sayi1 andi2 are in a constrained set
then eitherCCCi = CCCi = 0 orCCCi = CCCi = Fq and it does not mean
that they are related as mentioned in Remark 1.

Definition 6: For everyj = djr�1; jr�2; . . . ; j0e and0 � s �
r � 2

djr�1; jr�2; . . . ; js+1; js � js+1; js�1; js�2; . . . ; j0e

will be denoted byj(s).

Note thatj(s) is equal toj if js+1 is zero, otherwise,j(s) andj differ
by 2s: if js = 0, thenj(s)� j = 2s and ifjs = 1, thenj� j(s) = 2s.
Also observe that(j(s))(s) = j.

Theorem 2: All length n = 2r dyadic codes are2r�1-QCD codes.
Proof: This follows from the fact that cyclic shift of a codeword

by2r�1 positions is the same as the2r�1-dyadic shift of the codeword
and a dyadic code is closed under all dyadic shifts.

Next, we consider the cases = r � 2. This can be made part of
Theorem 4, but we discuss it separately so that the idea in the main
theorem leading to a certain constrained set (Definition 7) of spectral
components characterizing2s-QCD codes can be seen without nota-
tional complications. Furthermore, this case will be used as the induc-
tion base in the main theorem.

Theorem 3: A length-n = 2r dyadic code is2r�2-QCD, if it satis-
fies the constraint

D =

2 �1

j=0

fjg
(j ; j ; ...; j )

fd1; x; jr�3; . . . ; j0ejx = 0; 1g:

In other words,j is free for0 � j � 2r�1 � 1 and for all2r�1 �
j � 2r � 1, any two spectral components differing only injr�2 form
a constrained set of spectral components.

Proof: For any codeword~a we have

A
(2 )
j =

n�1

i=0

(�1)hj; iia
(2 )
i

=

n�1

i=0

(�1)hj; iiai�2

=

n�1

i=0

(�1)hj; i+2 iai

=

n�1

i=0

(�1)
j (i �i )�j (i �1) j i

ai

=(�1)j
n�1

i=0

(�1)
j i �(j �j )i j i

ai

=(�1)j A
j

: (5)

From (5), it follows thatAj andA
j

do not differ if jr�1 is zero,
in which case,j is a free spectral component, and ifjr�1 is 1 then they
differ only in jr�2, in which casej andj(r�2) form a constrained set
of spectral components.

To extend Theorem 3 to casess � r � 3, we generalize the con-
strained setfd1; x; jr�3; . . . ; j0ejx = 0; 1g of Theorem 3 as fol-
lows.

Definition 7: For a givens, 0 � s � r � 2, for every�, (s+ 1 �
� � r�1), and a fixed(js�1; js�2; . . . ; j0), the set of2��s spectral
components consisting of thosej ’s where

j = d0; 0; . . . ; 0; 1 = j�; j��1; j��2; . . . ; js+1; js; js�1; . . . ; j0e

is denoted byJ(�; s; js�1; js�2; . . . ; j0).

Example 2: For eachr = 2; 3; and4 corresponding to eachs =
0; 1; . . . ; r�1, the setsJ(�; s; js�1; . . . ; j0) for all possible values
of � are shown in Table I. The set ofj ’s for which the entry is the same
letter amongA; B; C; . . . form one such set.

The main result of this correspondence follows.
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TABLE I
CONSTRAINED SETS OFSPECTRAL COMPONENTS FORn = 2 , r = 2; 3; AND 4 CORRESPONDING TOEXAMPLE 2

Theorem 4: A dyadic codeC of lengthn = 2r is2s-QCD,0 � s <

r � 2, if it satisfies the constraint

D =

2 �1

j=0

fjg
(j ; j ; ...; j )

r�1

�=s+1

J(�; s; js�1; js�2; . . . ; j0):

In other words,C is 2s-QCD, if

i) for all 0 � j � 2s+1 � 1, the spectral componentj is free;

ii) among allj � 2s+1, everyJ(�; s; js�1; js�2; . . . ; j0) forms
a constrained set of spectral components.

Proof for the “Only if” Part: Let C be a2s-QCD code and~a =
(a0; a1; . . . an�1) 2 C. Then, we haveA(s)

j given by (6) displayed at

the bottom of this page. If0 � j � 2s+1�1, we havejr�1 = jr�2 =
� � � = js+1 = 0, and (6) becomes

A
(s)
j = (�1)j

n�1

i=0

(�1)hj; iiai = (�1)j Aj :

The preceding equation implies that for allj, 0 � j � 2s+1� 1 the
spectral componentj is free. This proves condition i).

For2s+1 � j � 2r� 1, we continue with (6) and obtain (7) and (8)
also displayed at the bottom of this page.

Note that in (8),D depends only onjr�1; jr�2; . . . ; js+2 among
all the components ofj.

Let � be the largest integer,s+ 1 � � � r � 1, such thatj� = 1;
that is,jr�1 = jr�2 = � � � = j�+1 = 0. Then, after a few manipula-
tions, (7) reduces to (9) and (8) reduces to (10), both displayed at the
bottom of this page. Equation (9) shows thatA

(s)
j is related toA

j

A
(s)
j =

n�1

i=0

(�1)hj; iiai�2 =

n�1

i=0

(�1)hj; i+2 i
ai

=

n�1

i=0

(�1)
j (i � i )�����j (i � i )�j (i �i )�j (i �1)�j i �����j i

ai: (6)

A
(s)
j =(�1)j

n�1

i=0; i i 6=1

(�1)hj ; ii
ai + (�1)j

n�1

i=0; i i =1

(�1)hj ; ii(�1)Dai

=(�1)j Aj + (�1)j
n�1

i=0; i i =1

(�1)hj ; ii (�1)D � 1 ai (7)

where

D = (jr�1; jr�2; . . . ; js+4; js+3; js+2);

r�2

�=s+2

i�;

r�3

�=s+2

i�; . . . ; is+3is+2; is+2; 1 : (8)

A
(s)
j = (�1)j Aj +

2 �1

i=0; i i =1

(�1)j i �j i �����j i �j i �����j i (�1)D � 1 ai: (9)

D =

��1

�=s+2

i� � j��1

��2

�=s+2

i� � � � � � js+4is+3is+2 � js+3is+2 � js+2 : (10)
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and the second term on the right-hand side (RHS) is independent of
js+1 andjs.

We will prove condition ii) by induction ons. To be specific, we
assume that the condition is true fors + 1 and show that it is true for
s. Since every2s-QC code is2s+1-QC as well, and Theorem 3 shows
that the condition is true fors = r�2, we will be through. Toward this
end, consider the following set of four equations obtained from (9) for
all possible values ofjs+1 andjs for a fixed(j��1; . . . ; js+2):

A
(s)
h0; ...;0; 1; j ; ...; j ; 0; 0; j ; ...; j i

= Ah0; ...;0; 1; j ; ...; j ; 0; 0; j ; ...; j i +K (11)

A
(s)
h0; ...;0; 1; j ; ...; j ; 1; 0; j ; ...; j i

= Ah0; ...;0; 1; j ; ...; j ; 1; 1; j ; ...; j i +K (12)

A
(s)
h0; ...;0; 1; j ; ...; j ; 0; 1; j ; ...; j i

= �Ah0; ...;0; 1; j ; ...; j ; 0; 1; j ; ...; j i +K (13)

A
(s)
h0; ...;0; 1; j ; ...; j ; 1; 1; j ; ...; j i

= �Ah0; ...;0; 1; j ; ...; j ; 1; 0; j ; ...; j i +K (14)

whereK is the value of the second term in the RHS of (8) which is
independent ofjs+1 andjs. Since,

J(�; s; js�1; js�2; . . . ; j0)

= J(�; s+ 1; 0; js�1; . . . ; j0) J(�; s+ 1; 1; js�1; . . . ; j0)

and by the induction hypothesisJ(�; s + 1; 0; js�1; . . . ; j0) and
J(�; s+ 1; 1; js�1; . . . ; j0) are constrained sets of spectral compo-
nents, if any of the four terms on the left-hand side of (11)–(14) is zero,
then it is easily checked that we getK = 0 and then all four terms be-
come zero. HenceJ(�; s; js�1; js�2; . . . ; j0) is a constrained set of
spectral components. This completes the proof for the “only if” part of
the theorem.

Proof for the “if Part”: Let C satisfy the constraintD, i.e., the
conditions i) and ii) in the statement of the theorem hold forC. Using
ai =

1
n

n�1
k=0 (�1)

hk; iiAk in (6), it can be brought to the form shown
by (15) at the bottom of this page.

If 0 � j � 2s+1�1, thenjr�1 = jr�2 = � � � = js+1 = 0 and (15)
becomes (16) also displayed at the bottom of this page. Equation (16)
proves that thejth spectral component of the code and its2s-cyclic
shifted version both either take only the value zero or take all values
from Fq , if 0 � j � 2s+1 � 1.

For 2s+1 � j � 2r � 1, let Aj 2 J(�; s; js�1; . . . ; j0). Then
(15) can be written as (17) shown at the bottom of this page.

Now if Aj = 0, thenAk = 0 for all Ak 2 J(�; s; js�1; . . . ; j0)

and from (17) we getA(s)
j = 0. It remains to show that ifAj takes

all values fromFq then so doesA(s)
j . Suppose, on the contrary, that

A
(s)
j takes only the value zero andAj takes all values fromFq . This is

not possible, since then the code and its2s-cyclic shifted version will
have different dimensions, for all zero spectral components remain zero
spectral components whereas a nonzero spectral component becomes
a zero spectral component. This completes the proof for the “if part”
of the theorem.

Example 3: Consider the lengthn = 4 ternary codes. Sincer = 2
the only nontrivial QCD codes are the CD codes. From Theorem 3, the
spectral components0 and1 are free andf2; 3g form a constrained set
of spectral components. Hence there are, in total, eight CD codes, of
which six are nontrivial. Table II shows all the codewords of these six
codes along with their spectra.

Example 4: Among all length–8 dyadic codes over any field of odd
characteristic, there are24 = 16 CD codes corresponding to the fol-
lowing four constrained sets of spectral components:

f0g f1g f2; 3g f4; 5; 6; 7g

and26 = 64 2-QCD codes corresponding to the following six con-
strained sets of spectral components:

f0g f1g f2g f3g f4; 6g f5; 7g:

Example 5: Among all length–16 dyadic codes over any field of
odd characteristic, there are25 CD codes,28 2-QCD codes, and212

4-QCD codes corresponding to the constrained sets shown in Table I.

IV. ENUMERATION OF QCD CODES ANDDUAL QCD CODES

In this section, we enumerate the number of2s-QCD codes for a
specified dimension and also show that the dual code of a QCD code
is also QCD and it is easily identified in the transform domain.

A. Enumeration of QCD Codes

For a specified length, sayn = 2r, and0 � s � r�1, the size of the
constrained sets and the number of such constrained sets determine the
possible dimensions for2s-QCD codes. The following theorem pro-
vides this information.

A
(s)
j =

(�1)j

n

n�1

k=0

n�1

i=0

(�1)
[� j i ]�[� (j �k )i ]

Ak: (15)

A
(s)
j =

(�1)j

n

n�1

k=0

n�1

i=0

(�1)[� (j �k )i ]
Ak = (�1)j Aj : (16)

A
(s)
j =

(�1)j

n

n�1

k=0

n�1

i=0

(�1)
f[� j i ]�[� (j �k )i ]g�[� (j �k )i ]

Ak

=
(�1)j

n
kjA 2J(�; s; j ; ...; j )

n�1

i=0

(�1)
f[� j i ]�[� (j �k )i ]g

Ak: (17)
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TABLE II
THE CODEWORDS OF THESIX NONTRIVIAL TERNARY CD CODES OFLENGTH 4 WITH THEIR SPECTRUM

Theorem 5: For a givenr and0 � s � r � 1, there are2s+1

constrained sets of size1 and2s constrained sets of size2t, for all
1 � t � r � 1 � s. Hence, the total number of constrained sets is
2s(r � s + 1).

Proof: Consider the constrained set

J(�; s; js�1; . . . ; j0)

= (0; 0; . . . ; 0; j� = 1; j��1; . . . ; js; js�1; . . . ; j0):

For every fixed value of� ands, wherer� 1 � � � s+ 1, the above
constrained set has2s elements corresponding to eachj0; j1; . . . js�1
taking two values. Since there are2s+1 free spectral components, each
one of them is a constrained set of size1, we have the total number of
constrained sets(r � 1� s)2s + 2s+1 = 2s(r � s+ 1).

Theorem 6: For 1 � k � 2r � 1, the number ofk-dimensional
2s-QCD codes of length2r is the number of ways in whichk can be
expressed as

k = ar�s�12
r�s�1 + ar�s�2a

r�s�2 + � � �+ a12 + a0 (18)

where0 � a0 � 2s+1 and0 � ai � 2s for i = 1; 2; . . . ; r � 1� s.

Proof: This follows from Theorem 5 since, when spectral com-
ponents of a constrained set take all values from the field, its contribu-
tion to the dimension of the code is equal to the size of the constrained
set.

The following is immediate from Theorem 6.

Corollary 2: For everyr and0 � s � r � 1, QCD codes exist for
all dimensionk, where1 � k � 2r � 1.

Corollary 3: There are exactly two CD codes of each dimension
0 � k � 2r � 1.

Proof: Puts = 0 in (18).

B. Dual QCD Codes

Two vectors~a = (a0; a1; . . . ; an�1) and~b = (b0; b1; . . . ; bn�1)
overFq are orthogonal if n�1

i=0
aibi = 0. For a linear codeC overFq ,

the set ofn-tuples overFq that are orthogonal to all the codewords of
C is called the dual code ofC. Theorem 2 of [8], when specialized to
dyadic codes, becomes the following.
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Theorem 7: For a dyadic code with spectral componentsAj taking
only the value zero, wherej 2 ZZZ � f0; 1; . . . ; n� 1g, its dual code
takes only the value zero in spectral componentsAj wherej 62 ZZZ:

An immediate consequence is the following statement.

Corollary 4: Self-dual dyadic codes do not exist.

The following corollary follows from combining Theorems 4 and 7.

Corollary 5: The dual of a2s-QCD code is also a2s-QCD code.

V. CONCLUSION

In this correspondence, we have extended the well-known transform
domain characterization of cyclic codes to dyadic codes which are also
QC, called QCD codes, in the WHT domain. The class of QCD codes
enjoy the advantage that if the codes were only QC and not dyadic then
extension of the field is required to characterize them in the transform
domain. It will be interesting to investigate decoding algorithms that
make use of the presence of both the QC structure and the dyadic struc-
ture. Generalizations of WHTs such as Reverse Jacket transforms and
Cocyclic transforms have been investigated in [19]–[24]. The approach
of this correspondence may be extended to some other classes of codes
using these generalized transforms. Extension of QCD codes over fi-
nite fields to QCD codes over integer residue class rings is straight-
forward using the approach followed for the extension of cyclic codes
over fields to these rings in [10] and [11].
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Variable-Length Integer Codes Based on the Goldbach
Conjecture, and Other Additive Codes

Peter Fenwick, Member, IEEE

Abstract—This correspondence introduces a new family of vari-
able-length codes for the integers, initially based on the Goldbach
conjecture that every even integer is the sum of two primes. For an even
integer we decompose the value into its two constituent primes and encode
the ordinal numbers of those primes with an Elias code. The method is
then elaborated to handle odd integers. The correspondence then develops
a more general method of encoding any integer as the sum of two integers
and developing suitable basis sets of integers. Although the codes which
are generated by these methods are characterized by widely varying and
unpredictable lengths, they are over some ranges shorter than most other
variable-length codes.

Index Terms—Elias gamma codes, Goldbach conjecture, integers, prime
numbers, variable-length codes.

I. INTRODUCTION

Many types of information coding and compression involve a trans-
formation which produces a sequence of integers with a highly skewed
frequency distribution. For good compression or a compact representa-
tion it is then necessary to represent these integers in a “variable-length”
form such that each codeword is self-delimiting and small values are
represented much more compactly than larger values. Many such codes
have been developed, as summarized by Fenwick [1] (though this ac-
count has major errors in describing the Golomb code). The present
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